RU2373611C2 - Линейный привод - Google Patents

Линейный привод Download PDF

Info

Publication number
RU2373611C2
RU2373611C2 RU2007119834/11A RU2007119834A RU2373611C2 RU 2373611 C2 RU2373611 C2 RU 2373611C2 RU 2007119834/11 A RU2007119834/11 A RU 2007119834/11A RU 2007119834 A RU2007119834 A RU 2007119834A RU 2373611 C2 RU2373611 C2 RU 2373611C2
Authority
RU
Russia
Prior art keywords
actuator
active
housing
rod
linear
Prior art date
Application number
RU2007119834/11A
Other languages
English (en)
Other versions
RU2007119834A (ru
Inventor
Сергей Николаевич Саяпин (RU)
Сергей Николаевич Саяпин
Александр Владимирович Синев (RU)
Александр Владимирович Синев
Original Assignee
Институт машиноведения им. А.А. Благонравова Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт машиноведения им. А.А. Благонравова Российской Академии Наук filed Critical Институт машиноведения им. А.А. Благонравова Российской Академии Наук
Priority to RU2007119834/11A priority Critical patent/RU2373611C2/ru
Publication of RU2007119834A publication Critical patent/RU2007119834A/ru
Application granted granted Critical
Publication of RU2373611C2 publication Critical patent/RU2373611C2/ru

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Изобретение относится к системам активной виброизоляции (подвескам и опорам), применяемым в мобильных машинах, инженерных сооружениях и космической технике. Линейный привод содержит установленные внутри корпуса активные секции, выполненные в виде пьезоэлементов и связанные со штоком привода. Корпус выполнен в виде связанных жестко между собой коаксиально расположенных глухих цилиндров, из которых внутренний выполнен с буртиком на наружном конце, а наружный закрыт крышкой с центральным отверстием, через которое выведен наружу конец штока с возможностью осевого перемещения. Внутренний конец штока снабжен концевым и промежуточным буртами, наружные поверхности которых сопряжены соответственно с поверхностями внутреннего и наружного цилиндров. Между внутренней торцевой поверхностью концевого бурта и буртиком внутреннего цилиндра установлены активные секции в виде кольцевых пьезоэлементов. Изобретение обеспечивает уменьшение габаритных размеров линейного привода в осевом направлении, увеличение амплитуды его перемещений при сохранении осевого габаритного размера. 3 ил.

