CN109972097A - 一种新型冰刀减阻技术及其实现方法 - Google Patents

一种新型冰刀减阻技术及其实现方法 Download PDF

Info

Publication number
CN109972097A
CN109972097A CN201910280681.4A CN201910280681A CN109972097A CN 109972097 A CN109972097 A CN 109972097A CN 201910280681 A CN201910280681 A CN 201910280681A CN 109972097 A CN109972097 A CN 109972097A
Authority
CN
China
Prior art keywords
skates
drag reduction
novel
coating
reduction technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910280681.4A
Other languages
English (en)
Inventor
豆照良
刘峰斌
汪家道
司丽娜
阎红娟
陈强华
李梦晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201910280681.4A priority Critical patent/CN109972097A/zh
Publication of CN109972097A publication Critical patent/CN109972097A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

针对滑冰运动器材的动力学特性和技术现状,本发明提供一种新型冰刀减阻技术及其实现方法,其通过对冰刀基体进行表面改性处理,显著降低冰刀的导热系数以及摩擦热量向冰刀基体传导引起的热量损失,提高摩擦热量向冰面传导的热流分配系数,使更多的摩擦热量用于融化冰面以增加水润滑膜的厚度,实现水基润滑减阻,大幅度降低冰面摩擦系数,改善冰刀的摩擦学性能。本发明具有技术原理新颖、减阻效果显著、易于工程化实现等突出特点。

