RU2394874C1 - Способ очистки нефти и нефтепродуктов от соединений серы - Google Patents

Способ очистки нефти и нефтепродуктов от соединений серы Download PDF

Info

Publication number
RU2394874C1
RU2394874C1 RU2008151549/04A RU2008151549A RU2394874C1 RU 2394874 C1 RU2394874 C1 RU 2394874C1 RU 2008151549/04 A RU2008151549/04 A RU 2008151549/04A RU 2008151549 A RU2008151549 A RU 2008151549A RU 2394874 C1 RU2394874 C1 RU 2394874C1
Authority
RU
Russia
Prior art keywords
oil
charge
copper
sulfur
purification
Prior art date
Application number
RU2008151549/04A
Other languages
English (en)
Inventor
Юрий Алексеевич Колпаков (RU)
Юрий Алексеевич Колпаков
Игорь Кимович Новиков (RU)
Игорь Кимович Новиков
Михаил Ираклиевич Спиридонов (RU)
Михаил Ираклиевич Спиридонов
Виктория Семеновна Колпакова (RU)
Виктория Семеновна Колпакова
Валентин Александрович Рак (RU)
Валентин Александрович Рак
Александр Алексеевич Ануфриев (RU)
Александр Алексеевич Ануфриев
Original Assignee
Юрий Алексеевич Колпаков
Игорь Кимович Новиков
Михаил Ираклиевич Спиридонов
Виктория Семеновна Колпакова
Валентин Александрович Рак
Александр Алексеевич Ануфриев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Алексеевич Колпаков, Игорь Кимович Новиков, Михаил Ираклиевич Спиридонов, Виктория Семеновна Колпакова, Валентин Александрович Рак, Александр Алексеевич Ануфриев filed Critical Юрий Алексеевич Колпаков
Priority to RU2008151549/04A priority Critical patent/RU2394874C1/ru
Application granted granted Critical
Publication of RU2394874C1 publication Critical patent/RU2394874C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к области технологий очистки нефти и нефтепродуктов от соединений серы и может быть использовано в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием. Изобретение касается способа очистки нефти или нефтепродуктов от соединений серы путем контактирования с осажденной медью на железной загрузке, отделения загрузки и последующего растворения выделенных соединений серы в растворителе и регенерации активности медного компонента загрузки и растворителя, при этом очистку производят в противотоке потока нефти или нефтепродуктов, подаваемого «снизу-вверх», и потока железной загрузки с осажденной медью, подаваемого «сверху-вниз», а образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком с частотой 10-25 кГц и мощностью 1-3 кВт, при этом массовое количество меди в загрузке к массовому количеству общей серы в нефти или нефтепродуктах варьируют в пределах:
Сuв загрузке:Sобщая:(1,5-2,0):1,0. Технический результат - возможность переработки нефти с высоким содержанием серы (S более 5%), до содержания серы в очищенном продукте - 0,005%. 2 з.п. ф-лы.

