RU2391747C1 - Высокочастотный магниточувствительный наноэлемент - Google Patents

Высокочастотный магниточувствительный наноэлемент Download PDF

Info

Publication number
RU2391747C1
RU2391747C1 RU2009110331/09A RU2009110331A RU2391747C1 RU 2391747 C1 RU2391747 C1 RU 2391747C1 RU 2009110331/09 A RU2009110331/09 A RU 2009110331/09A RU 2009110331 A RU2009110331 A RU 2009110331A RU 2391747 C1 RU2391747 C1 RU 2391747C1
Authority
RU
Russia
Prior art keywords
thin
film
frequency
strip
nanoelement
Prior art date
Application number
RU2009110331/09A
Other languages
English (en)
Inventor
Сергей Иванович Касаткин (RU)
Сергей Иванович Касаткин
Дмитрий Вениаминович Вагин (RU)
Дмитрий Вениаминович Вагин
Original Assignee
Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН filed Critical Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority to RU2009110331/09A priority Critical patent/RU2391747C1/ru
Application granted granted Critical
Publication of RU2391747C1 publication Critical patent/RU2391747C1/ru

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для преобразования высокочастотного магнитного поля в электрический сигнал. Технический результат - создание высокочастотного магниточувствительного наноэлемента на основе тонкопленочных резистивных полосок, обладающего требуемой амплитудо-частотной характеристикой (АЧХ) и высокими техническими характеристиками. Указанный технический результат достигается тем, что в высокочастотном магниточувствительном наноэлементе, содержащем подложку с диэлектрическим слоем, верхний и нижний защитные слои, между которыми расположена ферромагнитная пленка с осью легкого намагничивания, направленной под углом к продольной оси тонкопленочной магниторезистивной полоски, над тонкопленочной магниторезистивной полоской сформирован первый изолирующий слой с планарным проводником, закрытым вторым изолирующим слоем, поверх которого расположен поверхностный защитный слой, тонкопленочная магниторезистивная полоска состоит из тонкопленочных магниторезистивных участков различной ширины и длины, причем длина и ширина указанных тонкопленочных магниторезистивных участков разнится в пределах от полутора до трех раз. 5 ил.

