RU2395418C2 - Способ повышения сцепления колес транспортного средства с рельсами - Google Patents

Способ повышения сцепления колес транспортного средства с рельсами Download PDF

Info

Publication number
RU2395418C2
RU2395418C2 RU2008132737/11A RU2008132737A RU2395418C2 RU 2395418 C2 RU2395418 C2 RU 2395418C2 RU 2008132737/11 A RU2008132737/11 A RU 2008132737/11A RU 2008132737 A RU2008132737 A RU 2008132737A RU 2395418 C2 RU2395418 C2 RU 2395418C2
Authority
RU
Russia
Prior art keywords
rails
wheels
friction
adhesion
coefficient
Prior art date
Application number
RU2008132737/11A
Other languages
English (en)
Other versions
RU2008132737A (ru
Inventor
Юрий Михайлович Лужнов (RU)
Юрий Михайлович Лужнов
Владимир Александрович Попов (RU)
Владимир Александрович Попов
Григорий Михайлович Седов (RU)
Григорий Михайлович Седов
Original Assignee
Открытое Акционерное Общество "Научно-Исследовательский Институт Железнодорожного Транспорта"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Научно-Исследовательский Институт Железнодорожного Транспорта" filed Critical Открытое Акционерное Общество "Научно-Исследовательский Институт Железнодорожного Транспорта"
Priority to RU2008132737/11A priority Critical patent/RU2395418C2/ru
Publication of RU2008132737A publication Critical patent/RU2008132737A/ru
Application granted granted Critical
Publication of RU2395418C2 publication Critical patent/RU2395418C2/ru

Links

Images

Landscapes

  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

Изобретение относится к области железнодорожного транспорта, а именно к способам повышения стабильности сцепления колес транспортного средства с рельсами. Способ повышения сцепления колес транспортного средства с рельсами заключается в нагреве поверхностных загрязнений колес и рельсов. На поверхностные загрязнения воздействуют высокочастотным электромагнитным полем, энергию которого направляют на поверхности трения колес и рельсов. Мощность излучения высокочастотного электромагнитного поля определяют на основе исходного коэффициента трения, исходной температуры и влажности в зоне трения колеса с рельсом и скорости движения транспортного средства. Техническим результатом заявленного изобретения является повышение экономичности, эффективности и снижение износа колес и рельсов. 2 ил.

