RU2398719C1 - Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра - Google Patents

Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра Download PDF

Info

Publication number
RU2398719C1
RU2398719C1 RU2009134789/11A RU2009134789A RU2398719C1 RU 2398719 C1 RU2398719 C1 RU 2398719C1 RU 2009134789/11 A RU2009134789/11 A RU 2009134789/11A RU 2009134789 A RU2009134789 A RU 2009134789A RU 2398719 C1 RU2398719 C1 RU 2398719C1
Authority
RU
Russia
Prior art keywords
heat exchanger
casing
moist air
heat
winding
Prior art date
Application number
RU2009134789/11A
Other languages
English (en)
Inventor
Дмитрий Александрович Шелудяков (RU)
Дмитрий Александрович Шелудяков
Виталий Николаевич Сафронов (RU)
Виталий Николаевич Сафронов
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина"
Priority to RU2009134789/11A priority Critical patent/RU2398719C1/ru
Application granted granted Critical
Publication of RU2398719C1 publication Critical patent/RU2398719C1/ru

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к криогенной системе газоснабжения космического скафандра космонавта, осуществляющего, в частности, внекорабельную деятельность. Теплообменник для газификации жидкого кислорода включает в себя цилиндрический кожух (1), силовую крышку (13) с установленными на ней входным (11) и выходным штуцерами теплоносителя (влажного воздуха), а также коллекторами (14), (15) со штуцерами (9), (10) хладагента (газифицируемого кислорода). Трубопровод (5) подает влажный воздух на дно (8) теплообменника, где предусмотрен распределительный цилиндрический стакан (6). Змеевики (2), (3), (4) с трубами в виде пространственной спирали расположены концентрично друг другу и кожуху и закреплены в коллекторах (14), (15). Техническим результатом изобретения является создание компактного теплообменника-газификатора с производительностью, достаточной для функционирования криогенной системы кислородного питания космического скафандра в течение заданного времени. 2 з.п. ф-лы, 2 ил.