Description

一种新型冰刀减阻技术及其实现方法
技术领域
本发明属表面工程与摩擦学技术领域,涉及一种新型冰刀减阻技术及其实现方法,可用于冰鞋和俯式冰橇等滑冰运动器材的冰刀上。
背景技术
滑冰运动是运动员借助冰刀通过蹬冰获得驱动力并克服摩擦阻力在冰面上快速滑行的运动项目。冰刀作为滑冰运动的主要器械,其服役过程是涉及摩擦、磨损以及承压等多因素综合作用的复杂过程。一旦冰刀出现表面摩擦学性能不良、变形或者磨损等状况,就会影响运动员竞技水平的发挥,甚至对运动员自身造成损伤。改善冰刀的减摩耐磨性能,对于提高冰刀服役特性以及运动员的竞技水平和比赛成绩等,均具有重要的意义。
目前,国内外主要采用优选冰刀材质、结构优化、刃磨、热处理以及表面改性等手段,通过改善冰刀材料的机械性能或表面特性来实现减摩耐磨。其中,表面改性处理的典型工艺路线和技术原理是采用物理气相沉积(PVD)或化学气相沉积(CVD)等方式,在冰刀表面制备超硬耐磨的金属陶瓷涂层,通过提高冰刀的硬度、刚度等机械性能或耐磨损性能来增加蹬冰力;通过降低冰刀的表面粗糙度来减小摩擦阻力,最终达到减摩耐磨的目的。代表性的技术或专利包括“碳化钨涂层冰刀(ZL201120220143.5)”、“一种冰鞋用冰刀的制备方法(ZL201710663149.1)”、“一种新型陶瓷冰刀(ZL201020678220.7)”、“一种雪橇合金滑板用型钢(ZL201710663102.5)”等。
但是上述技术存在以下问题:
通过镀覆超硬耐磨涂层以提高冰刀的硬度、刚度等机械性能或耐磨损性能,虽然对于提高冰刀的蹬冰力具有一定效果,但无法降低冰刀在滑动过程中的摩擦阻力,无法实现减阻。
通过降低表面粗糙度以减小摩擦阻力的方法,是基于“常规水力学光滑的表面摩擦阻力最小”的前提假设,即认为“表面越光滑,阻力越小”,该假设早在20世纪70年代就已经被摩擦学领域的研究成果所推翻。事实上,合理构型的非光滑表面比常规水力学光滑表面具有更小的摩擦阻力。
此外,目前的机械加工及刃磨技术已经使冰刀刃口具有了极为光滑的表面,其表面粗糙度Ra<1.6μm,采用已有的表面改性处理方法能够降低表面粗糙度的幅度很小,实际减阻效果非常有限。
基于上述原因,目前还没有一项减阻效果显著、可工程化实现的减阻技术真正应用于冰刀以有效降低其摩擦阻力。
发明内容
本发明的目的是针对滑冰运动器材的动力学特性和技术现状,提供一种新型冰刀减阻技术及其实现方法,其能有效降低滑冰过程中冰刀与冰面之间的摩擦阻力,改善冰刀摩擦学性能,具有技术原理新颖、减阻效果显著、易于工程化实现的优势。
本发明的一种新型冰刀减阻技术,其通过在冰刀与冰面之间构建水润滑膜实现冰刀减阻。
进一步的,本发明的新型冰刀减阻技术通过对冰刀基体进行表面改性处理,显著降低冰刀的导热系数以及摩擦热量向冰刀基体传导引起的热量损失,提高摩擦热量向冰面传导的热流分配系数,使更多的摩擦热量用于融化冰面以增加水润滑膜的厚度,实现水基润滑减阻,大幅度降低冰面摩擦系数,改善冰刀的摩擦学性能。
本发明还提供了一种新型冰刀减阻技术的实现方法,其通过在冰刀基体上镀覆纳米陶瓷热障涂层对冰刀进行表面改性处理以降低冰刀导热系数,最终实现冰刀减阻。
进一步的,所述的纳米陶瓷热障涂层的厚度为80~400μm,由金属粘结底层和陶瓷热障面层构成,两层间的层厚比为1:(1~3)。
进一步的,所述的金属粘结底层为NiCoCrAlYTa合金,用于增加陶瓷热障涂层和金属基体之间的层间结合力,涂层厚度为40~100μm,主要成分的质量百分比为:Co 22%~24%,Cr 19%~21%,Al 7.5%~8.5%,Y 0.4%~0.8%,Ta 3.5%~5.5%,Ni补足余量。
进一步的,所述的陶瓷热障面层为氧化铱(Y2O3)部分稳定氧化锆(ZrO2)的金属氧化物YSZ,断面呈羽状或柱状晶微观结构,涂层厚度为40~300μm,主要成分的质量百分比为:Y2O3 7%~8%,Al、Si、Na、K、Ca、Mg、Ti、Fe等元素的氧化物质量分数均低于0.02%,ZrO2补足余量。
进一步的,所述的在冰刀基体上制备纳米陶瓷热障涂层的方法,包括以下步骤:
S10、对冰刀基体进行表面预处理,通过打磨、抛光、喷砂、超声清洗和干燥处理后,制得洁净表面,待镀工件的表面粗糙度Ra<1.6μm;
S20、采用常规的离子镀物理气相沉积(PVD)工艺,制备NiCoCrAlYTa金属粘结底层;
S30、对金属粘结底层进行表面处理,工序包括打磨、抛光、超声清洗和干燥,表面处理后的金属粘结底层的表面粗糙度Ra<1.6μm;
S40、采用常规的电子束物理气相沉积(EB-PVD)工艺制备YSZ热障涂层,首先在一定温度向EB-PVD主真空室内通入一定压力的氧气,对金属粘结底层进行预氧化处理,在粘结层表面形成致密的a-Al2O3;随后切换至常规EB-PVD镀膜程序,在预氧化处理的金属粘结底层上沉积YSZ热障涂层;
可选的,EB-PVD主要工艺参数如下:
预氧化温度1050℃~1250℃、
预氧化氧气分压10-2~10-4Pa、
工件转速0~20r/min、
工件温度850℃~1150℃、
靶材蒸汽入射角度0~15°。
有益效果:
1.本发明通过在冰刀与冰面之间构建出足够厚度的水润滑膜,实现冰刀减阻,技术原理新颖、减阻效果显著、易于工程化实现,如图1所示。
冰刀之所以能够在冰面上飞速滑行,依赖于冰面的水润滑膜。水润滑膜的出现,使冰刀与冰面的固固界面之间的润滑状态由干摩擦向边界润滑转化;当水润滑膜的厚度足够时,润滑状态进一步转化为流体润滑,可实现极低的摩擦系数。因此,在冰刀与冰面之间构建出足够厚度的水润滑膜,是实现冰刀减阻的关键。滑冰过程中的摩擦生热效应是水润滑膜形成的主要因素。冰刀在冰面滑行时的运动摩擦产生热量,冰面接触部位的温度上升到冰的融点后融化形成一定厚度的水膜,从而起到润滑的作用。值得注意的是,在冰刀与冰面接触过程中,由于形变的能量消耗以及热传导的能量损失,并不是所有的摩擦热量都用于融化冰。为此,本发明提出一种新型冰刀减阻技术,通过大幅度降低冰刀材料导热系数来强化摩擦生热效应以增加水润滑膜厚度,实现水基润滑减阻,最终达到降低冰刀滑行过程中的冰面摩擦阻力的目的。
2.通过在冰刀基体上制备纳米陶瓷热障涂层对冰刀进行表面改性处理,如图2所示,使冰刀的导热系数由原来的20~40W/(m·K)降低至1~2W/(m·K),大幅度降低了摩擦热量向冰刀基体传导的热流分配系数,提高了热量向冰面传导的热流分配系数,使更多的摩擦热量用于融化冰面以增加水润滑膜厚度,从而使冰刀与冰面固固界面之间的润滑状态由干摩擦、边界润滑向流体润滑转变,实现水基润滑减阻,大幅度降低了滑冰过程中冰面的摩擦系数,显著改善了冰刀的摩擦学性能。
3.采用PVD工艺在冰刀基体上沉积金属粘结底层,采用EB-PVD工艺在金属粘结底层上镀覆陶瓷热障面层,制备的YSZ纳米陶瓷热障涂层具有导热系数低、层间结合力强、均匀致密、结构稳定等特点,如图3所示。相比于现有的通过降低冰刀的表面粗糙度来降低摩擦系数的技术,本发明所述的基于降低冰刀导热系数以强化摩擦生热进而构建水润滑膜实现水基润滑的新型冰刀减阻技术,具有技术原理新颖、减阻效果显著、易于工程化实现等突出特点。
附图说明
图1为新型冰刀减阻技术的原理示意图。
图2为纳米陶瓷热障涂层改性冰刀表面示意图;
图3为纳米陶瓷热障涂层的断面显微结构图;
具体实施方式
下面结合具体实施例来描述本发明,应该指出的是,这些实施例仅用于说明本发明,不应理解为对本发明的限制。
实施例1
S110、选取冰刀常用材质65Mn制成5mm×40mm×80mm的平板试样,将平板试样的工作面进行表面预处理:打磨——抛光——液体喷砂——超声清洗——干燥,经预处理后的试样表面洁净、无油污、表面粗糙度Ra<1.6μm,备用;
S120、采用A-1000 Vacuum Arc Ion-Plating Unit型电弧离子镀真空物理气相沉积(PVD)设备,在经表面预处理后的金属基体上制备NiCoCrAlYTa金属粘结底层;冷却出炉后,对所制备的金属粘结底层进行表面预处理:打磨——抛光——液体喷砂——超声清洗——干燥,经预处理后的试样表面粗糙度Ra<1.6μm,备用;