Description

Изобретение относится к области железнодорожного транспорта, а именно к способам повышения стабильности сцепления колес транспортного средства с рельсами, и может быть использовано на магистральном железнодорожном и промышленном транспорте, на метрополитене и трамвае.
Известен способ активного воздействия на процессы сцепления колес локомотива с рельсами, использующий электроискровую обработку поверхности колеса и рельса [1]. Этот способ недостаточно эффективно воздействует на сцепление колес с рельсами, разрушает материал трущихся тел и не обеспечивает высокую стабильность сцепления, зависящего от погодных условий.
Известен способ увеличения сцепления между колесом и рельсом, основанный на нагреве поверхностных загрязнений колес и рельсов низкотемпературной плазмой перед прохождением поезда [2]. Однако данный способ не позволяет получать стабильные величины коэффициента сцепления из-за неустойчивости плазмы. Недостатком плазменного способа является и высокая сложность всей системы воздействия. Плазменное воздействие имеет еще и такие недостатки: ограниченная регулировка мощности, необходимость ввода в горелку газа, необходимость водяного охлаждения системы.
Известны химические, физические и электрические (электроискровые и плазменные) способы [3, 4] воздействия на поверхности трения колес и рельсов. Однако в данных способах воздействуют химическими и тепловыми реакциями на механические свойства металлов, ухудшая их фрикционные возможности. Ввиду их малой стабильности они не нашли пока широкого применения на железнодорожном и других видах транспорта.
В качестве прототипа принят способ [5] повышения сцепления колес железнодорожного транспортного средства с рельсами, заключающийся в нагреве поверхностных загрязнений колес и рельсов. В данном способе воздействуют на поверхностные загрязнения колес и рельсов регулируемым сверхвысокочастотным электромагнитным полем. Однако в данном способе не обеспечивается возможность плавного регулирования теплового потока.
Техническим результатом заявленного изобретения является повышение экономичности, эффективности, снижение износа колес и рельсов за счет концентрации всего теплового потока преимущественно на поверхностных загрязнениях.
Технический результат заявленного изобретения достигается тем, что в способе повышения сцепления колес транспортного средства с рельсами, заключающемся в нагреве поверхностных загрязнений колес и рельсов, на поверхностные загрязнения воздействуют высокочастотным электромагнитным полем, энергию которого направляют на поверхности трения колес и рельсов, при этом мощность излучения высокочастотного электромагнитного поля определяют на основе исходного коэффициента трения, исходной температуры и влажности в зоне трения колеса с рельсом и скорости движения транспортного средства.
Сущность заявленного изобретения поясняется графическими материалами, где
на фиг.1 представлен график зависимости коэффициента сцепления в эксплуатационных условиях от влажности и график зависимости расчетного коэффициента сцепления от скорости движения транспортного средства (электровоза);
на фиг.2 представлен график зависимости мощности излучения высокочастотного электромагнитного поля от скорости движения локомотива и температуры окружающей среды.
Тепловой поток, подаваемый на поверхности трения колес и рельсов, создают регулируемым сверхвысокочастотным (СВЧ) электромагнитным полем, воздействующим на структурно-реологические свойства поверхностных загрязнений.
Нагрев поверхностных загрязнений энергией волн СВЧ, подводимой к дорожкам трения колес и рельсов от генератора СВЧ, приводит к повышению механических свойств поверхностных загрязнений, улучшающих фрикционные характеристики колес и рельсов. Результаты испытаний показали возможность увеличения коэффициента сцепления до 0,2-0,65.
В поверхностном загрязнении дорожек катания колес и рельсов есть жидкие компоненты. Это, прежде всего, вода и органические смазки. Их совокупность - жидкая фаза - сильно влияет на фрикционные характеристики. Под фрикционными характеристиками в данном случае подразумевается коэффициент трения колес по рельсам, коэффициент сцепления колес с рельсами.
Далее приведена зависимость мощности излучения высокочастотного электромагнитного поля от исходного коэффициента трения, исходной температуры и влажности в зоне трения колеса с рельсом.
При некоторых степенях увлажнения рельсов режимы трения характеризуются коэффициентом трения ниже расчетного. Степень увлажнения рельсов во многом определяется погодными условиями.
На основании выявленных процессов, происходящих на поверхностях трения, можно вывести классификацию увлажнения рельсов, отражающую закономерности изменения фрикционных характеристик дорожек трения колес и рельсов. Согласно этой классификации, при положительных температурах воздуха установлены четыре принципиально отличные зоны увлажнения рельсов с характерными фрикционными особенностями дорожки катания колеса по рельсу (фиг.1).
Здесь зона I - область, предшествующая появлению капиллярной конденсации влаги в поверхностном загрязнении; зона II - с момента появления капиллярной конденсации и до закрытия пор водой в поверхностном загрязнении (до точки росы); зона III - от точки росы и до образования такого количества воды на поверхностях трения, которое соответствует толщине слоя 0,12 мм; зона IV - при большем увлажнении поверхности трения.
В зонах I и IV реализуются средние, в зоне II - повышенные и в зоне III - пониженные фрикционные характеристики. Повышение коэффициента сцепления вызвано сильным проявлением структурно-реологических свойств слоя поверхностных загрязнений в результате действия капиллярных сил, его упрочнением и ростом адгезии к поверхности металла, а понижение - реализацией квазигидродинамического режима трения. При отрицательных температурах имеются еще две характерные зоны (фиг.1). Зона V характеризуется средним коэффициентом сцепления, не зависящим от температуры воздуха; она встречается тогда, когда в контакте колес с рельсами отсутствует лед и реализуется граничный режим трения. Зона VI характеризуется низким коэффициентом сцепления. Она встречается при появлении в контакте колеса с рельсом льда. С понижением температуры шестая зона увеличивается в сторону меньшего количества льда. В зонах I, II, IV и V реализуется граничный режим трения, а в зонах III и VI - неустойчивый квазигидродинамический режим трения.