Description

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для преобразования высокочастотного магнитного поля в электрический сигнал.
Известны высокочастотные магниторезистивные головки считывания для магнитных дисков и цифровые гальванические развязки (http://www.nve.com). В этих устройствах используется магниточувствительный наноэлемент в виде магниторезистивной полоски на основе многослойной ферромагнитной наноструктуры. Особенностями этих наноэлементов являются большая величина считываемого магнитного поля и его импульсный характер. Таким образом, от подобных магниточувствительных наноэлементов не требуются линейность вольт-эрстедной характеристики (ВЭХ) и высокая чувствительность.
Известен высокочастотный магниточувствительный наноэлемент на основе тонкопленочной магниторезистивной полоски (С.И.Касаткин, Д.В.Вагин, О.П.Поляков, П.А.Поляков, Частотные характеристики однослойных анизотропных магниторезистивных наноэлементов // АиТ. 2008. №10. С.168-175) с осью легкого намагничивания (ОЛН), направленной под углом к длине полоски. Недостатком амплитудно-частотной характеристики (АЧХ) подобных наноэлементов является ее пиковый характер, что приводит к небольшому частотному диапазону характеристики.
Задачей, поставленной и решаемой настоящим изобретением, является создание высокочастотного магниточувствительного наноэлемента с заданной амплитудно-частотной характеристикой на основе магниторезистивной наноструктуры с планарным протеканием сенсорного тока.
Указанный технический результат достигается тем, что в высокочастотном магниточувствительном наноэлементе, содержащем подложку с диэлектрическим слоем, верхний и нижний защитные слои, между которыми расположена ферромагнитная пленка с осью легкого намагничивания, направленной под углом к продольной оси тонкопленочной магниторезистивной полоски, над тонкопленочной магниторезистивной полоской сформирован первый изолирующий слой с планарным проводником, закрытым вторым изолирующим слоем, поверх которого расположен поверхностный защитный слой, тонкопленочная магниторезистивная полоска состоит из тонкопленочных магниторезистивных участков различной ширины и длины, причем длина и ширина указанных тонкопленочных магниторезистивных участков разнится в пределах от полутора до трех раз.
Сущность предлагаемого технического решения заключается в том, что тонкопленочная магниторезистивная полоска с ОЛН, направленной под углом к ее длине, обладает АЧХ в виде пика, при этом положение пика, амплитуда и его форма зависят от топологии тонкопленочной магниторезистивной полоски. Соединяя тонкопленочные магниторезистивные полоски различной длины и ширины, можно изменять форму АЧХ и обеспечить ее заранее заданный вид. При этом направление ОЛН ферромагнитной пленки под углом к длинным сторонам тонкопленочной магниторезистивной полоски позволяет формировать заданную АЧХ без применения дополнительного постоянного магнитного поля.
Изобретение поясняется чертежами: на фиг.1 представлен высокочастотный магниточувствительный наноэлемент в разрезе; на фиг.2 показана конструкция высокочастотного магниточувствительного наноэлемента, вид сверху; на фиг.3 приведены теоретические АЧХ анизотропной магниторезистивной полоски с шириной 10 и 30 мкм, на фиг.4 приведены теоретические АЧХ анизотропной магниторезистивной полоски с шириной 10 и 20 мкм; на фиг.5 приведена теоретическая АЧХ высокочастотного магниточувствительного наноэлемента с тонкопленочными магниторезистивными полосками шириной 10 и 30 мкм.
Высокочастотный магниточувствительный наноэлемент содержит подложку 1 (фиг.1) с диэлектрическим слоем 2, тонкопленочную магниторезистивную полоску, содержащую верхний 3 и нижний защитные 4 слои, между которыми расположена ферромагнитная пленка 5. Поверх тонкопленочной магниторезистивной полоски расположен первый изолирующий слой 6, на котором сформирован проводник 7 с рабочей частью, расположенной над тонкопленочной магниторезистивной полоской. Выше расположен верхний защитный слой 8.
Конструктивно высокочастотный магниточувствительный наноэлемент состоит из тонкопленочной магниторезистивной полоски, состоящей из нескольких участков различной длины и ширины 8, 9 (фиг.2) с присоединенными низкорезистивными перемычками 10, 11. Над тонкопленочной магниторезистивной полоской расположен проводник set/reset 12 для устранения влияния гистерезиса.
Высокочастотные свойства ферромагнитной пленки определяются проявлением ферромагнитного резонанса. Теоретические исследования ферромагнитных пленок показывают, что пик f0 ее частотной характеристики определяется ферромагнитным резонансом и равен
Figure 00000001