S130、采用UE204B型电子束物理气相沉积(EB-PVD)设备,对金属粘结底层进行预氧化处理,预氧化处理温度为1050℃,氧气分压为3.5×10-4Pa,保温8h;
S140、随后切换至常规的EB-PVD镀膜程序在金属粘结底层上制备YSZ纳米陶瓷热障面层,其主要工艺参数为:工件转速0r/min、工件温度850℃、靶材蒸汽入射角度0°、沉积时间4.5h,冷却出炉后,备用,如图2所示。
采用扫描电子显微镜(SEM,Nava-Nano-430)对所制备的纳米陶瓷热障涂层进行表面表征和断面形貌分析,采用白光干涉三维形貌仪(ADE,MicroXAM)测定纳米陶瓷热障涂层的表面粗糙度,采用多功能导热系数测定仪(DREⅢ)测定热障涂层的导热系数。
结果表明,所制备的纳米陶瓷热障涂层的表面光滑致密,表面粗糙度Ra=2.37μm,YSZ陶瓷热障面层的截面呈柱状晶结构,金属基体、金属粘结底层和陶瓷热障面层的层间界限清晰可见,测得金属粘结层厚度为41.3μm、陶瓷热障面层厚度为47.4μm、纳米陶瓷热障涂层的总厚度为88.7μm,导热系数为1.89W/(m·K)。
实施例2
S210、选取冰刀常用材质3Cr13制成3mm×50mm×200mm的平板试样,对平板试样的工作面进行表面预处理;
S220、采用A-1000 Vacuum Arc Ion-Plating Unit型PVD设备在金属基体上制备金属粘结底层;
S230、冷却出炉后,对金属粘结底层进行表面预处理;
S230、采用UE204B型EB-PVD设备对金属粘结底层进行预氧化处理,预氧化处理温度为1150℃,氧气分压为1.5×10-2Pa,保温10h;
S240、随后切换至常规的EB-PVD镀膜程序在金属粘结底层上制备YSZ陶瓷热障面层,其主要工艺参数为:工件转速20r/min、工件温度1250℃、靶材蒸汽入射角度15°、沉积时间12h,冷却出炉后,备用。
对所制备的纳米陶瓷热障涂层的表面和断面形貌测量结果表明,纳米陶瓷热障涂层的表面光滑致密,表面粗糙度Ra=1.51μm;YSZ陶瓷热障面层的截面呈羽状晶结构,金属基体、金属粘结底层和陶瓷热障面层的层间界限清晰可见;金属粘结底层和陶瓷热障面层的厚度分别为95.4μm和286.7μm,纳米陶瓷热障涂层的总厚度为382.1μm;导热系数为1.34W/(m·K)。
利用滑冰工况模拟与阻力测量试验平台,对比测定上述涂层改性金属平板试样和无涂层金属平板试样在相同滑冰工况下冰面水润滑膜的状态及平板试样的摩擦学特性。
结果表明,在冰场环境温度为-4℃、空气相对湿度为28%、滑冰压力为50kg、滑冰速度为55km/h的滑冰模拟工况下,无涂层金属平板试样滑过冰面后的水润滑膜呈现不连续的点块状分布,平均厚度为5.03μm,金属平板与冰面之间的润滑状态为边界润滑,试验测定金属平板与冰面间的摩擦系数为0.0062;涂层改性金属平板试样滑过冰面后的水润滑膜呈现连续的水膜分布,水润滑膜的平均厚度为29.6μm,金属平板与冰面之间的润滑状态为流体润滑,试验测定金属平板与冰面之间的摩擦系数为0.0053。
可以看出,采用纳米陶瓷热障涂层对金属平板进行表面改性处理后,金属平板的导热系数由原来的23.6W/(m·K)降低至1.34W/(m·K),仅为原来的1/18;水润滑膜厚度由5.03μm增加至29.6μm,为原来的近6倍;冰面摩擦系数由0.0062降至0.0053,相对减阻率达14.5%。
因此,本发明的新型冰刀减阻技术显著降低了金属平板的导热系数,强化了摩擦生热效应,增加了水润滑膜厚度,有效降低了金属平板在冰面上滑行的摩擦阻力,减阻效果较为显著。
实施例3
S310、选取澳大利亚MAPLE速度滑冰冰鞋的冰刀作为待镀覆试样,并制备2mm×10mm×10mm的同材质平板试样随炉制备涂层用于表面表征;将待镀膜冰鞋冰刀的刃面及随炉平板试样的工作面进行表面预处理;
S320、采用A-1000 Vacuum Arc Ion-Plating Unit型PVD设备制备金属粘结底层并进行表面预处理;
S330、采用UE204B型EB-PVD设备对金属粘结底层进行预氧化处理,预氧化处理温度为1100℃,氧气分压为5.0×10-3Pa,保温10h;