Таким образом, коэффициенты сцепления ниже расчетных (≈0,3) реализуются в зонах III и VI. Можно стабилизировать коэффициент сцепления на уровне выше расчетного, воздействуя тепловым методом на фрикционные поверхности. Для улучшения фрикционных характеристик в случае зоны III нужно испарить воду. В случае шестой зоны при нагревании и расплавлении льда фрикционные характеристики перейдут в зоны III и IV соответственно. Если таким образом реализуется зона IV, то дальнейшего воздействия на поверхностные слои не требуется, так как коэффициент сцепления уже стал выше расчетного, а если зона III, то необходимо далее нагреть и испарить воду для перехода фрикционных характеристик в зону I или II. Так работают тепловые способы стабилизации фрикционных характеристик.
Выявлять такие режимы следует при помощи специального прибора - трибометра. На этих режимах следует проводить обработку волнами СВЧ, в отличие от режимов, на которых естественным образом реализуется коэффициент сцепления выше расчетного и соответственно не требуется обработка, повышающая коэффициент сцепления.
Несложно рассчитать мощность, которая потребуется для стабилизации фрикционных свойств путем теплового воздействия на воду и органические вещества тонких поверхностных пленок.
В общем случае теплота, необходимая для испарения вещества, расходуется на нагревание твердого тела до температуры плавления, плавление вещества, нагревание жидкости до температуры кипения, испарение жидкости. Если воздействие производится на несколько различных веществ, то общие затраты энергии будут равны сумме затрат энергии, расходуемых на отдельные компоненты. Мощность нагревания равна отношению теплоты ко времени, в течение которого эта теплота была израсходована:
Figure 00000001
где nр - количество рельсов;
V - скорость движения транспортного средства, м/с;
а - ширина дорожки катания, м;
n - общее количество компонентов, подвергаемых нагреванию;
i - номер данного компонента;
αi - количество i-го компонента на единице площади, кг/м2;
cTTi - удельная теплоемкость твердой фазы i-го вещества,
Figure 00000002
;
Тплавi - температура плавления i-го вещества, К;
То - температура поверхностной пленки до обработки, К;
λi - удельная теплота плавления i-го вещества,
Figure 00000003
cжi - удельная теплоемкость жидкой фазы i-го вещества,
Figure 00000004
;
ТKi - температура кипения i-го вещества, К;
ТоЖi - исходная температура, К;
ri - удельная теплота парообразования,
Figure 00000005
Рассчитаем в качестве примера мощность, которая необходима для высушивания рельсов, увлажненных водой. Степень увлажнения примем
Figure 00000006
,
так как это правая граница III зоны (см. фиг.2). Эта степень увлажнения соответствует максимальным затратам энергии. Обработка производится при движении локомотива со скоростью 20 м/с (72 км/ч) при температуре -10°С. В расчетах примем, что ширина дорожки катания а=10 мм, число рельсов nр=2, удельная теплоемкость льда
Figure 00000007
,
температура плавления льда Tплaв=0°C, удельная теплота плавления льда
Figure 00000008
,
удельная теплоемкость воды
Figure 00000009
,
удельная теплота парообразования
Figure 00000010
Figure 00000011
Как видно из формулы, мощность, которая необходима для обработки рельса, зависит не только от исходной температуры и влажности, но и от скорости движения. Проиллюстрируем эту зависимость (фиг.2), оставив значение остальных параметров как в вышеприведенном примере расчета.
График на фиг.2 показывает, что мощность сильно увеличивается с увеличением скорости и может достигать 25 кВт. От температуры до начала обработки затрачиваемая мощность зависит мало. Это объясняется тем, что для воды основная часть энергии тратится на испарение жидкости и не меняется, а зависящая от начальной температуры энергия, которая расходуется на нагревание и плавление вещества, составляет небольшую долю в общих энергозатратах. Действие системы стабилизации сцепление направлено на борьбу с избыточным скольжением, а соответственно приведет к экономии энергии, которая сегодня расходуется на избыточное скольжение. Сегодня мощность, расходуемая на скольжение, составляет десятки киловатт на каждое колесо локомотива [2]. Весь локомотив может тратить на скольжение сотни киловатт. Таким образом, с энергетической точки зрения тепловая обработка фрикционных поверхностей не только оправдана, но и дает значительную экономию энергии. Это в дополнение к основным функциям обработки - обеспечению высоких тяговых сил и снижению интенсивности изнашивания колес и рельсов.
Использование предлагаемого способа повышения сцепления колес с рельсами обеспечивает по сравнению с существующими способами следующие преимущества:
- возможность достижения плавного регулирования теплового потока;
- быстродействие (τ<10-3с), позволяющее реагировать на меняющиеся исходные фрикционные свойства, что особенно важно в условиях работы современного железнодорожного и промышленного транспорта, метрополитенов и трамваев;
- надежное сохранение структуры и свойств материалов поверхностей трения колес и рельсов;
- устойчивость реализации расчетных коэффициентов сцепления колес подвижного состава с увлажненными рельсами; рельсами, покрытыми льдом; замасленных рельсах.
К тому же предлагаемый способ более экономичен по сравнению с другими известными способами.
Список использованной литературы
1. Бюллетень технико-экономической информации МПС, М., «Транспорт», 1961, №7, с.35.
2. Патент Великобритании GB 1265979, В61С 15/08, 1972.
3. Лазерная очистка рельсов. Путь и путевое хозяйство, №5, 2005.
4. С.И.Косиков «Фрикционные свойства железнодорожных рельсов», глава «Методы химического и электрохимического воздействия на поверхности трения железнодорожных рельсов», изд-во «Наука», 1967 г.
5. Авторское свидетельство SU 732155 А1, 05.05.1980.