Description

Изобретение относится к технологии очистки нефти и нефтепродуктов от соединений серы и может быть использовано в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием.
Известен способ очистки нефти, нефтепродуктов и газоконденсата от меркаптанов [1] (патент РФ №2087520, C10G 17/02; C10G 29/20; С10G 29/22; 21.09.1994 г.) путем обработки их при температуре 0-90°С смесью азотной кислоты и соединений, выбранных из ряда: моноэтаноламин, диметилбензиламин, гексаметилендиамин, диметилформамид, карбамид, диоксан и этиленгликоль. Соотношение азотной кислоты и соединений (образующих с ней соли), выбранных из вышеуказанного ряда, варьируют в пределах: 1:(0,5-2,0) Азотную кислоту используют в количестве (0,05-1,0) моль на 1 моль меркаптановой серы.
В качестве недостатков данного способа следует отметить:
- безвозвратные потери дорогой азотной кислоты (восстанавливается до азота и воды);
- низкие скорости демеркаптанизации (от 10 минут до нескольких суток - 7-10);
- позволяет очищать нефтепродукты только с низким содержанием серы (от 0,4 до 1,0%).
Известен также метод очистки нефтепродуктов (керосиновой и дизельной фракций) от серосодержащих соединений [2] (патент РФ №2171826; C10G 25/00, C10G 25/05; 09.08.2000 г.) посредством адсорбции в центробежном поле (во вращающемся барабане). Массовое соотношение «адсорбент: нефтепродукт» поддерживают в пределах (1,5-2,0):1. Число оборотов вращения ротора барабана 2000-2500 об./мин. Время вращения 30-40 минут. В качестве адсорбента используют: силикагель, марки АСК или окись алюминия, марки К-6.
В качестве недостатков данного способа следует отметить:
- переработка только нефтепродуктов, а не самой нефти;
- относительно низкие значения исходного содержания серы в нефтепродуктах (не более 2,0%);
- длительное время сорбции;
- сложное аппаратурное оформление;
- использование дорогих сорбентов, а также сложных методов их регенерации.
Наиболее близким к предлагаемому и поэтому выбранным нами за прототип является способ очистки продукции скважин от серы и ее соединений [3] (патент РФ №2048504, С10G 29/06; 02.09.1992 г.).
Согласно изобретению на железную подложку (порошок, опилки, струшка, проволока, пластины или сетка) осаждают тонким слоем активированную медь, а затем контактируют с нефтью, содержащей 2,8% серы. Активированную медью подложку засыпают в водопроницаемй мешок, который погружается в поток сырой нефти, сероводородной пластовой воды или сероводородсодержащего газа. Сера и ее соединения осаждаются на меди. Затем вынимают мешок, отмывают его от нефти и затем производят регенерацию меди. Для этого серу и ее соединения растворяют в хинолине, освобождая при этом активную медь на железной подложке, которая вновь используется для сероочистки. Смесь хинолина и соединений серы - нагревают. При этом хинолин перегоняется и используется вновь, а оставшаяся в кубовом остатке сера - подвергается последующей переработке и реализации или складированию. В качестве недостатков прототипа, следует отметить следующие:
- нетехнологичность, т.к. неясно - когда вынимать мешок или переключать на другой фильтр;
- длительное время (3-6 часов) осаждения меди на железной подложке;
- нет данных, позволяющих связать количество (или удельную поверхность) меди с количеством связываемых соединений серы;
- не приводятся количественные показатели сероочистки нефти, серосодержащих газов и пластовых вод.
Целью предлагаемого изобретения является интенсификация процесса очистки нефти или нефтепродуктов от серы и сероорганических соединений и повышение технологичности.
Указанная цель достигается тем, что в известном способе очистки нефти или нефтепродуктов от соединений серы путем контактирования со свежеосажденной медью на железной загрузке, отделения загрузки и последующего растворения выделенных соединений серы в растворителе и регенерации активности медного компонента загрузки и растворителя, очистку производят в противотоке потока нефти или нефтепродуктов, подаваемого «снизу-вверх», и потока железной загрузки с осажденной медью, подаваемого «сверху-вниз», а образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком с частотой 10-25 кГц и мощностью 1-3 кВт, при этом массовое количество меди в загрузке к массовому количеству общей серы в нефти или нефтепродуктах варьируют в пределах:
Cuв загрузке:Sобщая=(1,5-2,0):1,0
В качестве загрузки используют железную дробь диаметром 1-3 мм. Дополнительно динамическую гетерогенную систему «жидкость-твердое» обрабатывают вращающимся электромагнитным полем со скоростью вращения 100-3000 об/мин.
Эффективность предлагаемого нами способа обусловлена суммарным, не явным заранее, эффектом от применения:
- противотока реагентов (при этом уменьшение содержания серы в нефти и нефтепродуктах компенсируется повышением активности меди и, следовательно, степени извлечения);
- ультразвуковых колебаний на обрабатываемую систему «жидкость - твердое»;
- вращающегося электромагнитного поля (которое приводит во вращение железную загрузку с нанесенной на ее поверхность активной медью).
Обоснование заявляемых параметров.