Description

Изобретение относится к виброзащитной технике, а именно к системам активной виброизоляции (подвескам и опорам), применяемым в мобильных машинах, инженерных сооружениях и космической технике.
Известна конструкция магнитострикционного линейного привода (актуатора), организующего линейное перемещение подпружиненного штока, связанного с активным элементом в виде магнитострикционного стержня, установленного в электромагнитной катушке внутри цилиндрического корпуса в виде стакана с глухим дном. Для увеличения рабочего хода штока в линейном приводе применен рычажный передаточный механизм, выполненный из шарнирно связанных между собой через серьгу рычагов второго и первого рода, передающих линейное движение от магнитострикционного стержня к подпружиненному штоку (Н.Janocha, Application potential of magnetic field driven new actuators / Sensors and Actuators A 91 (2001), pp.128, 129, fig.5).
Известна конструкция активного виброизолятора (Active Vibration Isolation - AVI), в котором виброизолируемая масса (объект) установлена враспор между внутренними торцами двух линейных пьезоприводов. При этом их внешние торцы стянуты между собой жесткой ограничительной связью. При этом при уменьшении или увеличении длины одного из приводов соответственно увеличивается или уменьшается длина второго (U.Stobener, L.Gaul, PIEZOELECTRIC STACK ACTUATOR: FE-MODELING AND APPLICATION FOR VIBRATION ISOLATION / Responsive Systems for Active Vibration Control. Edited by Andre Preumont. NATO Science Series II: Mathematics, Physics and Chemistry - Vol.85 / Kluwer Academic Pubiishers/Dordrecht/Boston/London (Proceedings of the NATO Advanced Study Institute on Responsive Systems for Active Vibration Control, Brussels, Belgium, 10-19 September 2001), 2002, pp.259-261, fig.4-5).
Известна также конструкция пьезоэлектрического линейного привода - активного элемента, предназначенного для использования в космических ферменных конструкциях для организации активного демпфирования в режимах колебаний. Линейный привод выполнен в виде установленных внутри стержня враспор последовательно расположенных пьезокерамических секций между подвижными концевыми элементами (Формостабильные и интеллектуальные конструкции из композиционных материалов. / Г.А.Молодцов, В.Е.Биткин, В.Ф.Симонов, Ф.Ф.Урманов. - М.: Машиностроение, 2000. - 352 с.: ил., с.201-203, рис.8.1 - прототип).
Указанные линейные приводы имеют следующие недостатки:
1. В связи с тем, что величина максимального хода выходного звена линейного привода прямо пропорциональна длине его активного элемента, выполненного из магнитострикционных, пьезокерамических и др. подобных материалов, увеличение максимального рабочего хода возможно лишь за счет увеличения длины активного элемента или их секций, а также путем применения рычажных или других передаточных механизмов, что затрудняет его применение в качестве активного виброизолятора или прецизионного актуатора в конструкциях с ограниченным пространством вдоль линии действия привода.
2. Из пьезокерамической заготовки с диаметром, равным диаметру круга, или пластины активной пьезокерамической секции можно изготовить лишь одну секцию. Техническим результатом предлагаемого технического решения является:
1) уменьшение габаритных размеров линейного привода в осевом направлении, увеличение амплитуды его перемещений при неизменном значении максимальных перемещений или увеличение амплитуды перемещения привода при сохранении осевого габаритного размера, что позволяет организовать активную виброизоляцию систем на более низких частотах;
2) увеличение количества пьезокерамических секций, изготавливаемых из одной заготовки, т.е. повышение безотходиости производства.
Это достигается тем, что в линейном приводе, содержащем установленные последовательно внутри корпуса привода активные секции, выполненные в виде пьезоэлементов, связанные со штоком привода, активные секции и корпус привода выполнены коаксиальными, при этом смежные активные секции сопряжены между собой соответственно через днища и наружные торцевые буртики стаканов, а свободные торцы крайних активных секций сопряжены соответственно с дном корпуса и штоком.
В линейном приводе шток выполнен подпружиненным относительно корпуса привода.
В линейном приводе, содержащем установленные последовательно внутри корпуса привода активные секции, выполненные в виде пьезоэлементов, связанные со штоком привода, корпус выполнен в виде жестко связанных между собой наружного и внутреннего коаксиальных глухих цилиндров, при этом наружный конец внутреннего цилиндра снабжен буртиком, а наружный цилиндр закрыт крышкой с центральным отверстием, через которое выведен наружу корпуса привода с возможностью осевого перемещения внешний конец штока, внутренний конец штока снабжен концевым и промежуточным буртами, наружные поверхности которых сопряжены соответственно с внутренними поверхностями внутреннего и наружного коаксиальных глухих цилиндров корпуса привода, при этом между внутренней торцевой поверхностью концевого бурта и буртиком внутреннего цилиндра корпуса привода, дном наружного цилиндра корпуса привода и внутренней торцевой поверхностью промежуточного бурта установлены враспор активные секции, выполненные в виде коаксиальных наружному и внутреннему цилиндрам корпуса привода кольцевых пластин из пьезоэлементов.
