WO2012087183A2 - Способ формирования спиновых волн - Google Patents

Способ формирования спиновых волн Download PDF

Info

Publication number
WO2012087183A2
WO2012087183A2 PCT/RU2011/001000 RU2011001000W WO2012087183A2 WO 2012087183 A2 WO2012087183 A2 WO 2012087183A2 RU 2011001000 W RU2011001000 W RU 2011001000W WO 2012087183 A2 WO2012087183 A2 WO 2012087183A2
Authority
WO
WIPO (PCT)
Prior art keywords
working
spin
energy level
spin density
graphene
Prior art date
Application number
PCT/RU2011/001000
Other languages
English (en)
French (fr)
Other versions
WO2012087183A3 (ru
Inventor
Дмитрий Дмитриевич ГРАЧЕВ
Леонид Антонович СЕВАСТЬЯНОВ
Original Assignee
Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн)
Федеральное Бюджетное Учреждение "Федеральное Агентство По Правовой Защите Результатов Интеллектуальной Деятельности Военного, Специального И Двойного Назначения" При Министерстве Юстиции Российской Федерации (Фбу "Фаприд")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн), Федеральное Бюджетное Учреждение "Федеральное Агентство По Правовой Защите Результатов Интеллектуальной Деятельности Военного, Специального И Двойного Назначения" При Министерстве Юстиции Российской Федерации (Фбу "Фаприд") filed Critical Федеральное Государственное Бюджетное Учреждение Высшего Профессионального Образования "Российский Университет Дружбы Народов" (Рудн)
Priority to EP11850564.3A priority Critical patent/EP2658004A4/en
Priority to JP2013546065A priority patent/JP5734455B2/ja
Priority to US13/996,859 priority patent/US8779765B2/en
Publication of WO2012087183A2 publication Critical patent/WO2012087183A2/ru
Publication of WO2012087183A3 publication Critical patent/WO2012087183A3/ru

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/10Solid-state travelling-wave devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes

Definitions

  • the invention relates to the field of quantum physics of condensed matter, namely, to methods for the formation of quantum collective excitations of spin density and magnetization density in graphene films, and can be used in quantum nanoelectronics, spintronics, when creating spin processors, memory cells, physical field sensors, other devices and systems for processing and storing terahertz (and higher) information, having nanometer sizes and operating in a wide temperature range with a minimum energy flow eblenii.
  • Graphene which is a monoatomic two-dimensional hexagonal lattice of carbon atoms, is considered as one of the main materials for creating the elemental base of nanoelectronic spintronic devices and systems that provide a gain by orders of magnitude in the field of speed, size, and energy consumption compared to microelectronic analogs. This is due to the fact that in such a structure in a wide temperature range (from units to 500 Kelvin) the ferromagnetic effect was experimentally observed and theoretically discussed, indicating that graphene structures can have their own magnetization due to the presence of non-zero spin density of valence electrons of atoms distributed on a two-dimensional carbon lattice [Wang, Y.
  • the injected electrons form spin spatially localized pulses, which then propagate and relax in the graphene film.
  • the local magnetoresistance and the precession of the injected spins in an external magnetic field are recorded.
  • Time relaxation is about 100 picoseconds, and the relaxation length is about 1-2 microns.
  • a limitation of the known method is the lack of quantum coherence of the generated spin pulses, this limits their lifetime and relaxation length on the graphene surface, which is important for various practical applications.
  • the basis of the present invention is the task of increasing the life time and propagation length of spin pulses in a graphene film, and, thus, improving technical and operational characteristics.
  • the previously selected working area of the graphene film with a linear size of 2,000 nm, divided into sections of 50-100 nm in size they are exposed to a pulsed alternating magnetic field whose frequency is 3 terahertz and corresponds to the transition from the main energy level corresponding to the unexcited state of spin density to the fourth working energy level of the excited state of spin density in a graphene film, causing an energy pumping of spin density, while at the edges of the working region a spatially localized external magnetic field is formed that resonantly reflects the spinons of the working frequency of 0.5 -1 terahertz, corresponding to the transition from the third working to the second working energy level of the excited state of spin density, causing the stimulated stimulated coherent emission of spin waves of the working frequency.
  • the working fluid for such quantum generation is the graphene film itself, which, due to the nonlinearity of the interaction of spatially localized solitary waves of spin density in graphene, has a local minimum that provides discrete values of the spectrum of solutions of the Schrödinger equation for the wave function of a system of interacting solitary spin waves with the corresponding value of the self energy for every decision.
  • a graphene film is a medium having a discrete spectrum of stationary excited states of spin density, quantum transitions between which are accompanied by radiation or absorption of a quantum of elementary excitation of spin density, called a spinon.
  • the resonator that provides the generation are magnetic field configurations formed by external devices on the surface of the graphene film, called magnetic mirrors, and reflecting spinons.
  • the method is as follows. Using a control structure called a pump structure (planar magnetic coil), pulses of an alternating magnetic field with an amplitude of 1-5 T are formed, which are spatially configured for the formation of stationary excited spin-density states in graphene films specified with a period of 50-100 nm. Thus, pumping is carried out. As the working one, a pump scheme is selected that has four successive energy spinon levels (four-level scheme). At the same time, at the edges of the working region having a linear size of 100 ⁇ m, external magnetic field configurations are spatially localized in the 2000 nm working region, which reflect spinons of a given energy and momentum, called magnetic mirrors.
  • a pump structure planar magnetic coil
  • These configurations are regions of spatial modulation of the magnetic field with a period of 50 nm, forming diffraction mirrors for spinons, reflecting spinons of a given energy and momentum, and having transparency windows for the remaining spinons.
  • Magnetic mirrors form a resonator similar to the Fabry-Perot resonator for electromagnetic waves in the optical range.
  • the working values of the magnetic field in the pump circuit and control structure are 1–5 T.
  • Breathers have spatial dimensions of 20-100 nm depending on their energy, located at the upper fourth energy level, from where they spontaneously transfer to a metastable third energy level, emitting spinons for which magnetic mirrors are transparent.
  • the breather lifetime at the third energy level exceeds the lifetime at the second level by 10 times, which makes it possible to create an inverse population of breathers between the third and second levels.
  • spinons are emitted, for which magnetic mirrors are also transparent.
  • resonance conditions are provided only for spinons emitted as a result of working transitions from the third to the second energy level, between which an inverse population density of breathers is created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Hall/Mr Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