При величине соотношения Сuв загрузке:Sобщая = менее 1,5 к 1,0 степень извлечения серы становиться менее 50%, т.к. уменьшается активная поверхность и количество меди, вступающее в процесс связывания серы из нефти или нефтепродуктов. При величине соотношения Сuв загрузке:Sобщая = более 2,0 к 1,0 при промышленном (1 млн. т/год) масштабе установки очистки (при высоком содержании серы - более 5%) существенно возрастает общий вес загрузки (он может в два-три раза превосходить массу очищаемых продуктов), что приводит к нарушению гидродинамического режима очистки и сильно осложняет процесс циркуляции загрузки. При этом степень эффективности очистки растет на доли процента.
Частота ультразвуковых колебаний менее 10 кГц при мощности менее 1 кВт практически не влияет на эффективность извлечения серы из нефти или нефтепродуктов. При частоте ультразвуковых колебаний более 25 кГц и мощности более 3,0 кВт возрастают диссипативные потери энергии на нагрев обрабатываемой системы, без существенного прироста степени извлечения серы, что указывает на резонансный характер воздействия ультразвука в заявленном диапазоне его параметров: частоты и мощности.
Диаметр сферической дроби железной загрузки определяется:
- необходимостью нанесения максимального количества активированной меди и максимальной развитости ее поверхности;
- плотностью и вязкостью обрабатываемых сред;
- минимизацией массового отношения «Fe:Сu».
Использование железной дроби диаметром менее 1 мм и при нанесении на нее слоя меди 20-30 мкм улучшается соотношение «Fe:Сu», но в тоже время, такую загрузку нельзя использовать на сильновязких нефтях, т.к. скорость оседания будет слишком малой и установка будет малопроизводительной. Возможен вынос части загрузки с очищенной нефтью, что недопустимо.
Использование железной дроби диаметром более 3 мм приводит к снижению количества активной меди (увеличивается соотношение «Fe:Сu») и ее активной поверхности, что снижает степень извлечения серы или производительность установки.
Наложение на динамическую систему «жидкость-твердое» (движущихся в противоположных направлениях потока жидкости и потока загрузки) вращающегося электромагнитного поля приводит к тому, что сферические железные частицы начинают также вращаться вокруг своей оси. При этом скорость вращения частиц загрузки отстает от скорости вращения внешнего электромагнитного поля за счет вязкостных свойств среды, на которую, к тому же, воздействуют и ультразвуковые колебания. Скорость вращения частиц загрузки вокруг своей оси, в пределах заявляемых нами параметров вращения электромагнитного поля 100-3000 об/мин, изменяется от 1 до 10 м/с.
Уменьшение скорости вращения внешнего электромагнитного поля менее 100 об/мин приводит к тому, что скорость вращения сферических частиц вокруг своей оси менее 1,0 м/с и вклад этого фактора в интенсификацию процесса извлечения серы становится неощутимым.
Повышение скорости вращения внешнего электромагнитного поля более 3000 об/мин трудно осуществить технически, кроме того, при скорости вращения частиц загрузки более 10 м/с проявляется процесс «зависания» загрузки, т.е. уменьшения скорости скольжения фаз и уменьшения производительности установки по сероочистке.
Процесс очистки нефти или нефтепродуктов от соединений серы (применительно к дизельному топливу, марки: Топливо дизельное Л-0, 2-40 ГОСТ 305-82), согласно предлагаемому нами способу, проводят следующим образом:
- поток дизельного топлива в количестве -145 т/ч (или 165 м3/ч) подают в нижний тангенциальный штуцер (Ду-170 мм), расположенный на конической части цилиндра - конического аппарата. Высота цилиндрической части экстрактора серы -5 м. По оси экстрактора (Д=2,0 м) расположен вертикально вал, на котором расположены тарелки с отверстиями для прохождения солярки («снизу-вверх») и для прохождения загрузки с осажденной на ней медью («сверху-вниз»). Вибрирующие тарелки позволяют равномерно распределить загрузку, с осажденной на ней активной медью, по объему восходящего потока солярки и для обработки динамической гетерогенной системы «жидкость-твердое» ультразвуком. Наложение энергии ультразвукового поля позволяет существенно интенсифицировать процесс, снизить время и повысить эффективность процесса сероочистки на 20-25%.
Снаружи экстрактора расположены электромагнитные индукторы (катушки) для создания бегущего магнитного поля внутри.
Т.о. на осциллирующую (под воздействием УЗ-поля) динамическую систему: «жидкость-твердое» дополнительно накладывается эффект вращающегося «волчка» - сферических частиц загрузки с осажденной на ее поверхности активной медью. Это приводит к дополнительному повышению процесса сероочистки на 22-23%.
Очистка солярки от серы без использования ультразвука и вращающего электромагнитного поля проходит только на 50-55%, что явно не достаточно для обеспечения норм даже Евро 4 (содержание S=0,05%).
