RU2401820C1 - Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения - Google Patents

Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения Download PDF

Info

Publication number
RU2401820C1
RU2401820C1 RU2009123738/03A RU2009123738A RU2401820C1 RU 2401820 C1 RU2401820 C1 RU 2401820C1 RU 2009123738/03 A RU2009123738/03 A RU 2009123738/03A RU 2009123738 A RU2009123738 A RU 2009123738A RU 2401820 C1 RU2401820 C1 RU 2401820C1
Authority
RU
Russia
Prior art keywords
aggregate
chromium
calcium
refractory
chromous
Prior art date
Application number
RU2009123738/03A
Other languages
English (en)
Inventor
Степан Романович Замятин (RU)
Степан Романович Замятин
Владимир Евгеньевич Гельфенбейн (RU)
Владимир Евгеньевич Гельфенбейн
Юрий Леонидович Журавлев (RU)
Юрий Леонидович Журавлев
Оксана Львовна Матвеева (RU)
Оксана Львовна Матвеева
Original Assignee
Закрытое акционерное общество "Опытный завод огнеупоров"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Опытный завод огнеупоров" filed Critical Закрытое акционерное общество "Опытный завод огнеупоров"
Priority to RU2009123738/03A priority Critical patent/RU2401820C1/ru
Application granted granted Critical
Publication of RU2401820C1 publication Critical patent/RU2401820C1/ru

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

Группа изобретений относится к огнеупорной промышленности, в частности к огнеупорному заполнителю на основе хромистого гексаалюмината кальция и способу его получения из высокоглиноземистого шлака алюминотермического производства металлического хрома. Указанный огнеупорный заполнитель может быть использован для изготовления как неформованных огнеупоров, так и огнеупорных изделий, предназначенных для футеровки тепловых агрегатов в различных областях промышленности. Заполнитель на основе хромистого гексаалюмината кальция содержит следующие минеральные фазы, мас.%: хромистый гексаалюминат кальция CaO·6(Al,Cr)2O3 86,0-94,0, хромистый корунд (Al,Cr)2O3 1,5-10,0, шпинель Mg(Al,Cr)2O4 2,0-4,0, диалюминат кальция CaO·Al2O3 0,1-0,5. Способ получения огнеупорного заполнителя на основе хромистого гексаалюмината кальция включает переработку высокоглиноземистого шлака алюминотермического производства металлического хрома посредством его дополнительного обжига при температуре 1500-1750°С и измельчения до заданного зернового состава. Технический результат изобретения - объемопостоянство заполнителя при температурах выше 1400°С, что позволяет применять его при более высокой температуре. 2 н.п. ф-лы, 2 табл.