где γ - гиромагнитное отношение, Ms - намагниченность насыщения, Н0 - постоянное магнитное поле, Hk - поле магнитной анизотропии. Знак «+» соответствует случаю совпадения направления оси легкого намагничивания (ОЛН) ферромагнитной пленки и Н0, «-» - когда ОЛН перпендикулярна Н0. Из (1) следует, что существует низкочастотный резонанс при перпендикулярном расположении ОЛН и Н0, что позволяет изучать резонансное поведение ферромагнитных пленок при низких частотах и установить связь с квазистатическими измерениями. Экспериментальные исследования частотных характеристик FeNiCoB пленок показали, что f0 достигает 2-3 ГГц.
Для МР полосок появляется влияние размагничивающих магнитных полей
Figure 00000002
где NX - размагничивающий фактор вдоль длины полоски, NY - вдоль ширины полоски, NZ - перпендикулярно плоскости пленки. Из (2) следует, что f0 определяется Hk, Н0 и размагничивающими магнитными полями. Экспериментальные исследования частотных характеристик полосок на основе пермаллоя и Fe для совпадения направлений ОЛН и Н0 показали, что f0 достигает 4 и 11 ГГц соответственно.
Ввиду того, что при использовании планарной мультичипной технологии в рамках одного чипа можно менять только размеры анизотропной магниторезистивной полоски, представляет интерес рассмотреть частотные характеристики однослойных анизотропных магниторезистивных FeNiCo6 полосок с различными ширинами при малом внешнем переменном магнитном поле h (h<<Hk) для случая, когда h перпендикулярно длине полоски. Ток через полоску 1 мА. Проанализируем свойства однослойной FeNiCo6 полоски с Ms=900 Гс, Hk=10 Э, направленным под углом 60° к длине полоски при воздействии переменного магнитного поля с h=0,01 Э, величиной анизотропного магниторезистивного эффекта Δρ/ρ=2%. На фиг.3 приведены частотные характеристики AMP полоски с толщиной ферромагнитной пленки δ=25 нм для ширины полоски 10 и 30 мкм, длина полосок - 130 и 100 мкм соответственно. Видно, что характеристики представляют собой пики приблизительно одинаковой амплитуды, при этом существует сильная зависимость положения и амплитуды пика от ширины полоски. Пики расположены на 0,8 и 1,5 ГГц для ширины тонкопленочной магниторезистивной полоски 30 и 10 мкм соответственно. Отношение амплитуды сигнала в пике и постоянного h достигает 3. Амплитуда пика для ширины полоски 30 мкм втрое больше амплитуды пика для ширины полоски 10 мкм. Увеличение значения f0 и уменьшение амплитуды пиков с уменьшением ширины ферромагнитной пленки полоски объясняется увеличением размагничивающих магнитных полей на краях полоски в соответствии с (2) и уменьшением чувствительности полоски. Амплитуда пика прямо пропорциональна длине полоски с фиксированной шириной, а положение пика определяется величиной ширины этой полоски. На фиг.4 приведены частотные характеристики AMP полоски с толщиной ферромагнитной пленки δ=25 нм для ширины полоски 10 и 20 мкм, длина полосок - 130 и 100 мкм соответственно. Видно, что пик сигнала полоски шириной 20 мкм находится на частоте около 1,0 ГГц. Эти зависимости позволяют, в определенных пределах, формировать заранее заданную АЧХ высокочастотного магниточувствительного наноэлемента.
На фиг.5 приведена АЧХ высокочастотного магниточувствительного наноэлемента, состоящего из двух тонкопленочных магниторезистивных полосок длиной 100 мкм и шириной 10 и 30 мкм, толщиной 25 нм. Видно, что АЧХ содержит приблизительно равные пики, что позволяет расширять АЧХ высокочастотного магниточувствительного наноэлемента до диапазона приблизительно 0,7-1,7 ГГц по уровню 0,7.
Перед началом работы векторы намагниченности ферромагнитной пленки 5 в тонкопленочных магниторезистивных полосках 8, 9 повернуты приблизительно вдоль ОЛН, развернутой на 45° относительно длины полоски. Такое направление векторов намагниченности соответствует максимальной чувствительности высокочастотного магниточувствительного наноэлемента. Периодически в проводник 7 подается импульс set/reset одной полярности, магнитное поле которого приводит векторы намагниченности тонкопленочных магниторезистивных полосок 8, 9 в одинаковое магнитное состояние и устраняет тем самым влияние гистерезиса на результаты измерения.
Для преобразования высокочастотного магнитного поля в электрический сигнал в тонкопленочные магниторезистивные полоски 8, 9 подается постоянный электрический ток. Высокочастотное магнитное поле, действующее на высокочастотный магниточувствительный наноэлемент, приводит к изменению направления векторов намагниченности ферромагнитной пленки 5, что изменяет магнитосопротивление тонкопленочных магниторезистивных полосок 8, 9, и появлению электрического сигнала считывания. Анализ показал, что для используемой конструкции высокочастотного магниточувствительного наноэлемента, магнитных сплавов и техпроцесса длина и ширина магниторезистивных участков разнится в пределах от полутора до трех раз.
Таким образом, предложенный высокочастотный магниточувствительный наноэлемент на основе тонкопленочных магниторезистивных полосок обладает требуемой АЧХ, обладая высокими техническими характеристиками.