Очищенная солярка (содержание S=0,005%, степень очистки от серы = 97,5%), через верхний переливной штуцер (Д-250 мм) поступает в товарную емкость, а затем отгружается потребителю. Загрузка (с осажденной на ней серой) выгружается снизу конической части экстрактора через аксиальный штуцер (Д-400 мм), соединенный с винтовым транспортером (производительностью не менее 60 т/ч). Внутренние стенки и винт транспортера покрыты фторопластом, с целью снижения потерь меди в процессе транспортирования. Винтовой транспортер имеет наклон (не менее 55-60°) и длину, достаточную для того, чтобы выгрузка из него загрузки располагалась выше уровня солярки в экстракторе, а большая часть захваченной загрузкой солярки стекла вниз шнек-транспортера, где через «гусак» она выводится в сливной трубопровод очищенной солярки. Загрузка из шнек-транспортера попадает в верхний загрузочный бункер аппарата-реэкстрактора, конструкция которого аналогична экстрактору. Реэктсрактор предназначен для растворения соединений серы и активации меди нанесенной на поверхность металлической дроби. В реэкстрактор через нижний штуцер (расположенный на конической части аппарата) подается растворитель - хинолин. Процессы, происходящие в реэкстракторе, противоположны, процессам проходившим в экстракторе, а именно:
- в экстракторе сера связывалась с медью и переходила из жидкой фазы в твердую;
- в реэкстракторе сера из связанного с твердым носителем переводится в жидкое (растворенное) состояние.
Физико-механические методы интенсификации процесса растворения серы (УЗ-поле и вращающееся электромагнитное поле) на стадии реэкстракции также применяются. Их действие и механизм описаны выше.
Отмытая от соединений серы загрузка с активной медной поверхностью выгружается через нижний осевой штуцер в винтовой конвейер (установленный аналогично, как на стадии экстракции), разгрузочный люк которого расположен над верхним (приемным) штуцером загрузки экстрактора. И весь цикл повторяется.
Примерно 1/10 часть выводится из циркулирующей загрузки и идет на стадию глубокой активизации, включающей растворение и переосаждение меди на поверхности железной загрузки (дроби).
Содержание серы в готовой продукции определяется автоматически, посредством установки на сливном трубопроводе серометра марки: 682 T-LP. При нарушении показателя содержания серы в продукте (выше заданного) производят замену части загрузки на свежепереосажденную. Экстрактор и реэкстрактор снабжены теплообменными рубашками для регулирования температурного процесса в них.
Хинолин с растворенной в нем серой направляют в ректификационную колонну, где получают очищенный хинолин (в погоне) и серу в кубовом остатке. Очищенный перегонкой хинолин возвращается на стадию реэкстракции.
Сера перерабатывается и реализуется при наличии спроса. При отсутствии спроса сера складируется.
Способ очистки нефти или нефтепродуктов от соединений серы отображен в нижеприведенных примерах.
Пример 1. (Очистка нефти с начальным содержанием серы = 5,0%)
145 т нефти с содержанием серы - 5% (S - 7,250 т) подают в экстрактор снизу, а сверху подают 145 т загрузки (диаметр - 3 мм), содержащей 13,05 т активной меди.
Соотношение Сuв загрузке:Sобщая = (1,5):1,0. Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком частотой 25 кГц и мощностью - 3,0 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 3000 об/мин. После прохождения нефти «снизу-вверх» через весь экстрактор, очищенная нефть через верхний сливной штуцер по трубопроводу поступает в бак хранения, а затем на переработку или отгрузку. На трубопроводе (в шунт) смонтирован серометр, который автоматически определяет содержание S в продукте, и при отклонении от заданного параметра (например, сера выше, чем требуется по регламенту) исполнительные механизмы или уменьшают подачу исходной нефти или увеличивают подачу загрузки. Количество серы в очищенной нефти - 0,5% (т.е. степень очистки - 90%).
Загрузка, после прохождения «сверху-вниз» экстрактора, через нижний штуцер поступает в винтовой конвейер, который в верхней части омывается некондиционным дистопливом, чтобы снизить количество сырой нефти, поступающей с загрузкой в реэкстрактор. Смесь дистоплива и нефти выводится через нижний штуцер слива винтового конвейера и подается в трубопровод исходной нефти.
Загрузка из винтового конвейера поступает в верхний штуцер реэкстрактора, конструкция которого аналогична экстрактору. Через нижний штуцер в реэкстрактор подают 145 т хинолина. Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком частотой 25 кГц и мощностью - 3,0 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 3000 об/мин.
После прохождения хинолина «снизу - вверх» экстрактора хинолин с растворенной в нем серой (4,5%) выводится через верхний сливной штуцер, а затем направляется на ректификацию, в результате которой получают 145 т чистого хинолина, направляемого затем в реэкстрактор, и 6,525 т серы (в кубовом остатке), которую перерабатывают (например, гранулируют), а затем реализуют или складируют (без всякой обработки). Загрузка с активированной медью в количестве 145 т, после прохождения «сверху - вниз» реэкстрактора, посредством винтового конвейера возвращается в экстрактор для повторного использования. При необходимости, 1/10 части загрузки направляется на полную регенерацию с растворением и последующим переосаждением меди на железной загрузке. Эта загрузка используется для поддержания активности загрузки на необходимом уровне, позволяющем поддерживать нормы технологического регламента в заданных параметрах.
Пример 2. (Очистка дизельного топлива, марки: Топливо дизельное А-0,4 ГОСТ 305-82, содержание серы - 0,4%)