Description

Группа изобретений относится к огнеупорной промышленности, в частности к огнеупорному заполнителю на основе хромистого гексаалюмината кальция и способу его получения из высокоглиноземистого шлака алюминотермического производства металлического хрома. Указанный огнеупорный заполнитель может быть использован для изготовления как неформованных огнеупоров, так и огнеупорных изделий, предназначенных для футеровки тепловых агрегатов в различных областях промышленности.
Известен огнеупорный материал (заполнитель) на основе гексаалюмината кальция, СаО·6Al2O3 (далее: СА6), содержание которого составляет от 40 до 90 вес.%, другие минеральные фазы представлены корундом, Al2O3, и низкоглиноземистыми алюминатами кальция: моно- и диалюминатом кальция, СаО·Al2O3 и СаО·2Al2O3 (далее: CA2) соответственно. Известный заполнитель характеризуется высокой плотностью, которая достигает 90% от теоретической плотности CA6, открытая пористость заполнителя составляет 5-15% [1].
Указанный синтетический заполнитель известен как бонит и обладает рядом уникальных свойств, таких как высокая огнеупорность, низкая растворимость в железосодержащем шлаке, высокая стабильность в восстановительной атмосфере (например, в СО), высокая химическая устойчивость в щелочной среде, низкая смачиваемость расплавами как черных, так и цветных металлов. Благодаря сочетанию перечисленных свойств бонит перспективен для использования в алюминиевой, цементной, нефтехимической отраслях промышленности, а также в черной металлургии [2].
Однако для получения известного заполнителя требуется дорогостоящее сырье, в частности глинозем, что снижает экономическую эффективность его использования.
Наиболее близким к огнеупорному заполнителю по изобретению является плавленый огнеупорный заполнитель на основе хромистого гексаалюмината кальция, полученный из высокоглиноземистого шлака алюминотермического производства металлического хрома.
Известный заполнитель содержит следующие минеральные фазы, мас.%: хромистый гексаалюминат кальция (Хромистый СА6 содержит включения хромистого щелочного алюмината, (Na,К)2O·12(Al,Cr)2O3, в незначительном количестве), СаО·6(Al,Cr)2O3, 55-70; хромистый корунд, (Al,Cr)2O3, 15-33; шпинель, Mg(Al,Cr)2O4, 2-4; низкоглиноземистые алюминаты кальция 5-9, в том числе диалюминат кальция, СаО·2Al2O3, 3-5, и майенит, 12СаО·7Al2O3 (далее: С12А7), 2-4; хром металлический, Cr, 1-2 [3].
Основу шлака составляет хромистый СА6, иначе СА6, с изоморфной примесью трехвалентного оксида хрома, Cr2O3, называемый в [3] хромистым бонитом. Этот минерал аналогично СА6 имеет гексагональную сингонию и характеризуется совершенной спайностью по четырем плоскостям, благодаря чему обладает наивысшей алюмофобностью, устойчивостью к другим металлическим расплавам, к восстановительной и щелочным средам, имеет низкую теплопроводность и высокую термостойкость. В связи с вышеизложенным, указанный шлак является ценным и дешевым сырьем для огнеупорной промышленности и рекомендован для использования в качестве заполнителя огнеупорных бетонов.
Однако, из-за быстрого охлаждения шлакового расплава в неравновесных условиях, в известном заполнителе наряду с хромистым СА6 выкристаллизовываются и низкоглиноземистые алюминаты кальция СА2 и C12A7, суммарное содержание которых в шлаке достигает 9 мас.%.
При эксплуатации изделий и футеровок, содержащих шлаковый заполнитель, при температурах 1400°С и выше СА2 и C12A7 перекристаллизовываются в хромистый СА6. Процесс сопровождается разрыхлением заполнителя и увеличением его объема в среднем до 9 об.% Кроме того, остаточный металлический хром, окисляясь при нагреве, также не способствует объемопостоянству заполнителя. Отсутствие высокотемпературной стабильности шлакового заполнителя ограничивает температуру его применения.
Известен способ получения огнеупорного материала (заполнителя) на основе СА6, включающий приготовление сырьевой смеси путем тонкого помола глинозем- и кальцийсодержащих компонентов в стехиометрическом соотношении, соответствующем СА6, и спекающей добавки, увлажнение указанной смеси с последующим ее гранулированием, сушку гранул и их обжиг при температуре, достаточной для образования материала с высоким содержанием СА6, в частности 1600-1700°С, и измельчение обожженного материала [1].