В способе на предварительно выделенную рабочую область графеновой пленки линейным размером 2000 нм, разделенную на участки размером 50-100 нм, воздействуют импульсным переменным магнитным полем, частота которого составляет 3 терагерца и соответствует переходу с основного энергетического уровня, соответствующего невозбужденному состоянию спиновой плотности, на четвертый рабочий энергетический уровень возбужденного состояния спиновой плотности в графеновой пленке, вызывая энергетическую накачку спиновой плотности. По краям рабочей области формируют пространственно локализованное внешнее магнитное поле, резонансно отражающее спиноны рабочей частоты 0.5 -1 терагерц, соответствующей переходу с третьего рабочего на второй рабочий энергетический уровень возбужденного состояния спиновой плотности, при прохождении рабочей области вызывающие стимулированное вынужденное когерентное излучение спиновых волн рабочей частоты.

Description

СПОСОБ ФОРМИРОВАНИЯ СПИНОВЫХ волн
Область техники
Изобретение относится к области квантовой физики конденсированных сред, а именно, к методам формирования квантовых коллективных возбуждений спиновой плотности и плотности намагниченности в графеновых пленках, и может использоваться в квантовой наноэлектронике, спинтронике, при создании спин- процессоров, ячеек памяти, датчиков физических полей, других устройств и систем обработки и хранения информации терагерцового (и выше) диапазона, имеющих нанометровые размеры и работающих в широком диапазоне температур при минимальном энергопотреблении.
Предшествующий уровень техники
В качестве одного из основных материалов для создания элементной базы наноэлектронных спинтронных устройств и систем, обеспечивающих выигрыш на порядки в области быстродействия, размеров и энергопотребления по сравнению с микроэлектронными аналогами, рассматривается графен, представляющий собой моноатомную двумерную гексагональную решетку из атомов углерода. Это обусловлено тем, что в такой структуре в широком диапазоне температур (от единиц до 500 градусов Кельвина) экспериментально наблюдался и теоретически обсуждался ферромагнитный эффект, свидетельствующий о том, что графеновые структуры могут иметь собственную намагниченность, обусловленную наличием отличной от нуля спиновой плотности валентных электронов атомов, распределенной на двумерной углеродной решетке [Wang, Y. Huang, Y. , Song, Υ., Zhang, X., Ma, Y., Liang, J., and Chen, Y. Room- Temperature Ferromagnetism of Graphene. Nano Lett. 9, 220-224 (2009)], [D.V. Kolesnikov and V.A. Osipov The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes, Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, arXiv:cond-mat/0510636,v2,2,Feb,2006.14], [Gusynin V. P. et al. «Unconventional Integer Quantum Hall Effect in Graphene». Phys.,Rev.Lett.95,146801,(2005), DOL lO.l 103/PhysRevLett.95.146801], [Peres N. M. R., et. al. Electronic properties of disordered two-dimensional carbon Phys. Rev. В 73, 12541 1 (2006) DOL lO.l 103/PhysRevB.73.12541 1], [Novoselov K. S. et al. «Two-dimensional gas of massless Dirac fermions in graphene», Nature 438, 197 (2005) DOI: 10.1038/nature04233], [Zhang Y.et. al. «Experimental observation of the quantum Hall effect and Berry's phase in graphene» Nature 438, 201 (2005) DOI: 10.1038/nature04235], [K. Ziegler . Delocalization of 2D Dirac Fermions: The Role of a Broken Supersymmetry. Phys. Rev. Lett. 80, 31 13-31 16 (1998)], [J. Alicea .Matthew P. A. Fisher. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes, Phys. Rev. В 74, 075422 (2006)], [N. M. R. Peres, F. Guinea, A. H. Castro Neto. Coulomb interactions and ferromagnetism in pure and doped grapheme. PHYSICAL REVIEW В 72, 174406 (2005)], [N.Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B. J. van Wees. Electronic spin transport and spin precession in single graphene layers at room temperature.arXiv:0706.1948, Nature 448, 571-574 (2007)], [Nguyen Viet Hung, A. Bournel, P. Dollfus,Nguyen Van Lien. Spin-dependent transport in double ferromagnetic- gate graphene structures, Journal of Physics: Conference Series 187 (2009), 012037,doi: 10.1088/1742-6596/187/l/012037], [Д.Д.Грачев, Ю.П.Рыбаков,
Л.А.Севастьянов, Е.Ф.Шека. Ферромагнетизм в графеновых и фуллереновых наноструктурах.Теория, моделирование, эксперимент. М. Вестник УДН. 2010], [G. М. Arzumanyan, Е. A. Ayrjan, D. D. Grachev, L. A. Sevastianov. Quantum Field Model for Graphen Magnetism], [D.D. Grachev, L.A. Sevasfjanov. Quantum Field Approach to the Ferromagnetic Properties of the Graphene Films. Int.Conference of Theoretical Physics "Dubna-Nano2010", p.63. Dubna, JINR, 2010].