145 т топлива дизельного с содержанием серы - 0,4% (S - 0,580 т) подают в экстрактор снизу, а сверху подают 20 т загрузки (диаметр - 2 мм), содержащей 1,015 т активной меди.
Соотношение Сuв загрузке:Sобщая=(1,75):1,0. Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком частотой 15 кГц и мощностью - 2,5 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 1000 об/мин. После прохождения дизельного топлива «снизу-вверх» через весь экстрактор очищенное дизтопливо через верхний сливной штуцер по трубопроводу поступает в бак хранения, а затем на отгрузку. На трубопроводе (в шунт) смонтирован серометр, который автоматически определяет содержание S в продукте, и при отклонении от заданного параметра (например, сера выше, чем требуется по регламенту) исполнительные механизмы или уменьшают подачу исходной нефти или увеличивают подачу загрузки. Количество серы в очищенном дизтопливе - 0,005% (т.е. степень очистки -98,75%).
Загрузка, после прохождения «сверху-вниз» экстрактора, через нижний штуцер поступает в винтовой конвейер.
Загрузка из винтового конвейера поступает в верхний штуцер реэкстрактора, конструкция которого аналогична экстрактору. Через нижний штуцер в реэкстрактор подают 20 т хинолина. Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком частотой 15 кГц и мощностью - 2,5 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 1000 об/мин.
После прохождения хинолина «снизу-вверх» экстрактора хинолин с растворенной в нем серой (2,86%) выводится через верхний сливной штуцер, а затем направляется на ректификацию, в результате которой получают 20 т чистого хинолина, направляемого затем в реэкстрактор, и 0,573 т серы (в кубовом остатке), которую перерабатывают (например, гранулируют), а затем реализуют или складируют (без всякой обработки). Загрузка с активированной медью в количестве 20 т, после прохождения «сверху-вниз» реэкстрактора, посредством винтового конвейера возвращается в экстрактор для повторного использования. При необходимости 1/10 части загрузки направляется на полную регенерацию с растворением и последующим переосаждением меди на железной загрузке. Эта загрузка используется для поддержания активности загрузки на необходимом уровне, позволяющем поддерживать нормы технологического регламента в заданных параметрах.
Пример 3. (Очистка бензина, марки: АИ-92, содержание серы 0,05%)
145 т бензина марки АИ 92 с содержанием серы - 0,05% (S - 0,07250 т) подают в экстрактор снизу, а сверху подают 2,9 т загрузки (диаметр - 1 мм), содержащей 0,145 т активной меди.
Соотношение Сuв загрузке:Sобщая=(2,0):1,0. Образующуюся динамическую гетерогенную систему «жидкость - твердое» обрабатывают ультразвуком частотой 10 кГц и мощностью - 1,0 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 100 об/мин. После прохождения бензина «снизу - вверх» через весь экстрактор очищенный бензин через верхний сливной штуцер по трубопроводу поступает в бак хранения, а затем на отгрузку. На трубопроводе (в шунт) смонтирован серометр, который автоматически определяет содержание S в продукте и при отклонении от заданного параметра (например, сера выше, чем требуется по регламенту) исполнительные механизмы или уменьшают подачу исходной нефти или увеличивают подачу загрузки. Количество серы в очищенном бензине - 0,005% (т.е. степень очистки - 90%).
Загрузка, после прохождения «сверху - вниз» экстрактора, через нижний штуцер поступает в винтовой конвейер, а затем в верхний штуцер реэкстрактора, конструкция которого аналогична экстрактору. Через нижний штуцер в реэкстрактор подают 1,573 т хинолина. Образующуюся динамическую гетерогенную систему «жидкость - твердое» обрабатывают ультразвуком частотой 10 кГц и мощностью - 1,0 кВт. Дополнительно на эту систему накладывают вращающееся электромагнитное поле с частотой вращения 100 об/мин.
После прохождения хинолина «снизу-вверх» экстрактора хинолин с растворенной в нем серой выводится через верхний сливной штуцер, а затем направляется на ректификацию, в результате которой получают 1,573 т чистого хинолина, направляемого затем в реэкстрактор, и 0,045 т серы (в кубовом остатке), которую перерабатывают (например, гранулируют), а затем реализуют или складируют (без всякой обработки). Загрузка с медью в количестве 2,9 т, после прохождения «сверху-вниз» реэкстрактора, посредством винтового конвейера возвращается в экстрактор для повторного использования. При необходимости 1/10 части загрузки направляется на полную регенерацию с растворением и последующим переосаждением меди на железной загрузке. Эта загрузка используется для поддержания активности загрузки на необходимом уровне, позволяющем поддерживать нормы технологического регламента в заданных параметрах.
Предлагаемый нами способ очистки нефти и нефтепродуктов от соединений серы с наименьшими трудностями может быть применен для финишной доочистки бензинов и дизтоплива, но он также может быть использован для предварительной очистки и высокосернистых нефтей (S более 5,0%). Применение данного метода сероочистки нефти и нефтепродуктов позволит перерабатывать нефти с высоким содержанием серы, а также позволит существенно снизить экологическое загрязнение от автотранспорта, сократить время выхода и затраты на внедрение в нашей стране стандарта Евро 5 (по показателю содержания серы в топливах).