В линейном приводе площади поперечных сечений смежных коаксиальных активных секций выполнены равными.
В линейном приводе активные секции выполнены из магкитострикционното материала и установлены внутри электромагнитной катушки.
На фиг.1 представлено схематическое изображение линейного пьезопривода с увеличенным ходом выходного звена.
На фиг.2 представлено схематическое изображение линейного пьезопривода с увеличенным ходом выходного звена и возвратной пружиной.
На фиг.3 представлено схематическое изображение варианта линейного пьезопривода с увеличенным ходом выходного звена.
Линейный привод состоит из установленных внутри корпуса 1 активных секций 2, 3 и 4, выполненных в виде пьезоэлементов, взаимодействующих со штоком привода 5. При этом активные секции 2, 3, 4 выполнены коаксиальными. Смежные активные секции 2, 3 и 3, 4 соответственно сопряжены между собой через днища и торцевые буртики стаканов 6, 7 и 8 соответственно. Шток привода 5 жестко соединен с днищем стакана 8 и установлен в корпусе 1 с возможностью осевого перемещения. При этом шток привода 5 может быть подпружинен относительно корпуса 1 возвратной пружиной 9.
На фиг.3 изображен вариант линейного пьезопривода с увеличенным рабочим ходом, в котором активные секции 2 и 3 установлены враспор относительно штока привода 5 и корпуса 1. В данном варианте шток привода 5 дополнен концевым 10 и промежуточным 11 буртами, стаканы 6 и 7 жестко связаны между собой общим днищем, а днище стакана 6 выполнено с осевым отверстием для перемещения штока привода 5. Стакан 7 закрыт крышкой 12 с отверстием, центрирующим шток привода 5.
Зазоры в соединениях выбираются при сборке линейного пьезопривода.
Для обеспечения одинаковых усилий на штоке в процессе его перемещения площади поперечных сечений смежных коаксиальных активных секций выполнены равными.
Работает линейный пьезопривод следующим образом. При увеличении длины активных секций 2, 3 и 4 движение через стаканы 6, 7 и 8 передается штоку привода 5. При этом днище стакана 8 выдвигаются до упора с корпусом 1, а рабочий ход штока привода 5 равен сумме рабочих ходов активных секций 2, 3 и 4. При уменьшении длины активных секций 2, 3 и 4 возвратное движение штока привода 5 и стаканов 6, 7 и 8 происходит под действием силы тяжести или упругих свойств перемещаемого (виброизолируемого) объекта. При этом днища стаканов 6, 7 и 8 опускаются до упора друг с другом, а их буртики - до упора с корпусом 1. Рабочий ход штока привода 5 также равен сумме рабочих ходов активных секций 2, 3 и 4. В случае отсутствия обратного воздействия объекта на шток привода 5, последний, при необходимости, может быть подпружинен относительно корпуса 1 возвратной пружиной 9 (фиг.2).
На фиг.3 представлен вариант линейного пьезопривода с увеличенным ходом выходного звена, в котором благодаря установке активных секций 2 и 3 враспор относительно штока привода 5 и корпуса 1 осевое усилие от штока передается в обоих направлениях. Здесь при уменьшении длины активной секции 2 производят увеличение длины активной секции 3 на ту же величину. При этом происходит выдвижение через отверстие в крышке 12 конца штока привода 5, и наоборот, при увеличении длины активной секции 2 производят уменьшение длины активной секции 3 на ту же величину. При этом происходит втягивание через отверстие в крышке 12 конца штока привода 5.
При необходимости на элементах линейного привода могут быть установлены датчики силы и акселерометры.
Как вариант исполнения в линейном приводе активные секции могут быть выполнены из магнитострикционного материала. В этом случае в корпусе 1 дополнительно устанавливается одна или несколько электромагнитных катушек (не показаны).
Линейный пьезопривод, выполненный по данной схеме (фиг.3), позволяет по сравнению с традиционными вариантами исполнения либо увеличить в два раза максимальный ход выходного звена (штока привода) при той же высоте корпуса, либо при том же максимальном рабочем ходе уменьшить в два раза высоту корпуса линейного пьезопривода. Следует отметить, что предлагаемое техническое решение позволяет увеличивать ход выходного звена линейного привода (штока) не только в два раза, но и более за счет наращивания количества активных секций и, соответственно, стаканов с учетом возможных ограничений по габаритам поперечного сечения линейного привода.
За счет увеличения хода выходного звена линейного привода расширяется диапазон его функциональных возможностей. В частности, при использовании линейного привода в качестве активного виброизолятора или гасителя колебаний расширяется диапазон частот виброизоляции (виброгашения) в сторону более низких.
За счет коаксиального исполнения активных секций улучшается показатель безотходности производства.