Наличие этой ненулевой спиновой плотности позволяет управлять ее распределением с помощью различных физических полей, что и является основой для создания элементов и устройств спинтроники. Для создания подобных устройств необходимо формирование локальных возбуждений спиновой плотности, которые и подлежат управляющему воздействию.
Известен способ формирования спиновых волн путем туннелирования спин-поляризованных электронов в графеновую пленку из кобальтового электрода через диэлектрическую изолирующую пленку [N.Tombros, С. Jozsa, М. Popinciuc, H.T. Jonkman, В. J. van Wees. Electronic spin transport and spin precession in single graphene layers at room temperature.arXiv:0706.1948, Nature 448, 571-574 (2007)].
Инжектированные электроны формируют спиновые пространственно- локализованные импульсы, которые затем распространяются и релаксируют в графеновой пленке. В измерениях регистрируются локальное магнитосопротивление и прецессия инжектированных спинов во внешнем магнитном поле. Время релаксации составляет величину порядка 100 пикосекунд, а длина релаксации - порядка 1-2 мкм.
Ограничением известного способа является отсутствие квантовой когерентности формируемых спиновых импульсов, это ограничивает их время жизни и длину релаксации на графеновой поверхности, что важно для различных практических приложений.
Раскрытие изобретения
В основу настоящего изобретения поставлена задача увеличения времени жизни и длины распространения спиновых импульсов в графеновой пленке, и, таким образом, улучшение технико-эксплуатационных характеристик.
Для решения поставленной задачи с достижением указанного технического результата на предварительно выделенную рабочую область графеновой пленки линейным размером 2 000 нм, разделенную на участки размером 50-100 нм., воздействуют импульсным переменным магнитным полем, частота которого составляет 3 терагерца и соответствует переходу с основного энергетического уровня, соответствующего невозбужденному состоянию спиновой плотности, на четвертый рабочий энергетический уровень возбужденного состояния спиновой плотности в графеновой пленке, вызывая энергетическую накачку спиновой плотности, при этом по краям рабочей области формируют пространственно локализованное внешнее магнитное поле, резонансно отражающее спиноны рабочей частоты 0.5 -1 терагерц, соответствующей переходу с третьего рабочего на второй рабочий энергетический уровень возбужденного состояния спиновой плотности, при прохождении рабочей области вызывающие стимулированное вынужденное когерентное излучение спиновых волн рабочей частоты.
Рабочим телом для такой квантовой генерации является сама графеновая пленка, которая в силу нелинейности взаимодействия пространственно локализованных уединенных волн спиновой плотности в графене, имеет локальный минимум, обеспечивающий наличие дискретных значений спектра решений уравнения Шредингера для волновой функции системы взаимодействующих уединенных спиновых волн с соответствующим значением собственной энергии для каждого решения.
Графеновая пленка является средой, имеющей дискретный спектр стационарных возбужденных состояний спиновой плотности, квантовые переходы между которыми сопровождаются излучением или поглощением кванта элементарного возбуждения спиновой плотности, называемого спиноном. Резонатором, обеспечивающим генерацию, являются конфигурации магнитного поля, сформированные внешними устройствами на поверхности графеновой пленки, называемые магнитными зеркалами, и отражающие спиноны.
Увеличение времени жизни и длины распространения спинового импульса достигается в результате того, что он формируется потоком квантово когерентных спиновых волн (квантовым генератором спиновых волн, называемым спиназером).
Лучший вариант осуществления изобретения
Способ осуществляется следующим образом. С помощью управляющей структуры, называемой структурой накачки (планарная магнитная катушка), формируются импульсы переменного магнитного поля амплитудой 1-5 Т, пространственно сконфигурированное для формирования в заданных с периодом 50- 100 нм областях графеновой пленки стационарных возбужденных состояний спиновой плотности. Таким образом, осуществляется накачка. В качестве рабочей выбирают схему накачки, имеющую четыре следующих подряд энергетических спинонных уровня (четырехуровневая схема). Одновременно по краям рабочей области, имеющей линейный размер 100 мкм, формируют пространственно локализованные в рабочей области размером 2000 нм конфигурации внешнего магнитного поля, отражающие спиноны заданной энергии и импульса, называемые магнитными зеркалами. Эти конфигурации представляют собой области пространственной модуляции магнитного поля с периодом 50 нм, образующие дифракционные зеркала для спинонов, отражающие спиноны заданной энергии и импульса и имеющие окна прозрачности для остальных спинонов. Магнитные зеркала образуют резонатор, аналогичный резонатору Фабри-Перо для электромагнитных волн оптического диапазона. Рабочие значения напряженности магнитного поля в схеме накачки и управляющей структуре составляют величину 1- 5 Т.
