RU2371857C2 - Быстродействующий способ защиты оптической сети передачи данных - Google Patents

Быстродействующий способ защиты оптической сети передачи данных Download PDF

Info

Publication number
RU2371857C2
RU2371857C2 RU2007116977/09A RU2007116977A RU2371857C2 RU 2371857 C2 RU2371857 C2 RU 2371857C2 RU 2007116977/09 A RU2007116977/09 A RU 2007116977/09A RU 2007116977 A RU2007116977 A RU 2007116977A RU 2371857 C2 RU2371857 C2 RU 2371857C2
Authority
RU
Russia
Prior art keywords
channel
transparent
service
bytes
stage
Prior art date
Application number
RU2007116977/09A
Other languages
English (en)
Other versions
RU2007116977A (ru
Inventor
Дешенг САН (CN)
Дешенг САН
Original Assignee
Зте Корпарейшен
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зте Корпарейшен filed Critical Зте Корпарейшен
Publication of RU2007116977A publication Critical patent/RU2007116977A/ru
Application granted granted Critical
Publication of RU2371857C2 publication Critical patent/RU2371857C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0273Transmission of OAMP information using optical overhead, e.g. overhead processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/08Intermediate station arrangements, e.g. for branching, for tapping-off
    • H04J3/085Intermediate station arrangements, e.g. for branching, for tapping-off for ring networks, e.g. SDH/SONET rings, self-healing rings, meashed SDH/SONET networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

