RU2398758C1 - Способ получения ацетата свинца (ii) - Google Patents

Способ получения ацетата свинца (ii) Download PDF

Info

Publication number
RU2398758C1
RU2398758C1 RU2008150979/04A RU2008150979A RU2398758C1 RU 2398758 C1 RU2398758 C1 RU 2398758C1 RU 2008150979/04 A RU2008150979/04 A RU 2008150979/04A RU 2008150979 A RU2008150979 A RU 2008150979A RU 2398758 C1 RU2398758 C1 RU 2398758C1
Authority
RU
Russia
Prior art keywords
solvent
lead
reaction mixture
metal
mol
Prior art date
Application number
RU2008150979/04A
Other languages
English (en)
Other versions
RU2008150979A (ru
Inventor
Анатолий Михайлович Иванов (RU)
Анатолий Михайлович Иванов
Светлана Дмитриевна Пожидаева (RU)
Светлана Дмитриевна Пожидаева
Татьяна Александровна Маякова (RU)
Татьяна Александровна Маякова
Наталья Александровна Спицына (RU)
Наталья Александровна Спицына
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Курский государственный технический университет (КурскГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Курский государственный технический университет (КурскГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Курский государственный технический университет (КурскГТУ)
Priority to RU2008150979/04A priority Critical patent/RU2398758C1/ru
Publication of RU2008150979A publication Critical patent/RU2008150979A/ru
Application granted granted Critical
Publication of RU2398758C1 publication Critical patent/RU2398758C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к усовершенствованному способу получения ацетата свинца (II) путем прямого взаимодействия металла, его диоксида с карбоновой кислотой в присутствии органической жидкой фазы и стимулирующей добавки йода в бисерной мельнице вертикального типа, где в качестве окислителя и реагента в недостатке берут диоксид свинца в количестве 0,4-0,6 моль/кг, металл и уксусную кислоту дозируют в количествах 0,6-1,5 моль/кг и соответственно
Figure 00000001
в расчете на получение
Figure 00000008
соли-продукта, где