S340、随后切换至常规的EB-PVD镀膜程序在金属粘结底层上制备YSZ陶瓷热障面层,其主要工艺参数为:工件转速5r/min、工件温度1170℃、靶材蒸汽入射角度0°、沉积时间5h,冷却出炉后,备用。
对随炉平板试样的测量结果表明,纳米陶瓷热障涂层的表面光滑致密,表面粗糙度Ra=1.76μm;YSZ陶瓷热障面层的截面呈柱状晶结构,金属基体、金属粘结底层和陶瓷热障面层的层间界限清晰可见;金属粘结底层和陶瓷热障面层的厚度分别为55.4μm和106.3μm,纳米陶瓷热障涂层的总厚度为161.7μm;导热系数为1.71W/(m·K)。
实际滑行测试:让一名男子速度滑冰运动员分别穿着涂层改性冰刀和无涂层冰刀在400m标准速度滑冰赛道上,交替进行各3次1000m赛程的滑行,每次滑行时间间隔30min用于恢复体力。测得穿着涂层改性冰刀的滑行成绩分别为1:12.21、1:12.48、1:12.63,平均成绩为1:12.44;测得穿着无涂层冰刀的滑行成绩分别为1:13.92、1:14.07、1:14.29,平均成绩为1:14.09。即在1000m赛程的滑行过程中,相比于普通无涂层MAPLE冰刀,涂层改性冰刀的滑行用时缩短了1.65s,平均速度提高2.23%,相当于摩擦阻力的减阻率为10%以上,减阻提速效果显著。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种新型冰刀减阻技术,其特征在于,在冰刀与冰面之间构建水润滑膜实现冰刀减阻。
2.如权利要求1所述的新型冰刀减阻技术,其特征在于,通过降低冰刀材料的导热系数以及摩擦热量向冰刀基体传导引起的热量损失,提高摩擦热量向冰面传导的热流分配系数,使更多的摩擦热量用于融化冰面以增加水润滑膜的厚度,从而实现水基润滑减阻。
3.一种新型冰刀减阻技术的实现方法,其特征在于,通过在冰刀基体上镀覆纳米陶瓷热障涂层对冰刀进行表面改性处理以实现冰刀减阻。
4.如权利要求3所述的所述的新型冰刀减阻技术的实现方法,其特征在于,冰刀的导热系数降低至1~2W/(m·K)。
5.如权利要求3所述的所述的新型冰刀减阻技术的实现方法,其特征在于,所述纳米陶瓷热障涂层的厚度为80~400μm,由金属粘结底层和陶瓷热障面层构成,两层间的层厚比为1:(1~3)。
6.如权利要求5所述的所述的新型冰刀减阻技术的实现方法,其特征在于,所述的金属粘结底层为NiCoCrAlYTa合金,涂层厚度为40~100μm。
7.如权利要求5所述的所述的新型冰刀减阻技术的实现方法,其特征在于,所述的陶瓷热障面层为氧化铱(Y2O3)部分稳定氧化锆(ZrO2)的金属氧化物YSZ,断面呈羽状或柱状晶微观结构,涂层厚度为40~300μm。
8.如权利要求3所述的所述的新型冰刀减阻技术的实现方法,其特征在于,所述在冰刀基体上镀覆纳米陶瓷热障涂层,包括以下步骤:
S10、对冰刀基体进行表面预处理,制得洁净表面,并使待镀工件的表面粗糙度Ra<1.6μm;
S20、采用离子镀物理气相沉积PVD工艺,制备NiCoCrAlYTa金属粘结底层;
S30、对金属粘结底层进行表面处理,并使得金属粘结底层的表面粗糙度Ra<1.6μm;
S40、采用电子束物理气相沉积EB-PVD工艺制备YSZ热障涂层。
CN201910280681.4A 2019-04-09 2019-04-09 一种新型冰刀减阻技术及其实现方法 Pending CN109972097A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910280681.4A CN109972097A (zh) 2019-04-09 2019-04-09 一种新型冰刀减阻技术及其实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910280681.4A CN109972097A (zh) 2019-04-09 2019-04-09 一种新型冰刀减阻技术及其实现方法