В результате накачки в рабочей области графеновой пленки образуются возбужденные пространственно локализованные стационарные состояния спиновой плотности - бризеры [Д.Д.Грачев, Ю.П.Рыбаков, Л.А.Севастьянов, Е.Ф.Шека. Ферромагнетизм в графеновых и фуллереновых наноструктурах.Теория, моделирование, эксперимент. М. Вестник УДН. 2010], [G. М. Arzumanyan, Е. А. Ayrjan, D. D. Grachev, L. A. Sevastianov. Quantum Field Model for Graphen Magnetism], [D.D. Grachev, L.A. Sevastjanov. Quantum Field Approach to the Ferromagnetic Properties of the Graphene Films. Int.Conference of Theoretical Physics "Dubna- Nano2010", p.63. Dubna, JINR, 2010].
Бризеры имеют пространственные размеры 20-100 нм в зависимости от их энергии, находящиеся на верхнем четвертом энергетическом уровне, откуда они спонтанно переходят на метастабильный третий энергетический уровень, излучая спиноны, для которых магнитные зеркала прозрачны. Время жизни бризера на третьем энергетическом уровне превышает время жизни на втором уровне в 10 раз, что обеспечивает возможность создания инверсной населенности бризеров между третьим и вторым уровнями. При спонтанных переходах со второго на первый энергетический уровень излучаются спиноны, для которых магнитные зеркала также прозрачны. Таким образом, резонансные условия обеспечиваются только для спинонов, излученных в результате рабочих переходов с третьего на второй энергетический уровень, между которыми создана инверсная плотность населенности бризеров. При прохождении такого спинона через рабочую область в результате взаимодействия его с бризерами, находящимися на третьем метастабильном энергетическом уровне, последние вынужденно и когерентно излучают такой же спинон, переходя на второй рабочий энергетический уровень, откуда спонтанно переходят на первый основной. В результате мы имеем эффект квантового усиления когерентного спинонного потока. Магнитные зеркала обеспечивают при этом кратное умножение коэффициента усиления. Кратность умножения равна числу проходов потока между зеркалами и составляет 10-100 раз.
Таким образом, при превышении коэффициентом усиления суммарно коэффициентов поглощения и рассеяния обеспечивается квантовая генерация когерентного потока спинонов, и в результате - увеличение времени жизни спиновых импульсов в 100 раз, и длины их распространения в 1000 раз по сравнению с прототипом, использующим некогерентные импульсы.
Промышленная применимость
Наиболее успешно заявленный способ формирования спиновых волн в графеновых пленках промышленно применим в квантовой наноэлектронике и спинтронике.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ формирования спиновых волн в графеновых пленках, отличающийся тем, что на предварительно выделенную рабочую область графеновой пленки линейным размером 2 ООО нм, разделенную на участки размером 50-100 нм. воздействуют импульсным переменным магнитным полем, частота которого составляет 3 терагерца и соответствует переходу с основного энергетического уровня, соответствующего невозбужденному состоянию спиновой плотности, на четвертый рабочий энергетический уровень возбужденного состояния спиновой плотности в графеновой пленке, вызывая энергетическую накачку спиновой плотности, при этом по краям рабочей области формируют пространственно локализованное внешнее магнитное поле, резонансно отражающее спиноны рабочей частоты 0.5 -1 терагерц, соответствующей переходу с третьего рабочего на второй рабочий энергетический уровень возбужденного состояния спиновой плотности, при прохождении рабочей области вызывающие стимулированное вынужденное когерентное излучение спиновых волн рабочей частоты.
PCT/RU2011/001000 2010-12-23 2011-12-19 Способ формирования спиновых волн WO2012087183A2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11850564.3A EP2658004A4 (en) 2010-12-23 2011-12-19 Method for generating spin waves
JP2013546065A JP5734455B2 (ja) 2010-12-23 2011-12-19 スピン波を生成する方法
US13/996,859 US8779765B2 (en) 2010-12-23 2011-12-19 Method for generating spin waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010152733/28A RU2477907C2 (ru) 2010-12-23 2010-12-23 Способ формирования спиновых волн
RU2010152733 2010-12-23