Description

Изобретение относится к технологии получения карбоксилатов свинца (II) и может быть использовано в различных областях химической практики, в аналитическом контроле и при проведении различных научных исследований.
Известен способ получения ацетата свинца (А.С. СССР № 1664785 кл. C07C 53/10, опубл. 23.07.91, бюл. №27), в соответствии с которым оксид свинца обрабатывают раствором ацетата аммония в диметилформамиде при их молярном соотношении 1:(2,0-2,2):(13-325) при нагревании до кипения и выдержке в режиме кипения в течение определенного времени. Твердую фазу реакционной смеси отфильтровывают, фильтрат упаривают в вакууме и получают продукт с выходом от 73% до практически количественного и с содержанием основного вещества выше 90%.
Недостатками данного способа являются:
1. Диметилформамид как растворитель кипит при температуре 150°, температура кипения раствора ацетата аммония в нем несколько выше. Еще выше следует ожидать температуру кипения реакционной смеси, представляющую собой раствор ацетатов аммония и свинца в ДМФА. Следовательно, рассматриваемый процесс высокотемпературный, требующий подвода внешнего тепла и соответствующего реактора с хорошим обратным холодильником-конденсатором и теплоизоляцией.
2. Довольно сложное выделение целевого продукта реакции: отделение жидкой фазы реакционной смеси от остаточной твердой фазы, упаривание фильтрата в вакууме с образованием твердой соли, промывка остатка после упаривания изопропиловым спиртом, сушка отделенной твердой фазы целевого продукта. При этом некоторые стадии требуют специального оборудования, работающего под вакуумом, например.
3. В химическом превращении образуются летучие продукты, в частности аммиак и вода, что требует создания безопасных условий работы для обслуживающего персонала.
4. Основная часть реакционной смеси представлена высококипящим растворителем (ДМФА). На его нагрев, подержание в течение определенного времени температуры кипения, а в дальнейшем на упаривание под вакуумом тратится много подводимого тепла, что делает процесс энергоемким.
5. Оставляет желать лучшего чистота и выход получаемого продукта.
6. В целом процесс сложный и с большим числом операций, требующий разнообразное оборудование в довольно большом количестве
Наиболее близким к заявляемому является способ получения ацетата марганца (II) (патент РФ № 2294921, опубл. 10.03.2007, бюл. №7). В соответствии с ним прямое взаимодействие металла и его диоксида в мольном соотношении 2:1 с уксусной кислотой ведут в присутствии объемной жидкой фазы, основу которой составляет органический растворитель (этилцеллозольв, этиленгликоль, 1,4-диоксан, изоамиловый или н-бутиловый спирт), в котором растворена уксусная кислота (3,4-5 моль/кг) и молекулярный йод (0,025-0,07 моль/кг) в качестве стимулирующей добавки. Сумма масс металла и его диоксида составляет 11,8% от массы жидкой фазы. Массовое соотношение жидкой фазы и стеклянного бисера 1:1,5. Последовательность загрузки следующая: стеклянный бисер, жидкая фаза или ее компоненты (растворитель, кислота и йод), затем металл и его диоксид. Конец загрузки и устойчивое перемешивание в бисерной мельнице принимают за начало процесса.
Процесс начинают при комнатной температуре и ведут до практически полного израсходования диоксида марганца. При этом основная масса продукта накапливается в суспендированной в реакционной смеси твердой фазе. Суспензию конечной реакционной смеси отделяют от стеклянного бисера и тяжелых частиц непрореагировавшего металла и фильтруют. Осадок соли-продукта очищают путем перекристаллизации, а фильтрат возвращают в повторный процесс.
Недостатками данного способа являются:
1. Нет никаких оснований считать, что переход от системы Mn-MnO2-уксусная кислота к системе Pb-PbO2-уксусная кислота автоматически обеспечит работоспособность процесса и близкие условия его протекания с технологически приемлемыми скоростями, а также с практически количественным превращением реагента в недостатке. Во-первых, MnO2 и PbO2 довольно разные по силе окислители. Это относится и в части сравнения марганца и свинца в качестве восстановителей. Во-вторых, физические характеристики металла очень разные. Свинец значительно более тяжелый в сравнении с марганцем металл и при этом металл мягкий и пластичный, в то время как марганец хрупкий и легко дробящийся в используемой бисерной мельнице.
2. Если со свинцом и его диоксидом процесс окажется возможным, то нет никаких оснований считать, что будет приемлемым используемое в прототипе мольное соотношение металл: его диоксид, а также массовое соотношение суммы металла и его диоксида с жидкой фазой системы.