Description

Данное изобретение относится к криогенной технике и может быть использовано для газификации и нагрева жидкого кислорода с целью обеспечения космонавта средой для дыхания в космическом скафандре при внекорабельной деятельности.
Известен теплообменник, используемый для газификации жидкой дыхательной смеси, функционирующий в составе портативной термодинамической системы транспортировки газа (патент US №2990695, МПК B64D 13/00, опубл. 04.07.1961 г.).
Недостатком описанной конструкции теплообменника является небольшая эффективность рабочей тепломассообменной поверхности в единице объема, а следовательно, и низкая производительность. Кроме того, геометрия тепломассообменной поверхности не позволяет равномерно распределить влажный воздух, поступающий из вентиляционного контура защитного костюма, что приводит к неравномерному вымораживанию влаги на холодной поверхности теплообмена и снижению эффективности тепломассообмена.
Известен теплообменник, используемый для газификации жидкого кислорода, функционирующий в составе переносной системы кондиционирования воздуха защитного костюма (патент US №3064448, МПК A41D 13/002, F24F 1/04, опубл. 20.11.1962 г.).
Этот аппарат имеет те же недостатки, что и описанный выше теплообменник. Кроме того, в конструкции теплообменника отсутствуют газораспределительные элементы, что приводит к неравномерному распределению влажного воздуха в полости тепломассообмена и, как следствие, неравномерному вымораживанию влаги на холодной поверхности теплообмена и снижению эффективности тепломассообмена.
Ближайшим аналогом, взятым в качестве прототипа, является теплообменник, используемый для газификации жидкого воздуха, функционирующий в системе жизнеобеспечения защитного костюма (патент US №3117426, МПК А62В 7/00, А62В 17/00, А62В 7/06, опубл. 14.06.1964 г.). В этом аппарате для распределения потока влажного воздуха, поступающего в полость тепломассообмена, служит длинная трубка с диффузором на конце.
Недостатком прототипа является небольшая эффективность тепломассообменной поверхности, приходящейся на единицу объема, а следовательно, и производительность. Кроме того, схема движения теплоносителей в полости тепломассообмена условно прямоточная, что соответствует более низкому коэффициенту теплопередачи, чем при условно противоточной схеме движения теплоносителей, и, таким образом, снижает эффективность процесса теплообмена.
Технической задачей заявляемого изобретения является разработка такого компактного теплообменника-газификатора, который имеет достаточно эффективно используемую тепломассообменную поверхность, заключенную в малом объеме, чтобы обеспечивать необходимую производительность для функционирования системы кислородного питания космического скафандра.
Поставленная задача решается теплообменником-газификатором для газификации жидкого кислорода, включающим цилиндрический кожух, силовую крышку, присоединенную к кожуху, с установленными на ней входными и выходными штуцерами влажного воздуха и коллекторами со штуцерами газифицируемого кислорода, трубопровод подачи влажного воздуха на дно теплообменника, змеевики с трубами в виде пространственной спирали, расположенные концентрично относительно друг друга и кожуха и закрепленные в коллекторах, дно, присоединенное к кожуху, с установленным на нем цилиндрическим стаканом. Змеевики с трубами в виде пространственной спирали установлены таким образом, что змеевик малого диаметра навивки помещен в центре, затем концентрично установлен змеевик среднего диаметра навивки, а его охватывает, в свою очередь, змеевик следующего по величине диаметра навивки. Причем между трубами соседних змеевиков, а также змеевиком самого большого диаметра навивки и кожухом существует фиксированный зазор, обусловленный максимально возможной толщиной намерзающего инея во время эксплуатации теплообменника.
Цилиндрический стакан, установленный на дне теплообменника-газификатора, предпочтительно должен иметь диаметр, равный среднему диаметру навивки змеевика, а трубопровод подачи влажного воздуха в виде трубы, закрепленной на силовой крышке теплообменника, должен быть установлен так, чтобы нижний конец трубы находился на расстоянии, равном высоте цилиндрического стакана. Высота цилиндрического стакана подбирается таким образом, чтобы наиболее равномерно распределить поток влажного воздуха в межтрубном пространстве.
С целью вывода влаги, скопившейся в полости тепломассообмена при оттаивании после эксплуатации, на дне теплообменника-газификатора имеется штуцер.
Технический результат, полученный от использования заявляемого изобретения, обеспечивается за счет компактности теплообменника газификатора и производительности, достаточной для обеспечения функционирования криогенной системы кислородного питания космического скафандра в течение заданного времени. В теплообменнике-газификаторе обеспечивается условно противоточная схема движения теплоносителей, что способствует более эффективному процессу теплообмена. Геометрия тепломассообменной поверхности, полученная в результате предлагаемого технического решения, в совокупности с устройством распределения газового потока в виде цилиндрического стакана с трубопроводом подачи влажного воздуха способствует повышению эффективности процесса массопереноса к поверхности теплообмена, что обусловливает повышение производительности теплообменника-газификатора.
Заявляемое решение представлено на фигурах:
- фиг.1 изображает теплообменник-газификатор для криогенной системы кислородного питания космического скафандра,
- фиг.2 изображает вид сверху теплообменника-газификатора для криогенной системы кислородного питания космического скафандра.
Теплообменник-газификатор (фиг.1) состоит из кожуха 1 с дном 8 и помещенных в него трех змеевиков 2, 3, 4 с трубами в виде пространственной спирали, закрепленных в коллекторах 14 и 15, имеющих штуцеры 9 и 10 для входа и выхода хладагента (кислорода) соответственно и закрепленных, в свою очередь, на силовой крышке 13, которая закреплена на кожухе и на которой также закреплен входной трубопровод теплоносителя (влажного воздуха) 5 со штуцером 11 и штуцер выхода теплоносителя 12 (фиг.2).
Дно теплообменника-газификатора 8 снабжено цилиндрическим стаканом 6, служащим в качестве распределителя потока влажного воздуха, и штуцером вывода влаги 7.
Теплообменник-газификатор работает следующим образом.
Через штуцер 9 и затем коллектор 15 в трубы змеевиков 2, 3, 4, имеющие одинаковую длину за счет выбора различного шага и диаметра навивки, вводится жидкий кислород, который под воздействием тепла, переданного в результате процессов тепломассопереноса от влажного воздуха, поступающего через штуцер 11 по трубопроводу 5 и распределенного в межтрубном пространстве с использованием цилиндрического стакана 6, испаряется и нагревается до заданной температуры и выходит через коллектор 14 со штуцером 10. При этом, так как геометрия теплоомассобменной поверхности в совокупности с распределительным устройством в виде цилиндрического стакана с подводящим трубопроводом способствует равномерному распределению кислорода в межтрубном пространстве, то десублимация (вымораживание) влаги на поверхности теплообмена происходит равномерно по всей площади трубок с низкой температурой, что способствует повышению эффективности процессов тепломассопереноса и, таким образом, повышению производительности.
При окончании функционирования теплообменника-газификатора скопившаяся после оттаивания тепломассообменной поверхности влага удаляется через штуцер 7.
Таким образом, решается задача создания теплообменника-газификатора, обладающего достаточно эффективно используемой тепломассообменной поверхностью, заключенной в малом объеме, обеспечивающего необходимую производительность для функционирования системы кислородного питания космического скафандра.