Известный способ характеризуется многостадийностью и высокой энергоемкостью, вследствие наличия таких энергозатратных переделов, как длительный помол, гранулирование, сушка и обжиг. Осуществление способа требует использования дорогостоящих сырьевых материалов, в частности глинозема.
Все это удорожает технологический процесс и повышает стоимость конечного продукта.
Наиболее близким к изобретению является способ получения огнеупорного заполнителя на основе хромистого СА6 путем переработки высокоглиноземистого шлака алюминотермического производства металлического хрома посредством его измельчения до заданного зернового состава [4].
Преимуществом известного способа является его экономичность - для получения готового продукта необходимо лишь измельчение (дробление) шлака, а также его экологичность, так как в технологическом процессе используются отходы металлургического производства - шлаки.
Однако известный способ не обеспечивает получение огнеупорного заполнителя с высоким уровнем объемопостоянства при температурах выше 1400°С, что ограничивает температуру его применения.
Задачей группы изобретений, объединенных единым изобретательским замыслом, является создание огнеупорного заполнителя на основе хромистого СА6, обеспечивающего высокие физико-керамические показатели огнеупорных изделий и футеровок, и разработка способа получения указанного заполнителя из высокоглиноземистого шлака алюминотермического производства металлического хрома.
Технический результат, который может быть достигнут при использовании группы изобретений, заключается в повышении объемопостоянства огнеупорного заполнителя в широком температурном интервале, а также в повышении температуры его применения.
Указанный технический результат достигается тем, что огнеупорный заполнитель на основе хромистого гексаалюмината кальция, включающий хромистый гексаалюминат кальция, хромистый корунд, шпинель и диалюминат кальция, согласно изобретению содержит указанные минеральные фазы в следующем соотношении, мас.%:
хромистый гексаалюминат кальция,
СаО·6(Al,Cr)2О3 86,0-94,0
хромистый корунд, (Al,Cr)2O3 1,5-10,0
шпинель, Mg(Al,Cl)2O4 2,0-4,0
диалюминат кальция, СаО·2Al2O3 0,1-0,5
Указанный технический результат достигается также тем, что в способе получения огнеупорного заполнителя на основе хромистого гексаалюмината кальция путем переработки высокоглиноземистого шлака алюминотермического производства металлического хрома посредством его измельчения согласно изобретению шлак подвергают дополнительному обжигу при температуре 1500-1750°С, после чего измельчают до получения заполнителя заданного зернового состава
Сущность группы изобретений заключается в том, что благодаря проведению дополнительного обжига шлака осуществляется перекристаллизация низкоглиноземистых алюминатов кальция СА2 и C12A7 в хромистый СА6 с увеличением объема до 9%.
Вместе с тем, находящийся в шлаке остаточный металлический хром окисляется при обжиге до оксида трехвалентного хрома, который в качестве изоморфной примеси присутствует в минеральных фазах заполнителя. Хромистый корунд и шпинель не меняют объемопостоянства заполнителя при повторном нагреве, а наличие следов СА2 в количестве 0,1-0,5 мас.% не оказывает заметного влияния на его качество.
Таким образом, в результате обжига шлака получается прореагировавший огнеупорный заполнитель, содержащий от 84,0 до 94,0 мас.% хромистого СА6, который не дает объемного роста в процессе повторных нагревов. Это дает возможность повысить температуру применения заполнителя, а также улучшить качество огнеупорных изделий и футеровок на его основе.
Пределы содержания хромистого СА6 в заполнителе обусловлены, с одной стороны, содержанием CaO и Al2O3 в исходном шлаке, а с другой стороны, температурой обжига. Чем выше температура в заявленном интервале температур, тем больше количество образовавшегося СА6 и выше плотность заполнителя при последующем спекании.
Подъем температуры выше 1750°С экономически нецелесообразен для достижения максимальной плотности заполнителя, при температурах ниже 1500°С не происходит полной перекристаллизации СА2 и C12A7 в хромистый СА6 и достаточного уплотнения заполнителя, и, следовательно, не достигается требуемое качество продукта.
Пример выполнения
Высокоглиноземистый шлак алюминотермического производства металлического хрома ОАО "Ключевский завод ферросплавов" (выпускаемый по ТУ 14-141-41-99), содержащий, мас.%: хромистый гексаалюминат кальция - 58,0, хромистый корунд - 30,0, диалюминат кальция - 3,0, майенит - 4,0, шпинель - 3,0 и металлический хром - 2,0, с размером кусков 30-70 мм обжигали при температуре 1650°С. После охлаждения материал измельчали до получения заполнителя полифракционного состава.