3. Нет никаких оснований считать, что благоприятные растворители жидких фаз при получении ацетата марганца (II) останутся такими же при проведении аналогичного процесса в системе свинец - его диоксид. Это в полной мере относится к природе и количеству используемой стимулирующей добавки процесса.
4. Нет сомнений в том, что растворимости в различных средах, а также другие физические свойства ацетатов марганца и свинца существенно отличны друг от друга. Из этого следует отсутствие всяких гарантий того, что при протекании аналогичного по структуре процесса получения ацетата свинца продукт будет преимущественно накапливаться в виде суспендированной твердой фазы, легко отделяться простым фильтрованием или центрифугированием и очищаться аналогичным образом. При этом получаемую осветленную жидкость-фильтрат окажется не только возможным, но и целесообразным возвращать в повторный процесс.
Задачей предлагаемого решения является подобрать такие мольные соотношения реагентов и массовые их соотношения с растворителем жидкой фазы, загрузкой в целом, а также загрузки и стеклянного бисера, а также природу растворителя жидкой фазы и стимулирующей добавки, количество последней и прочие условия проведения окислительно-восстановительного процесса, при реализации которых обеспечивалось бы практически количественное превращение диоксида свинца в соль, преимущественно накапливающуюся в виде суспендированной твердой фазы, легко отделяемой от остальной реакционной смеси путем простого фильтрования.
Поставленная задача достигается тем, что в качестве окислителя и реагента в недостатке берут диоксид свинца в количестве 0,4-0,6 моль/кг, металл и уксусную кислоту дозируют в количествах 0,6-1,5 моль/кг и соответственно
Figure 00000001
в расчете на получение
Figure 00000002
соли-продукта, где nPBO2 - количество моль/кг диоксида свинца в загрузке, в качестве стимулирующей добавки используют йод, в количестве 0,01-0,05 моль/кг жидкой фазы, основу которой вначале составляет органический растворитель и растворенные в нем уксусная кислота и йод, загрузку компонентов реакционной смеси ведут в последовательности: растворитель жидкой фазы, уксусная кислота, металл, его диоксид, молекулярный йод, при этом массовое соотношение загрузки и стеклянного бисера берут не менее 1:1,5; процесс начинают при комнатной температуре и ведут в диапазоне максимальных температур 30-50°С в условиях принудительного охлаждения и при контроле методом отбора проб и определения в них содержаний накопившейся соли и непрореагировавших диоксида свинца и уксусной кислоты до практически полного расходования окислителя, после чего процесс прекращают, суспензию реакционной смеси отделяют от стеклянного бисера и тонких пластинок непрорегировавшего металла путем пропускания через сетку с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки, бисер и непрореагировавший металл возвращают в реактор, где вместе с корпусом, мешалкой и другими элементами реактора отмывают растворителем жидкой фазы от оставшейся при выгрузке реакционной смеси, получая при этом промывной растворитель; суспензию реакционной смеси фильтруют, осадок на фильтре обрабатывают промывным растворителем, хорошо отжимают и направляют на очистку путем перекристаллизации, а полученный фильтрат в смеси с промывным растворителем возвращают в повторный процесс. При этом в качестве растворителя жидкой фазы используют изо-пропиловый, изо-бутиловый спирты, этилцеллозольв, диметилформамид и бутилацетат.
Характеристика используемого сырья:
Свинец металлический по ТУ 6-09-3523-74.
Диоксид свинца по ГОСТ 4216-78.
Уксусная кислота по ГОСТ 61-75.
Йод кристаллический по ГОСТ 4159-79.
изо-Пропиловый спирт по ГОСТ 9805-84.
изо-Бутиловый спирт по ГОСТ 9536-79.
Этилцеллозольв по ГОСТ 8313-88.
Диметилформамид по МРТУ 6-09-2068-65.
Бутилацетат по ГОСТ 8981-78.
Проведение процесса заявляемым способом следующее. В бисерную мельницу вертикального типа, снабженную обратным холодильником-конденсатором, высокооборотной механической мешалкой лопастного типа и охлаждающей водяной баней с холодной проточной водой, вводят расчетные количества стеклянного бисера, растворителя жидкой фазы, уксусной кислоты, свинца, его диоксида и молекулярного йода. Включают механическое перемешивание и этот момент принимают за начало процесса. Сразу же подают охлаждающую воду в обратный холодильник-конденсатор и подводят охлаждающую водяную баню таким образом, чтобы корпус реактора оказался погруженным в баню не менее, чем на 2/3 своей высоты. Степень погружения реактора в баню и проток холодной воды через нее регулируют таким образом, чтобы максимальная по ходу процесса температура в зоне реакции не превышала 30-50°С. По ходу процесса отбирают пробы реакционной смеси, в которых определяют содержания накопившейся соли свинца, а также непрореагировавших диоксида свинца и уксусной кислоты. По результатам данного контроля определяют момент количественного расходования диоксида свинца, т.е. момент прекращения процесса.