Publications (2)

Publication Number Publication Date
WO2012087183A2 true WO2012087183A2 (ru) 2012-06-28
WO2012087183A3 WO2012087183A3 (ru) 2012-09-13

Family

ID=46314689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/001000 WO2012087183A2 (ru) 2010-12-23 2011-12-19 Способ формирования спиновых волн

Country Status (5)

Country Link
US (1) US8779765B2 (ru)
EP (1) EP2658004A4 (ru)
JP (1) JP5734455B2 (ru)
RU (1) RU2477907C2 (ru)
WO (1) WO2012087183A2 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069034B2 (en) * 2010-06-30 2015-06-30 University Of Manitoba Spintronic phase comparator permitting direct phase probing and mapping of electromagnetic signals
TWI509239B (zh) * 2011-03-07 2015-11-21 Univ Singapore 應用自旋波之非破壞性材料、結構、成分、或元件度量或檢測系統及方法
RU2546052C1 (ru) * 2013-11-21 2015-04-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ получения электромагнитного излучения гига- и терагерцового диапазона частот

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528456B1 (en) * 2005-03-01 2009-05-05 The Regents Of The University Of California Nano-scale computational architectures with spin wave bus
US7535070B2 (en) * 2006-01-30 2009-05-19 The Regents Of The University Of California Spin-wave architectures
RU2363997C1 (ru) * 2008-03-17 2009-08-10 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Материал, поглощающий электромагнитное излучение
RU2391747C1 (ru) * 2009-03-20 2010-06-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Высокочастотный магниточувствительный наноэлемент