Claims (1)

  1. Высокочастотный магниточувствительный наноэлемент, содержащий подложку с диэлектрическим слоем, на котором расположена тонкопленочная магниторезистивная полоска, содержащая верхний и нижний защитные слои, между которыми расположена ферромагнитная пленка с осью легкого намагничивания, направленной под углом к продольной оси тонкопленочной магниторезистивной полоски, над тонкопленочной магниторезистивной полоской сформирован первый изолирующий слой с планарным проводником, закрытым вторым изолирующим слоем, поверх которого расположен поверхностный защитный слой, отличающийся тем, что тонкопленочная магниторезистивная полоска состоит из тонкопленочных магниторезистивных участков различной ширины и длины, причем длина и ширина указанных тонкопленочных магниторезистивных участков разнится в пределах от полутора до трех раз.
RU2009110331/09A 2009-03-20 2009-03-20 Высокочастотный магниточувствительный наноэлемент RU2391747C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009110331/09A RU2391747C1 (ru) 2009-03-20 2009-03-20 Высокочастотный магниточувствительный наноэлемент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009110331/09A RU2391747C1 (ru) 2009-03-20 2009-03-20 Высокочастотный магниточувствительный наноэлемент

Publications (1)

Publication Number Publication Date
RU2391747C1 true RU2391747C1 (ru) 2010-06-10

Family

ID=42681686

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009110331/09A RU2391747C1 (ru) 2009-03-20 2009-03-20 Высокочастотный магниточувствительный наноэлемент

Country Status (1)

Country Link
RU (1) RU2391747C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087183A2 (ru) * 2010-12-23 2012-06-28 Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн) Способ формирования спиновых волн

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087183A2 (ru) * 2010-12-23 2012-06-28 Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн) Способ формирования спиновых волн
WO2012087183A3 (ru) * 2010-12-23 2012-09-13 Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн) Способ формирования спиновых волн
RU2477907C2 (ru) * 2010-12-23 2013-03-20 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Способ формирования спиновых волн
US8779765B2 (en) 2010-12-23 2014-07-15 Peoples Friendship University Of Russia Method for generating spin waves

Similar Documents

Publication Publication Date Title
US9465056B2 (en) Current sensor with temperature-compensated magnetic tunnel junction bridge
KR100687513B1 (ko) 박막자계센서
US7501928B2 (en) Current sensor
JP4921897B2 (ja) 磁気センサー
US10094891B2 (en) Integrated AMR magnetoresistor with large scale
JP6276190B2 (ja) 磁場センサ
JP5066580B2 (ja) 磁気センサ及び磁気センサモジュール
EP2700968A1 (en) Single-chip reference full-bridge magnetic field sensor
CN106842079B (zh) 基于电场调控磁性的磁场传感器噪声斩波抑制测量方法
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
JP5210983B2 (ja) 地磁気センサ
JP2008197089A (ja) 磁気センサ素子及びその製造方法
JP2008525787A (ja) 調節可能な特性を有する磁気センサ
JP4695325B2 (ja) 磁気検出素子とその製造方法及び該素子を用いた携帯機器
JP7099731B2 (ja) 多層磁気変調構造を有する低ノイズ磁気抵抗センサ
US9207264B2 (en) Current sensor
JP2009162499A (ja) 磁気センサ
JP5254514B2 (ja) 減少した電磁切換え磁場を持つ磁気抵抗検知器又は記憶素子
RU2436200C1 (ru) Магниторезистивный датчик
US6496004B1 (en) Magnetic field sensor using magneto-resistance of ferromagnetic layers with parallel magnetic axes
JP6064656B2 (ja) センサ用磁気抵抗素子、およびセンサ回路
JP4418986B2 (ja) 磁界検出素子およびこれを利用した磁界検出方法
RU2391747C1 (ru) Высокочастотный магниточувствительный наноэлемент
RU2433422C1 (ru) Высокочастотный магниточувствительный наноэлемент
JP2008003072A (ja) 薄膜磁気抵抗素子及び薄膜磁気センサ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180321