По окончании процесса перемешивание в бисерной мельнице, подачу воды в обратный холодильник-конденсатор прекращают, опускают охлаждающую баню вниз, отсоединяют корпус бисерной мельницы от его крышки (соединение резьбовое), содержимое реактора переносят в воронку узла отделения реакционной смеси от бисера и пластинок непрореагировавшего свинца толщиной 0,2-0,3 мм (первоначальные гранулы-кусочки под воздействием бисера по ходу процесса раскатываются в пластинки указанной толщины), содержащую в качестве фильтровальной перегородки сетку с размерами ячеек 0,3×0,3 мм. Стеклянный бисер и непрореагировавший металл аккуратно снимают с сетки указанного узла и возвращают в корпус реактора. Последний помещают в предназначенное для него гнездо каркасной рамы и соединяют с крышкой реактора с механической мешалкой и обратным холодильником-конденсатором. В собранную бисерную мельницу загружают расчетное количество растворителя жидкой фазы, включают механическое перемешивание и отмывают корпус, механическую мешалку, прочие элементы реактора и стеклянный бисер от оставшейся на них при выгрузке и отделении остатков реакционной смеси. Далее отделяют бисер и непрореагировавший металл от промывного растворителя и направляют на загрузку повторного процесса.
Отделенную от бисера реакционную смесь фильтруют, осадок на фильтре промывают полученным промывным растворителем, снимают с фильтра и направляют на очистку путем перекристаллизации, а фильтрат вместе с промывным растворителем возвращают в повторный процесс.
Пример №1.
В бисерную мельницу со стеклянным толстостенным корпусом с плоским дном с внутренним диаметром 53,2 мм и высотой 143 мм, соединенную через соответствующий отвод в крышке с обратным холодильником-конденсатором и снабженную высокооборотной механической лопастной мешалкой с валом и прямоугольной лопастью 50×46 мм из текстолита, последовательно загружают 160 г стеклянного бисера, 52,1 г изо-бутилового спирта как растворителя, 13,71 г уксусной кислоты, 20,72 г свинца, нарезанного на куски с максимальным линейным размером до 5 мм, 13,16 г диоксида свинца и 0,31 г молекулярного йода. Корпус реактора с загрузкой соединяют резьбовым соединением с крышкой, содержащей сальниковую коробку, упомянутый выше отвод на обратный холодильник-конденсатор, а также гнезда для кармана с термопарой и пробоотборника. Собранную мельницу помещают в соответствующее гнездо каркасной рамы, надежно закрепляют в этом гнезде в стандартном, всегда повторяющемся от опыта к опыту положении. Подводят жидкостную охлаждающую баню снизу таким образом, чтобы примерно 100 мм высоты корпуса реактора оказались в охлаждающей воде, подают проточную охлаждающую воду в обратный холодильник-конденсатор и охлаждающую баню, включают механическое перемешивание и этот момент принимают за начало процесса.
По ходу окислительно-восстановительного процесса без прекращения перемешивания в определенные моменты времени отбирают пробы реакционной смеси, в которых определяют содержание накопившейся соли свинца (II), а также непрореагировавших диоксида свинца и уксусной кислоты. На основании результатов такого контроля строят кинетические кривые накопления указанных компонентов, по которым определяют время достижения 25, 50, 75 и 98 и более степени превращения реагента в недостатке (в данном случае диоксида свинца). Оно оказалось равным 3, 7, 31 и 124 мин соответственно. При этом максимальная температура в зоне реакции зафиксирована на 14 мин от начала процесса и равна 43°С.
По истечении 130 мин прекращают подачу воды в обратный холодильник-конденсатор и в охлаждающую баню, а также перемешивание реакционной смеси в реакторе. Баню опускают вниз, освобождая корпус мельницы, после чего проводят отсоединение его от крышки реактора. Отсоединенный корпус реактора сразу не убирают, давая 3 мин на стекание оставшейся на лопасти и вале мешалки реакционной смеси. После этого содержимое корпуса реактора аккуратно переносят в воронку узла отделения реакционной смеси от стеклянного бисера и непрореагировавшего металла (присутствующего в виде тонких листочков-пластинок толщиной 0,1-0,3 мм) на сетке с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки. Задержанный на сетке бисер и непрореагировавший металл аккуратно снимают с сетки и возвращают в реактор. Последний устанавливают на свое место на каркасной раме, собирают установку в целом, вводят 40 г изо-бутилового спирта, включают механическое перемешивание и проводят смыв оставшейся реакционной смеси с поверхности реактора, ее вала, прочих элементов реактора, а также с поверхностей возвращенного стеклянного бисера и непрореагировавшего свинца в течение 5 мин. После этого проводят повторное отделение стеклянного бисера и пластинок непрореагировавшего свинца от промывного растворителя по описанной ранее последовательности операций.