Минеральный состав обожженного заполнителя определяли рентгенофазовым анализом. Заполнитель после обжига содержал, мас.%: хромистый гексаалюминат кальция - 90,0, хромистый корунд - 6,9, шпинель - 3,0, диалюминат кальция - 0,1.
Кажущаяся плотность обожженного заполнителя составила 3,0 г/см3, открытая пористость - 22,0%, в то время как у необожженного шлакового заполнителя кажущаяся плотность была равна 3,45 г/см3, открытая пористость - 10,0%. После обжига при температуре 1450°С соответствующие величины составили 2,81 г/см3 и 23,0%, что свидетельствует о разрыхлении необожженного заполнителя, который может быть использован только до температуры 1400°С.
Были также проведены сравнительные испытания огнеупорных бетонов с использованием заполнителей на основе хромистого СА6, полученных из необожженного шлака (известный заполнитель) и из обожженного шлака (заполнитель по изобретению), и корундового заполнителя. Составы бетонов приведены в таблице 1.
Свойства огнеупорных бетонов, определенные в соответствии с существующими ГОСТами, представлены в таблице 2.
Из таблицы 2 видно, что огнеупорный бетон с заполнителем по изобретению (состав 2) сохраняет постоянство объема при нагревании до температуры 1650°С, в то время как аналогичный по составу бетон, содержащий известный заполнитель (состав 1) разрыхляется при температуре выше 1500°С, что ограничивает температуру его дальнейшего применения.
Следует отметить, что бетон состава 2 практически не отличается от бетона с корундовым заполнителем (состав 3) по прочности, пористости и остаточным изменениям размеров при нагреве. Вместе с тем, теплопроводность бетона с заполнителем на основе хромистого гексаалюмината кальция (состав 2) примерно в 3 раза ниже, чем у бетона с корундовым заполнителем. Это позволит, в ряде случаев, с успехом заменить дорогостоящий корундовый заполнитель более экономичным заполнителем по изобретению, получив при этом дополнительное снижение тепловых потерь через футеровку.
Следует отметить также, что свойства предлагаемого заполнителя относительно устойчивости его к металлическим и шлаковым расплавам, к восстановительной и щелочной средам аналогичны свойствам бонита, что предопределено структурой гексаалюмината кальция.
Таким образом, использование предлагаемой группы изобретений обеспечивает изготовление огнеупорных изделий и футеровок с достаточно высокими физико-керамическими свойствами при относительной их экономичности.
Таблица 1
Составы огнеупорных бетонов
Компоненты Содержание компонентов, мас.%
Состав 1 Состав 2 Состав 3
Заполнитель на основе хромистого СА6 (шлаковый необожженный) 70 - -
Заполнитель на основе хромистого СА6 (шлаковый обожженный) - 70 -
Заполнитель корундовый - - 70
Тонкомолотый глиноземистый материал 20 20 20
Высокоглиноземистый цемент с содержанием Al2O3 75 мас.% 10 10 10
Дефлокулянт (сверх 100%) 0,15 0,15 0,15
Таблица 2
Свойства огнеупорных бетонов
Свойства Показатели
Состав 1 Состав 2 Состав 3
1 2 3 4
Предел прочности при сжатии, Н/мм2,
после твердения 3 сут после нагрева при температуре, °С,
34 35 20 (20°С)
350 76 64 70 (150°С)
1000 82 107 -
1500 60 90 -
1650 65 95 100
Кажущаяся плотность, г/см3, после нагрева при температуре, °С,
350 2,88 2,84 3,0
1000 - 2,83 2,9
1500 2,60 2,87 -
1650 2,70 2,86 3,1
Остаточные изменения размеров, %, после нагрева при температуре, °С,
350 -0,2 -0,07 -0,8
1000 -0,2 -0,05 -0,02
1500 +2,8 -0,5 -
1650 +2,0 -0,05 -0,8
Открытая пористость, %, после нагрева при температуре, °С,
350 19 17 15
1000 - 19,8 -
1500 25,7 20,1 -
1650 23,2 19,2 -
Теплопроводность, Вт/(м·К) 0,569 0,464 1,5
Температура деформации под нагрузкой t0,6, p, °С - 1650 1650
Список источников информации
1. ЕР 1178023, МПК C04B 35/44; C04B 35/66, опубл. 06.02.2002.
2. Бонит - новый сырьевой материал, предлагающий новые возможности в производстве огнеупоров / Бюхель Г., Бур А., Гириш Д., Речер Р.П. // Новые огнеупоры, 2006, №7, с.66-73.
3. Перепелицын В.А., Рытвин В.М., Игнатенко В.Г. Техногенная сокровищница Урала / Минеральное сырье Урала, 2007, №4 (12), с.24-26.
4. Продукт глиноземистый ТУ 14-141-41-99 / Многофункциональные плавленые материалы на оксиалюминатной основе / ОАО "Управляющая компания РосСпецСплав", ООО "Ключевская обогатительная фабрика", 2008, с.6.