Claims (1)

  1. Способ повышения сцепления колес транспортного средства с рельсами, заключающийся в нагреве поверхностных загрязнений колес и рельсов, отличающийся тем, что на поверхностные загрязнения воздействуют высокочастотным электромагнитным полем, энергию которого направляют на поверхности трения колес и рельсов, при этом мощность излучения высокочастотного электромагнитного поля определяют на основе исходного коэффициента трения, исходной температуры и влажности в зоне трения колеса с рельсом и скорости движения транспортного средства.
RU2008132737/11A 2008-08-08 2008-08-08 Способ повышения сцепления колес транспортного средства с рельсами RU2395418C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008132737/11A RU2395418C2 (ru) 2008-08-08 2008-08-08 Способ повышения сцепления колес транспортного средства с рельсами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008132737/11A RU2395418C2 (ru) 2008-08-08 2008-08-08 Способ повышения сцепления колес транспортного средства с рельсами

Publications (2)

Publication Number Publication Date
RU2008132737A RU2008132737A (ru) 2010-02-20
RU2395418C2 true RU2395418C2 (ru) 2010-07-27

Family

ID=42126634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008132737/11A RU2395418C2 (ru) 2008-08-08 2008-08-08 Способ повышения сцепления колес транспортного средства с рельсами

Country Status (1)

Country Link
RU (1) RU2395418C2 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU167614U1 (ru) * 2016-05-04 2017-01-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU167616U1 (ru) * 2016-04-04 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU171080U1 (ru) * 2016-04-04 2017-05-19 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU172435U1 (ru) * 2016-05-04 2017-07-07 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU172474U1 (ru) * 2016-04-04 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU173552U1 (ru) * 2016-05-25 2017-08-30 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU186191U1 (ru) * 2018-04-17 2019-01-11 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU196091U1 (ru) * 2019-09-04 2020-02-17 Андрей Сергеевич Космодамианский Устройство для очистки поверхности катания колеса и увеличения сцепления колес локомотива с рельсами
RU2741851C1 (ru) * 2020-08-13 2021-01-29 Общество с ограниченной ответственностью "Уральские локомотивы" Способ защиты от боксования электроподвижного состава с асинхронными тяговыми двигателями

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU167616U1 (ru) * 2016-04-04 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU171080U1 (ru) * 2016-04-04 2017-05-19 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU172474U1 (ru) * 2016-04-04 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU167614U1 (ru) * 2016-05-04 2017-01-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU172435U1 (ru) * 2016-05-04 2017-07-07 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU173552U1 (ru) * 2016-05-25 2017-08-30 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU186191U1 (ru) * 2018-04-17 2019-01-11 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Устройство для предотвращения буксования локомотива
RU196091U1 (ru) * 2019-09-04 2020-02-17 Андрей Сергеевич Космодамианский Устройство для очистки поверхности катания колеса и увеличения сцепления колес локомотива с рельсами
RU2741851C1 (ru) * 2020-08-13 2021-01-29 Общество с ограниченной ответственностью "Уральские локомотивы" Способ защиты от боксования электроподвижного состава с асинхронными тяговыми двигателями

Also Published As

Publication number Publication date
RU2008132737A (ru) 2010-02-20

Similar Documents

Publication Publication Date Title
RU2395418C2 (ru) Способ повышения сцепления колес транспортного средства с рельсами
Wu et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property
Wong et al. Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling–sliding contact
Rapoport et al. Friction and wear of MoS2 films on laser textured steel surfaces
Hou et al. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles
Ding et al. Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds
Rong et al. Influence of ambient humidity on the adhesion and damage behavior of wheel–rail interface under hot weather condition
Li et al. Transparent electrothermal film defoggers and antiicing coatings based on wrinkled graphene
Fukumoto et al. Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles
Ge et al. Femtosecond laser fabrication of square pillars integrated Siberian-Cocklebur-like microstructures surface for anti-icing
Zhao et al. Promote anti-/de-frosting by suppressing directional ice bridging
Tang et al. Design of hybrid superwetting surfaces with self‐driven droplet transport feature for enhanced condensation
Gerlici et al. Noise and temperature reduction in the contact of tribological elements during braking
Lim et al. Graphene-mediated suppression of Leidenfrost effect for droplets on an inclined surface
Kaul et al. Characterization of dry sliding wear resistance of laser surface hardened En 8 steel
Song et al. Controllable bidirectional wettability transition of impregnated graphite by laser treatment and transition mechanism analysis
Dobrotvorskiy et al. Creation of a superhydrophilic surface with anti-icing properties for X18H10T stainless steel using a nanosecond laser
Yasui et al. The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses
Wan et al. Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes
Karavaev et al. Wear resistance of steel parts after electrospark alloying by graphite electrodes
Liu et al. Fabrication of periodic hierarchical structures with anti-icing performance by direct laser interference lithography and hydrothermal treatment
CN109972097A (zh) 一种新型冰刀减阻技术及其实现方法
Cherif et al. Intensification of the liquid film evaporation in a vertical channel
JP4947251B2 (ja) 車輪踏面増粘着装置
Brown et al. Chemokinesis in Rhodobacter sphaeroides is the result of a long term increase in the rate of flagellar rotation