Параллельно с отмывкой твердых поверхностей от остатков реакционной смеси проводят фильтрование ранее отделенной суспензии реакционной смеси и последующую промывку осадка на фильтре промывным растворителем, отжим осадка, съем его с фильтра и отправку на дополнительную очистку путем перекристаллизации.
Смесь фильтрата и промывного растворителя, содержащую непрореагировавшую кислоту, продукты превращения стимулирующей добавки (в основном йодид свинца) и 0,021 моль/кг ацетата свинца возвращают на загрузку повторного процесса.
Выход отделенного твердого продукта составил 0,108 моль или 97% от расчетного значения.
Примеры №2-9.
Реактор и его элементы, последовательности операций загрузки, проведения процесса, определения момента его прекращения, отделения стеклянного бисера и непрореагировавшего металла от остальной реакционной смеси, переработки реакционной смеси, выделения целевого продукта и утилизации растворителя и компонентов стимулирующей добавки, а также природа растворителя и массовые соотношения загрузки и стеклянного бисера аналогичны описанным в примере 1. Отличаются начальной дозировкой диоксида свинца, мольным соотношением диоксида свинца и металла в загрузке, дозировкой уксусной кислоты, йода, промывного растворителя, а также максимальной температурой реакционной смеси в реакторе по ходу процесса. Указанные отличия и прочие характеристики процесса приведены в табл.1. (PC - реакционная смесь)
Таблица 1
Характеристики загрузки, проведения процесса и полученной реакционной смеси Пример №
2 3 4 5 6 7 8 9
Начальное содержание диоксида свинца, моль/кг 0,4 0,4 0,4 0,6 0,6 0,6 0,6 0,6
Загрузка свинца, моль/кг 0,6 1,2 1,5 0,6 1,0 1,2 1,4 1,5
Коэффициент А в формуле для загрузки уксусной кислоты
Figure 00000003
4,20 4,15 4,10 4,10 4,20 4,18 4,13 4,15
Загрузка йода, моль/кг жидкой фазы 0,05 0,05 0,05 0,05 0,04 0,03 0,02 0,01
Температура PC в момент загрузки реагентов, °С 18 18 20 21 20 19 18 22
Максимальная температура по ходу процесса, °С 30 44 48 39 50 50 43 38
Время достижения степени превращения диоксида свинца, мин 25% 4 2 2 4 3 2 2 2
50% 10 9 8 9 8 7 7 8
75% 34 22 19 37 32 28 29 30
98 и выше % 84 71 63 92 86 95 103 127
Длительность окислительно-восстановительного процесса, мин 90 75 70 100 90 100 110 135
Промывной растворитель, %от массы PC 37 44 39 51 41 38 40 42
Длительность очистки элементов реактора и поверхностей стеклянного бисера и непрореагировавшего свинца от остатков PC, мин 4 3 3 4 5 5 4 4
Выход отделенного путем фильтрования твердого ацетата свинца, % от теоретического значения 96 98 97 97 97 98 98 98
Содержание ацетата свинца в возвращаемой в повторный процесс смеси фильтрата и промывного растворителя, моль/кг 0,019 0,020 0,023 0,022 0,024 0,018 0,022 0,023
Примеры №10-15.
Реактор и его элементы, загрузка свинца, его диоксида и уксусной кислоты, последовательности операций загрузки, проведения процесса, определения момента его прекращения, отделения стеклянного бисера и непрореагировавшего металла от реакционной смеси, переработки суспензии PC, выделения целевого продукта и утилизации растворителя и компонентов из стимулирующей добавки аналогичны описанным в примере 1. Отличаются природой используемого растворителя, содержанием стимулирующей добавки йода, а также массовым соотношением загрузки и стеклянного бисера. Указанные различия и прочие характеристики процесса приведены в табл.2. (Обозначения: иПС-изо-пропиловый спирт; иБС-изо-бутиловый спирт; ЭЦ - этилцеллозольв; БА - бутилацетат, ДМФА - диметилформамид)
Figure 00000004
Положительный эффект предлагаемого решения состоит:
1. В мягких температурных условиях, и к тому поддерживаемых за счет реакционного тепла при умеренном по интенсивности и легко организуемом принудительном охлаждении.
2. Основная масса продукта накапливается в виде суспендированной твердой фазы и легко отделяется путем простого фильтрования.
3. Реакционная смесь после удаления твердого продукта и промывной растворитель возвращаются в повторный процесс и не требуют какой-либо специальной утилизации.
4. Возвращаемый в повторный процесс избыточный металл легко отделяется от остальной реакционной смеси вместе со стеклянным бисером
5. В предлагаемом решении нет летучих загрязнений окружающей среды и сточных вод.
6. Аппаратурное оформление процесса не содержит котлонадзорного оборудования.
7. Контроль за ходом протекания процесса простой и легко организуемый.