Claims (2)

1. Огнеупорный заполнитель на основе хромистого гексаалюмината кальция, включающий хромистый гексаалюминат кальция, хромистый корунд, шпинель и диалюминат кальция, отличающийся тем, что он содержит указанные минеральные фазы в следующем соотношении, мас.%:
хромистый гексаалюминат кальция, CaO·6(Al,Cr)2O3 86,0-94,0 хромистый корунд, (Al,Cr)2O3 1,5-10,0 шпинель, Mg(Al,Cr)2O4 2,0-4,0 диалюминат кальция, CaO·2Al2O3 0,1-0,5
2. Способ получения огнеупорного заполнителя на основе хромистого гексаалюмината кальция путем переработки высокоглиноземистого шлака алюминотермического производства металлического хрома посредством его измельчения, отличающийся тем, что шлак подвергают дополнительному обжигу при температуре 1500-1750°С, после чего измельчают до получения заполнителя заданного зернового состава.
RU2009123738/03A 2009-06-22 2009-06-22 Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения RU2401820C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009123738/03A RU2401820C1 (ru) 2009-06-22 2009-06-22 Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009123738/03A RU2401820C1 (ru) 2009-06-22 2009-06-22 Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения

Publications (1)

Publication Number Publication Date
RU2401820C1 true RU2401820C1 (ru) 2010-10-20

Family

ID=44023935

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009123738/03A RU2401820C1 (ru) 2009-06-22 2009-06-22 Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения

Country Status (1)

Country Link
RU (1) RU2401820C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574236C2 (ru) * 2014-05-06 2016-02-10 Общество с ограниченной ответственностью Научно-производственный центр "Цеолит" (ООО НПЦ "Цеолит") Плавленый огнеупорный материал
CN113200754A (zh) * 2021-04-16 2021-08-03 太原科技大学 一种轻质高强耐高温人造球形铸造砂及其制备方法和应用
WO2022237776A1 (zh) * 2021-05-10 2022-11-17 淄博郎丰高温材料有限公司 基于ca6的中等体积密度耐火材料、制法及其应用
CN116396062A (zh) * 2023-04-07 2023-07-07 中钢洛耐科技股份有限公司 一种含盐废水焚烧炉用尖晶石复合铬刚玉砖及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПЕРЕПЕЛИЦЫН В.А. и др. Техногенная сокровищница Урала, Минеральное сырье Урала, 2007, N 4 (12), с.24-26. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574236C2 (ru) * 2014-05-06 2016-02-10 Общество с ограниченной ответственностью Научно-производственный центр "Цеолит" (ООО НПЦ "Цеолит") Плавленый огнеупорный материал
CN113200754A (zh) * 2021-04-16 2021-08-03 太原科技大学 一种轻质高强耐高温人造球形铸造砂及其制备方法和应用
WO2022237776A1 (zh) * 2021-05-10 2022-11-17 淄博郎丰高温材料有限公司 基于ca6的中等体积密度耐火材料、制法及其应用
CN116396062A (zh) * 2023-04-07 2023-07-07 中钢洛耐科技股份有限公司 一种含盐废水焚烧炉用尖晶石复合铬刚玉砖及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Utilization of nickel slag as raw material in the production of Portland cement for road construction
Zawrah et al. Effect of mullite formation on properties of refractory castables
EP2188078B1 (en) Calcium enriched refractory material by the addition of a calcium carbonate
RU2020100219A (ru) Способ получения пористой спеченной магнезии, шихты для получения грубокерамического огнеупорного изделия с зернистым материалом из спеченной магнезии, изделия такого рода, а также способы их получения, футеровки промышленной печи и промышленная печь
CN102119132B (zh) 无机水泥熟料、其制备方法以及包含所述熟料的无机水泥
Zawrah et al. Synthesis and characterization of calcium aluminate nanoceramics for new applications
CN104973875B (zh) 一种致密铝镁钙耐火熟料及其制备方法
CN101671046B (zh) 一种高纯镁铝尖晶石的生产方法
JP4602379B2 (ja) アルミナセメントの製造方法
CN112679201A (zh) 一种以铝铬渣为主要原料的无水泥铝镁铬浇注料及其制备方法与应用
Qiu et al. Properties of regenerated MgO–CaO refractory bricks: impurity of iron oxide
RU2401820C1 (ru) Огнеупорный заполнитель на основе хромистого гексаалюмината кальция и способ его получения
JP2006282486A (ja) アルミナセメント、アルミナセメント組成物及び不定形耐火物
CN109160812A (zh) 水泥窑用低导热镁铝尖晶石砖
Ghosh et al. Effect of MgO and ZrO2 additions on the properties of magnesite-chrome composite refractory
JP4155932B2 (ja) アルミナセメント及び不定形耐火物
CN110128113B (zh) 一种镁铝钛砖及其制备方法和应用
Othman et al. Recycling of spent magnesite and ZAS bricks for the production of new basic refractories
WO2007129752A1 (ja) アルミナセメントの製造方法及び不定形耐火物
RU2433106C2 (ru) Способ получения теплоизоляционного гексаалюминаткальциевого материала
BR0201093B1 (pt) material para preparação de corpos moldados refratários, seu processo de preparação e uso do mesmo.
Murphy Recycling steel slag as a cement additive
RU2437862C1 (ru) Огнеупорная бетонная смесь (варианты)
Abyzov et al. Heat-resistant concrete based on aluminothermic slags of the Klyuchevskii Ferroalloys Plant
CN113929324B (zh) 一种熔融钢渣制备高铁高硅硫铝酸盐水泥熟料及其制备方法