Claims (3)

1. Теплообменник-газификатор для газификации жидкого кислорода, включающий цилиндрический кожух, силовую крышку, присоединенную к кожуху с установленными на ней входными и выходными штуцерами влажного воздуха и коллекторами со штуцерами для газифицируемого кислорода, змеевики с трубами в виде пространственной спирали, расположенные концентрично относительно друг друга и кожуха и закрепленные в коллекторах, дно с закрепленным на нем штуцером для вывода влаги, отличающийся тем, что содержит трубопровод подачи влажного воздуха на дно теплообменника, закрепленный на силовой крышке и соединенный со штуцером ввода для организации условно противоточной схемы движения теплоносителей и равномерного распределения потока влажного воздуха в межтрубном пространстве.
2. Теплообменник-газификатор по п.1, отличающийся тем, что на указанном дне установлен распределитель потока влажного кислорода в виде цилиндрического стакана с высотой и диаметром, обеспечивающими в совокупности с геометрией теплоомассообменной поверхности равномерное распределение потока влажного воздуха в межтрубном пространстве, способствующее повышению эффективности использования указанной поверхности, заключенной в малом объеме.
3. Теплообменник-газификатор по п.1 или 2, отличающийся тем, что змеевики с трубами в виде пространственной спирали установлены в кожухе таким образом, что змеевик малого диаметра навивки помещен в центре, затем концентрично установлен змеевик среднего диаметра навивки, а его охватывает, в свою очередь, змеевик следующего по величине диаметра навивки, причем между трубами соседних змеевиков, а также змеевиком самого большого диаметра навивки и кожухом существует фиксированный зазор, определяемый максимально возможной толщиной намерзающего инея во время эксплуатации теплообменника.
RU2009134789/11A 2009-09-17 2009-09-17 Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра RU2398719C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009134789/11A RU2398719C1 (ru) 2009-09-17 2009-09-17 Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009134789/11A RU2398719C1 (ru) 2009-09-17 2009-09-17 Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра

Publications (1)

Publication Number Publication Date
RU2398719C1 true RU2398719C1 (ru) 2010-09-10

Family

ID=42800427

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009134789/11A RU2398719C1 (ru) 2009-09-17 2009-09-17 Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра

Country Status (1)

Country Link
RU (1) RU2398719C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990504A (zh) * 2019-04-09 2019-07-09 山东大学 一种螺旋绕管式换热器及深井热力系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УМАНСКИЙ С.П. Снаряжение космонавта. - М.: Машиностроение. 1982, с.85-87. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990504A (zh) * 2019-04-09 2019-07-09 山东大学 一种螺旋绕管式换热器及深井热力系统
CN110926239A (zh) * 2019-04-09 2020-03-27 山东大学 一种螺旋绕管式深井换热系统
CN109990504B (zh) * 2019-04-09 2020-03-27 山东大学 一种螺旋绕管式换热器及深井热力系统
CN110926239B (zh) * 2019-04-09 2021-02-05 山东大学 一种螺旋绕管式深井换热系统

Similar Documents

Publication Publication Date Title
US8622372B2 (en) Fan cooling tower design and method
JP2022009384A (ja) チラーシステムをパージするためのシステム及び方法
RU2377462C1 (ru) Испаритель криогенной жидкости
RU2398719C1 (ru) Теплообменник-газификатор для криогенной системы кислородного питания космического скафандра
CN201811598U (zh) 一种压缩空气冷却器
CN102135327A (zh) 一种带有热管均热器的废热回收即热型热泵热水器
CN102338700A (zh) 一种活塞式发动机高空模拟试验发动机排气冷却系统
CN105833802B (zh) 蒸汽上升式催化床反应器
CN101400958A (zh) 空气加载的冷凝器
CN104457317A (zh) 立管间接加直接两级蒸发式冷却塔
CN212566490U (zh) 一种预冷式天然气液化装置
CN207197002U (zh) 一种高换热效率平行流顶置蒸发器
CN112984884B (zh) 一种适用于正温环境的造雪机造雪方法
CN202101402U (zh) 一种带有热管均热器的废热回收即热型热泵热水器
RU2570275C1 (ru) Испаритель криогенной жидкости
CN207922904U (zh) 一种冷却循环水机组
CN209295720U (zh) 一种空气送冰用的空气冷却器
JP5256338B2 (ja) 除湿冷気生成方法及び空気冷却装置
CN208860161U (zh) 一种污水处理用密闭型冷却塔
CN208382622U (zh) 一种新型海水源热泵
CN215810315U (zh) 一种尿嘧啶生产用凉水塔
CN217536064U (zh) 一种高炉热风炉自动控制装置
CN109443032A (zh) 一种蒸发式冷凝器
RU2045726C1 (ru) Конденсатор
CN220288291U (zh) 一种工业用的大气污染防治装置