Publications (1)

Publication Number Publication Date
CN109972097A true CN109972097A (zh) 2019-07-05

Family

ID=67083721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910280681.4A Pending CN109972097A (zh) 2019-04-09 2019-04-09 一种新型冰刀减阻技术及其实现方法

Country Status (1)

Country Link
CN (1) CN109972097A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235089A (zh) * 2021-05-10 2021-08-10 清华大学 冰刀及其制备方法、冰刀鞋
CN114909592A (zh) * 2022-04-20 2022-08-16 北方工业大学 可精确定量的实验室用微量润滑液供给系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304037A1 (en) * 2009-06-01 2010-12-02 United Technologies Corporation Thermal Barrier Coatings and Application Methods
CN105951028A (zh) * 2016-05-09 2016-09-21 西安交通大学 一种同步送粉制备连续渐变结构陶瓷基热障涂层的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304037A1 (en) * 2009-06-01 2010-12-02 United Technologies Corporation Thermal Barrier Coatings and Application Methods
CN105951028A (zh) * 2016-05-09 2016-09-21 西安交通大学 一种同步送粉制备连续渐变结构陶瓷基热障涂层的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何利民等: "《高温防护涂层技术》", 29 February 2012 *
北京航空材料研究院主编: "《航空材料技术》", 31 December 2013, 航空工业出版社 *
豆照良等: ""速滑冰刀减阻与高效驱动技术研究"", 《冰雪运动》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235089A (zh) * 2021-05-10 2021-08-10 清华大学 冰刀及其制备方法、冰刀鞋
CN114909592A (zh) * 2022-04-20 2022-08-16 北方工业大学 可精确定量的实验室用微量润滑液供给系统

Similar Documents

Publication Publication Date Title
Polat et al. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate
Wu et al. Effect of surface texturing on friction properties of WC/Co cemented carbide
CN101748370B (zh) 用于水润滑的织构化类金刚石复合薄膜的制备方法
Xiao et al. Effects of microstructure evolution on the oxidation behavior and high-temperature tribological properties of AlCrN/TiAlSiN multilayer coatings
Bolelli et al. Wear and corrosion behaviour of HVOF WC–CoCr/CVD DLC hybrid coating systems deposited onto aluminium substrate
Tao et al. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions
Xing et al. Fabrication and tribological properties of Al2O3/TiC ceramic with nano-textures and WS2/Zr soft-coatings
CN106086766B (zh) 一种高抗磨低摩擦系数热喷涂陶瓷涂层的制备方法
Zhao et al. Preparation and vacuum tribological properties of composite coatings fabricated by effective introduction of soft metal Ag into spray-formed YSZ templates
Guo et al. Tribological behavior of plasma electrolytic oxidation coating on magnesium alloy with oil lubrication at elevated temperatures
Li et al. Mechanical properties of Ti (C0. 7N0. 3) film produced by plasma electrolytic carbonitriding of Ti6Al4V alloy
CN109972097A (zh) 一种新型冰刀减阻技术及其实现方法
Hu et al. Fretting behaviors of interface between CFRP and coated titanium alloy in composite interference-fit joints under service condition
Li et al. Optimizing mechanical and tribological properties of DLC/Cr3C2-NiCr duplex coating via tailoring interlayer thickness
Fan et al. Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment
Liu et al. Simultaneously enhancing wear and corrosion resistance of HVAF-sprayed Fe-based amorphous coating from Mo clad feedstock
Dong et al. Combined effect of laser texturing and carburizing on the bonding strength of DLC coatings deposited on medical titanium alloy
Hou et al. Effect of critical plasma spraying parameter on microstructure and wear behavior of mullite coatings
Chai et al. Effect of liquid crystal polymer micro-bump structure prepared by mesh method on the frictional corrosion performance of micro-arc oxide coated pure aluminum disks
Li et al. The effects of Cr and B doping on the mechanical properties and tribological behavior of multi-layered hydrogenated diamond-like carbon films
Wang et al. Characterizations of anodic oxide films formed on Ti6Al4V in the silicate electrolyte with sodium polyacrylate as an additive
Zhao et al. The study of the tribological properties of TiB2/Cr multilayered coatings over a wide temperature range
Liu et al. Friction and wear properties of a novel interface of ordered microporous Ni-based coating combined with MoS2 under complex working conditions
He et al. Role of carbide content in governing the mechanical and tribological properties of DLC/Cr3C2–NiCr duplex coatings
Hu et al. Effect of hydrogen flow rate on microstructure and tribological properties of plasma-sprayed Cr2O3-65% TiO2 composite coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190705

RJ01 Rejection of invention patent application after publication