Claims (3)

1. Способ очистки нефти или нефтепродуктов от соединений серы путем контактирования с осажденной медью на железной загрузке, отделения загрузки и последующего растворения выделенных соединений серы в растворителе и регенерации активности медного компонента загрузки и растворителя, отличающийся тем, что очистку производят в противотоке потока нефти или нефтепродуктов, подаваемого «снизу-вверх», и потока железной загрузки с осажденной медью, подаваемого «сверху-вниз», а образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком с частотой 10-25 кГц и мощностью 1-3 кВт, при этом массовое количество меди в загрузке к массовому количеству общей серы в нефти или нефтепродуктах варьируют в пределах:
Cuв загрузке:Sобщая:(1,5-2,0):1,0.
2. Способ по п.1, отличающийся тем, что в качестве загрузки используют железную дробь диаметром 1-3 мм.
3. Способ по п.1, отличающийся тем, что динамическую гетерогенную систему «жидкость-твердое» обрабатывают вращающимся электромагнитным полем со скоростью вращения 100-3000 об/мин.
RU2008151549/04A 2008-12-26 2008-12-26 Способ очистки нефти и нефтепродуктов от соединений серы RU2394874C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008151549/04A RU2394874C1 (ru) 2008-12-26 2008-12-26 Способ очистки нефти и нефтепродуктов от соединений серы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008151549/04A RU2394874C1 (ru) 2008-12-26 2008-12-26 Способ очистки нефти и нефтепродуктов от соединений серы