Claims (2)

1. Способ получения ацетата свинца (II) путем прямого взаимодействия металла, его диоксида с карбоновой кислотой в присутствии органической жидкой фазы и стимулирующей добавки йода в бисерной мельнице вертикального типа, отличающийся тем, что в качестве окислителя и реагента в недостатке берут диоксид свинца в количестве 0,4-0,6 моль/кг, металл и уксусную кислоту дозируют в количествах 0,6-1,5 моль/кг и соответственно
Figure 00000005
в расчете на получение
Figure 00000006
соли-продукта, где
Figure 00000007
- количество моль/кг диоксида свинца в загрузке, в качестве стимулирующей добавки используют йод в количестве 0,01-0,05 моль/кг жидкой фазы, основу которой вначале составляет органический растворитель и растворенные в нем уксусная кислота и йод, загрузку компонентов реакционной смеси ведут в последовательности: растворитель жидкой фазы, уксусная кислота, металл, его диоксид, молекулярный йод, при этом массовое соотношение загрузки и стеклянного бисера берут не менее 1:1,5; процесс начинают при комнатной температуре и ведут в диапазоне максимальных температур 30-50°С в условиях принудительного охлаждения и при контроле методом отбора проб и определения в них содержаний накопившейся соли и непрореагировавших диоксида свинца и уксусной кислоты до практически полного расходования окислителя, после чего процесс прекращают, суспензию реакционной смеси отделяют от стеклянного бисера и тонких пластинок непрореагировавшего металла путем пропускания через сетку с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки, бисер и непрореагировавший металл возвращают в реактор, где вместе с корпусом, мешалкой и другими элементами реактора отмывают растворителем жидкой фазы от оставшейся при выгрузке реакционной смеси, получая при этом промывной растворитель; суспензию реакционной смеси фильтруют, осадок на фильтре обрабатывают промывным растворителем, хорошо отжимают и направляют на очистку путем перекристаллизации, а полученный фильтрат в смеси с промывным растворителем возвращают в повторный процесс.
2. Способ по п.1, отличающийся тем, что в качестве растворителя жидкой фазы используют изопропиловый, изобутиловый спирты, этилцеллозольв, диметилформамид и бутилацетат.
RU2008150979/04A 2008-12-22 2008-12-22 Способ получения ацетата свинца (ii) RU2398758C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008150979/04A RU2398758C1 (ru) 2008-12-22 2008-12-22 Способ получения ацетата свинца (ii)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008150979/04A RU2398758C1 (ru) 2008-12-22 2008-12-22 Способ получения ацетата свинца (ii)