Claims (1)

  1. Линейный привод, содержащий установленные последовательно внутри корпуса привода активные секции, выполненные в виде пьезоэлементов, связанные со штоком привода, отличающийся тем, что корпус выполнен в виде жестко связанных между собой наружного и внутреннего коаксиальных глухих цилиндров, при этом наружный конец внутреннего цилиндра снабжен буртиком, а наружный цилиндр закрыт крышкой с центральным отверстием, через которое выведен наружу корпуса привода с возможностью осевого перемещения внешний конец штока, внутренний конец штока снабжен концевым и промежуточным буртами, наружные поверхности которых сопряжены соответственно с внутренними поверхностями внутреннего и наружного коаксиальных глухих цилиндров корпуса привода, при этом между внутренней торцевой поверхностью концевого бурта и буртиком внутреннего цилиндра корпуса привода, дном наружного цилиндра корпуса привода и внутренней торцевой поверхностью промежуточного бурта установлены враспор активные секции, выполненные в виде коаксиальных наружному и внутреннему цилиндрам корпуса привода кольцевых пластин из пьезоэлементов.
RU2007119834/11A 2007-05-28 2007-05-28 Линейный привод RU2373611C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007119834/11A RU2373611C2 (ru) 2007-05-28 2007-05-28 Линейный привод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007119834/11A RU2373611C2 (ru) 2007-05-28 2007-05-28 Линейный привод

Publications (2)

Publication Number Publication Date
RU2007119834A RU2007119834A (ru) 2008-12-10
RU2373611C2 true RU2373611C2 (ru) 2009-11-20

Family

ID=41478068

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007119834/11A RU2373611C2 (ru) 2007-05-28 2007-05-28 Линейный привод

Country Status (1)

Country Link
RU (1) RU2373611C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904934A (zh) * 2014-04-14 2014-07-02 浙江理工大学 微米级逆磁致伸缩驱动器及使用方法
RU2690732C1 (ru) * 2018-08-07 2019-06-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Пьезоактюатор (варианты)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904934A (zh) * 2014-04-14 2014-07-02 浙江理工大学 微米级逆磁致伸缩驱动器及使用方法
CN103904934B (zh) * 2014-04-14 2016-09-28 浙江理工大学 微米级逆磁致伸缩驱动器及使用方法
RU2690732C1 (ru) * 2018-08-07 2019-06-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Пьезоактюатор (варианты)

Also Published As

Publication number Publication date
RU2007119834A (ru) 2008-12-10

Similar Documents

Publication Publication Date Title
US8159114B2 (en) Transducer
JP5831734B2 (ja) 慣性質量ダンパー
CN102149934B (zh) 用于双离合器的操纵装置
WO2008044448A1 (fr) Dispositif de suspension
JP5161395B1 (ja) 振動抑制装置
RU2373611C2 (ru) Линейный привод
CN102425638B (zh) 紧凑型轻量化的双活塞磁流变阻尼器
US7307371B2 (en) Actuator with amplified stroke length
US6291928B1 (en) High bandwidth, large stroke actuator
CA2739214A1 (en) Pressure balancing device
US6491292B2 (en) Piston and cylinder assembly
US10985633B2 (en) Vibrational energy harvester with amplifier having gear assembly
RU2752672C1 (ru) Линейный исполнительный механизм гидросооружений
CN106100436B (zh) 嵌套式超磁致伸缩执行器
CN103244601A (zh) 一种高精度微位移主被动复合压电隔振杆
CN105317905A (zh) 负刚度设备
RU2752673C1 (ru) Линейный исполнительный механизм
CN110707896B (zh) 带有位置锁止功能的双向直线作动器及作动方法
US10746251B2 (en) Load damping assembly with gapping feature
JP2018071740A (ja) 流体装置
Yoo et al. Magnetorheological hydraulic actuator driven by a piezopump
JP2019199880A (ja) ベローズ式ダンパ
RU75441U1 (ru) Импульсная муфта сцепления
CN104094006B (zh) 用于双离合器的操作设备
JPH1026173A (ja) 制振用ダンパ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120529