Publications (1)

Publication Number Publication Date
RU2394874C1 true RU2394874C1 (ru) 2010-07-20

Family

ID=42685957

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008151549/04A RU2394874C1 (ru) 2008-12-26 2008-12-26 Способ очистки нефти и нефтепродуктов от соединений серы

Country Status (1)

Country Link
RU (1) RU2394874C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621030C1 (ru) * 2016-07-28 2017-05-31 Николай Александрович Татаринов Способ очистки бензина от серосодержащих примесных компонентов
RU2669803C1 (ru) * 2018-05-23 2018-10-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ очистки нефти от гетероатомных компонентов
EA031817B1 (ru) * 2018-06-19 2019-02-28 Закрытое акционерное общество "Приз" Способ десульфуризации сырой нефти в потоке

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621030C1 (ru) * 2016-07-28 2017-05-31 Николай Александрович Татаринов Способ очистки бензина от серосодержащих примесных компонентов
RU2669803C1 (ru) * 2018-05-23 2018-10-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ очистки нефти от гетероатомных компонентов
EA031817B1 (ru) * 2018-06-19 2019-02-28 Закрытое акционерное общество "Приз" Способ десульфуризации сырой нефти в потоке

Similar Documents

Publication Publication Date Title
RU2510987C2 (ru) Способ удаления металлов из вакуумного газойля
CN102482590B (zh) 用于从原油和原油蒸馏物中除去有机酸的方法
US20060272983A1 (en) Processing unconventional and opportunity crude oils using zeolites
CN105214513B (zh) 一种微滤膜及利用微滤膜净化煤焦油原料的工艺方法
CA2750939A1 (en) Paraffinic froth treatment with input stream mixing
JP2010509440A (ja) 水素化分解装置及びfcc供給原料からの窒素及び多核芳香族化合物の除去のためのプロセス
US7691258B2 (en) Process for treating hydrocarbon liquid compositions
CN101612556A (zh) 用于吸附材料再生的系统
WO2017000516A1 (zh) 烷基化产物脱硫脱酸的方法与装置
CN108659945B (zh) 一种冷轧机组乳化液的磁过滤式杂质处理方法
JP2014524970A (ja) 芳香族分離を伴う統合型水素化および異性化処理プロセス
RU2394874C1 (ru) Способ очистки нефти и нефтепродуктов от соединений серы
CN102491578B (zh) 利用焦炭塔余热汽提放空塔顶污水的方法
CN102993455A (zh) 聚丙烯生产装置尾气的回收利用方法及回收利用系统
US8088277B2 (en) Methods and system for removing impurities from heavy fuel
JP6133859B2 (ja) 芳香族抽出型炭化水素流の水素化処理
RU2695612C1 (ru) Система обработки ионно-жидкостного катализатора
CN108570335B (zh) 轻石脑油脱硫脱胺的方法和装置
CN106336906A (zh) 一种对低阶煤进行处理的系统和方法
CN210855505U (zh) 轻烃裂解工艺水净化装置
CN110627237A (zh) 轻烃裂解工艺水净化装置与方法
CN101654626A (zh) 用于在线分离脱硫溶剂中烃类和固体颗粒的旋流分离技术
RU2444563C1 (ru) Способ регенерации отработанных смазочных масел
RU2801008C1 (ru) Способ очистки замасленной окалины металлургических производств и технологическая линия для его осуществления
CN102140368A (zh) 一种重污油回炼工艺

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111227