Publications (2)

Publication Number Publication Date
RU2008150979A RU2008150979A (ru) 2010-06-27
RU2398758C1 true RU2398758C1 (ru) 2010-09-10

Family

ID=42683226

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008150979/04A RU2398758C1 (ru) 2008-12-22 2008-12-22 Способ получения ацетата свинца (ii)

Country Status (1)

Country Link
RU (1) RU2398758C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470867C1 (ru) * 2011-07-05 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет радиотехники, электроники и автоматики" Способ получения безводного ацетата свинца (ii) для приготовления безводных пленкообразующих растворов цирконата-титаната свинца
RU2671197C1 (ru) * 2017-11-15 2018-10-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения карбоксилатов олова (II)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470867C1 (ru) * 2011-07-05 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет радиотехники, электроники и автоматики" Способ получения безводного ацетата свинца (ii) для приготовления безводных пленкообразующих растворов цирконата-титаната свинца
RU2671197C1 (ru) * 2017-11-15 2018-10-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения карбоксилатов олова (II)

Also Published As

Publication number Publication date
RU2008150979A (ru) 2010-06-27

Similar Documents

Publication Publication Date Title
CN101597073B (zh) 一种用焦炉煤气脱硫废液制备硫氰酸钠的方法
AU2013299456A1 (en) Process for converting FGD gypsum to ammonium sulfate and calcium carbonate
CN101830918B (zh) 一种多氮唑锌/镉框架材料的合成方法
RU2398758C1 (ru) Способ получения ацетата свинца (ii)
CN108017632A (zh) 邻菲罗啉衍生的双吡唑萃取剂及其制备方法与用途
RU2630310C1 (ru) Способ получения бензоата олова (II)
CN106146303A (zh) 一种醋酸混丁酯的连续生产系统及方法
CN102502844B (zh) 一种β型四钼酸铵的生产方法与生产系统
CN107875990A (zh) 一种连续碱洗装置及工艺
KR20130139743A (ko) 바륨 이온 소스의 정제
RU2414451C1 (ru) СПОСОБ ПОЛУЧЕНИЯ n-АМИНОБЕНЗОАТА МАРГАНЦА (II)
CN109879509A (zh) 一种高流速循环式弱酸废液处理装置及其处理方法
RU2316536C1 (ru) Способ получения формиата марганца (ii)
RU2331629C1 (ru) Способ получения салицилата марганца (ii)
CN114408883A (zh) 回收双氟磺酰亚胺锂的方法
RU2391332C1 (ru) Способ получения бензоата марганца (ii)
CN101603772B (zh) 一种产品干燥及溶剂回收工艺和设备
RU2294921C1 (ru) Способ получения ацетата марганца (ii)
CN101407325A (zh) 用硫酸镁分离硼酸生产母液中硼酸与硫酸镁的方法
RU2424225C1 (ru) Способ получения основного ацетата меди (ii)
RU2735433C1 (ru) Способ получения соли олова (IV) с анионами азотной и бензойной кислот
CN114988464A (zh) 从钙钛矿电池中回收利用铅盐的方法和装置
RU2807759C1 (ru) Способ получения ацетата или оксалата свинца из его оксида (II)
RU2671197C1 (ru) Способ получения карбоксилатов олова (II)
RU2713840C1 (ru) Способ получения фторида олова (II) из металла и его диоксида

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101223