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32712E (en) * 1979-08-20 1988-07-12 General Electric Company Moving gradient zeugmatography
US4642567A (en) * 1984-06-04 1987-02-10 Indiana University Foundation Methods for two dimensional nuclear magnetic resonance imaging
US4680546A (en) * 1986-01-27 1987-07-14 General Electric Company Methods of, and pulse sequences for, the supression of undesired resonances by generation of quantum coherence in NMR imaging and spectroscopy
US6761871B2 (en) * 2001-05-22 2004-07-13 Reginald Bernard Little Magnetic production of carbon nanotubes and filaments
US20060263674A1 (en) * 2003-04-17 2006-11-23 Mamoru Hosoya Catalyst and process for producing the same, catalytic electrode and process for producing the same, membrane/electrode union, and electrochemical device
JP2005181071A (ja) * 2003-12-18 2005-07-07 New Industry Research Organization スピン波励振・検出装置、前記装置を用いた高周波信号処理装置及びカーボンナノチューブの構造評価装置
KR100819142B1 (ko) * 2005-09-29 2008-04-07 재단법인서울대학교산학협력재단 강한 스핀파 발생 방법 및 스핀파를 이용한 초고속 정보처리 스핀파 소자
US7508578B2 (en) * 2006-07-03 2009-03-24 Terahertz Technologies, Llc Magnon laser
JP2012060033A (ja) * 2010-09-10 2012-03-22 Toshiba Corp スピン波素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528456B1 (en) * 2005-03-01 2009-05-05 The Regents Of The University Of California Nano-scale computational architectures with spin wave bus
US7535070B2 (en) * 2006-01-30 2009-05-19 The Regents Of The University Of California Spin-wave architectures
RU2363997C1 (ru) * 2008-03-17 2009-08-10 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Материал, поглощающий электромагнитное излучение
RU2391747C1 (ru) * 2009-03-20 2010-06-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Высокочастотный магниточувствительный наноэлемент

Also Published As

Publication number Publication date
EP2658004A4 (en) 2017-09-13
RU2477907C2 (ru) 2013-03-20
WO2012087183A3 (ru) 2012-09-13
US8779765B2 (en) 2014-07-15
US20130293227A1 (en) 2013-11-07
JP2014507791A (ja) 2014-03-27
EP2658004A2 (en) 2013-10-30
RU2010152733A (ru) 2012-06-27
JP5734455B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
Sala et al. Spin-orbit coupling for photons and polaritons in microstructures
Nakata et al. Magnonic quantum Hall effect and Wiedemann-Franz law
Pryor et al. Landé g factors and orbital momentum quenching in semiconductor quantum dots
Imamura et al. Conductance quantization and magnetoresistance in magnetic point contacts
Pingenot et al. Electric-field manipulation of the landé g tensor of a hole in an in 0.5 ga 0.5 as/gaas self-assembled quantum dot
Tung et al. Ab initio studies of spin-spiral waves and exchange interactions in 3 d transition metal atomic chains
Bonetti et al. Nano-contact spin-torque oscillators as magnonic building blocks
Fermani et al. Trapping cold atoms near carbon nanotubes: Thermal spin flips and Casimir-Polder potential
Soodchomshom et al. Control of spin-valley current in strain-engineered graphene magnetic junction
WO2012087183A2 (ru) Способ формирования спиновых волн
Moradian et al. First principle study of the structural, electronic and magnetic properties of Fe, Co, Ni atomic nanochains encapsulated in single walled and double walled beryllium oxygen nanotubes
Borhani et al. Spin manipulation and relaxation in spin-orbit qubits
Shekhter et al. Spintronic mechanics of a magnetic nanoshuttle
Hanslin et al. Light-induced Dzyaloshinskii-Moriya interactions in antiferromagnetic metals
Yang et al. Size-dependent magnetic order and giant magnetoresistance in organic titanium–benzene multidecker cluster
Varela et al. Electron Spin Polarization as a Predictor of Chiroptical Activity in Helical Molecules
Moskalenko et al. Two-dimensional cavity polaritons under the influence of the perpendicular strong magnetic and electric fields. The gyrotropy effects
Bhowal et al. Magnetic Skyrmions in Condensed Matter Physics
Arnardottir et al. Hall effect for indirect excitons in an inhomogeneous magnetic field
Wojcik et al. All-electrical manipulation of electron spin in a semiconductor nanotube
Barnaś et al. Thermal spin polarization in bidimensional systems
Xing et al. Spin-orbit coupling and spin current in mesoscopic devices
Wimmer et al. Spin-polarized quantum transport in mesoscopic conductors: computational concepts and physical phenomena
Mohammad RASHBA AND DRESSELHAUS SPIN ORBIT EFFECTS ON THE MAGNETIZATION AND MAGNETIC SUSCEPTIBILITY OF INAS-QUANTUM WIRE
Bau et al. Influence of a Strong Electromagnetic Wave (Laser Radiation) on the Hall Coefficient in Doped Semiconductor Superlattices with an In-plane Magnetic Field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850564

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013546065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13996859

Country of ref document: US