Изобретение относится к технике связи. Технический результат состоит в сокращении времени защитного переключения оптической кольцевой сети передачи данных. Основная идея способа заключается в конфигурировании «прозрачного» канала, использующего доступные мультиплексные секционные служебные сигналы сети передачи данных. Каждый элемент сети через «прозрачный» канал выявляет неисправную секцию сети перед получением запроса сигнала, выполняет обработку протокола на основе неисправной секции и реализует быструю обработку данных. 2 н. и 2 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к области оптической передачи данных и, в частности, к способу защитного переключения в оптической кольцевой сети передачи данных.
Предшествующий уровень техники
Оптическая кольцевая сеть передачи данных широко применяется в области телекоммуникации. Рекомендация ITU-TG.841, т.е. «Классификация и характеристики структуры защиты сети стандарта SDH», более подробно описывает функцию самовосстановления оптической кольцевой сети передачи данных стандарта SDH/SONET. В ней двух- или четырехволоконное двунаправленное мультиплексное секционное кольцо для защиты сети (сокращенно BLSR, bidirectional line switched ring) является наилучшим средством самовосстановления. Рекомендация ITU-TG.841 предписывает, что сеть стандарта SDH/SONET загружает сигнальные сообщения в служебные К1 и К2 байты кадра передачи данных мультиплексной секции в сети стандарта SDH/SONET. Рекомендация ITU-TG.841 также предписывает, что временной интервал между инициализацией защитного переключения и окончанием его работы должен быть менее чем 50 миллисекунд с тем, чтобы максимально снизить простой в работе.
В случае если время простоя составляет менее 50 миллисекунд, может быть достигнуто наивысшее качество обслуживания. Однако если оптическая кольцевая сеть передачи данных имеет относительно широкий диапазон и большее количество элементов, сложно гарантировать, что время защитного переключения будет 50 миллисекунд.
На Фиг.1 изображена схема, которая иллюстрирует, как элемент оптической сети передачи данных обрабатывает защитное переключение в соответствии с рекомендацией G.841. Как показано на Фиг.1, блоки, осуществляющие защитное переключение посредством элементов сети передачи данных, представляют собой: блок получения сигналов горизонтального направления (т.е. направления «Восток-Запад») или обнаружения аварий, блок отправки сигналов горизонтального направления (т.е. направления «Восток-Запад»), блок обработки протокола и абонентский кросс-блок. После обнаружения новой аварии или нового сигнала блок получения сигналов или обнаружения аварий передает информацию об аварии или сигнале блоку обработки протокола, и блок обработки протокола генерирует сигнал в соответствии с правилами протокола и передает сигнал на блок отправки сигналов и, наконец, сигнал отправляется через оптический порт. При генерировании сигнала согласно правилам протокола блок обработки протокола также генерирует соответствующую кросс-связь и отправляет его на абонентский кросс-блок для проведения обслуживания. Таким образом, имея один элемент сети передачи данных, порядок обработки системы защитного переключения может быть разделен на операцию обнаружения аварии или получения сигналов, операцию обработки протокола, операцию отправки сигналов и операцию обработки данных кросс-блоком. В качестве примера, способ расчета времени защитного переключения при использовании рекомендаций G.841 описан ниже для 8-элементной кольцевой сети передачи данных, как показано на Фиг.2 (А). Согласно Фиг.2 (А), если секция между элементом 1 и элементом 8 неисправна, блок получения сигналов или обнаружения аварии определяет аварию и извещает блок обработки протокола, а затем блок обработки протокола генерирует новый сигнал и блок отправления сигнала отправляет новый сигнал к следующему элементу сети. Поскольку элемент 1 и элемент 8 обнаруживают аварию одновременно, операция их обработки также производится одновременно. Следовательно, операция защитного переключения может быть упрощена и сведена к операции, изображенной на Фиг.2 (В). Как показано на Фиг.2 (В), общее время защитного переключения:
Figure 00000001
где в формуле (1) t0 - время передачи сигнала в секции оптоволокна, t1 - время обработки данных при получении сигнала или время обнаружения аварии, t2 - время обработки данных протокола, t3 - время обработки данных при отправлении сигнала, и t4 - время обработки данных кросс-блоком. Все этапы операции, от получения сигнала протокола до завершения обработки блоком обработки протокола и, наконец, отправления сигнала протокола блоком отправления сигнала, производятся систематически, а общее время обработки - это время Ti в формуле (1).
Заявка на патент Китая №98113149.2 описывает способ ускорения защитного переключения. В основе данного способа лежит сокращение времени обработки данных кросс-блоком, т.е. времени t4 в формуле (1). На Фиг.2 (А) и в формуле (1) отражено, что только время обработки данных кросс-блоком последнего элемента сети влияет на время защитного переключения всей сети, поэтому усовершенствования, выполненные при помощи данного способа, ограничены.
Заявка на патент США №5636205 раскрывает способ ускорения защитного переключения. При помощи блока сравнения сигналов данный способ оценивает биты сигналов, получаемые элементом сети, и определяет, необходимо ли «обходить» передачу сигнала согласно направлению идентификатора сигнальных битов. Главным образом, способ направлен на сокращение времени обработки данных протокола, т.е. времени t2 по формуле (1). По сравнению с заявкой на патент Китая №98113149.2 данный способ имеет очевидные преимущества. Однако преимущества зависят от способа реализации средства сравнения сигналов. Если указанное средство выполнено в виде аппаратного блока, данные преимущества очевидны, но и стоимость повышается. Если указанное средство выполнено в виде программного обеспечения, преимущества не так очевидны. Вне зависимости от принятого способа выполнения указанного средства настоящий патент искусственно разделяет блок обработки протокола для защитного переключения на блок сравнения сигналов и блок обработки протокола, при этом данная обработка является комплексной и отличается повышенным риском. Для снижения этого риска блок сравнения сигналов должен осуществлять большое число логических оценок, однако эти логические оценки определенно снижают преимущества.
Раскрытие изобретения
Задачей настоящего изобретения является предложение простого и надежного способа быстродействующей защиты оптической кольцевой сети передачи данных.
Основной идеей настоящего изобретения является создание «прозрачного» (т.е. виртуального - незаметного для пользователя) канала передачи данных при использовании доступных служебных сигналов мультиплексной секции сети передачи данных, когда соответствующий элемент сети передачи данных определяет аварийную секцию сети через «прозрачный» канал до получения запроса сигнала и завершает обработку данных протокола на основании факта аварийности секции, для реализации быстрой обработки данных.
Способ быстродействующей защиты оптической кольцевой сети передачи данных в соответствии с настоящим изобретением содержит следующие этапы:
Этап 1 - конфигурирование «прозрачного» канала на уровне сетевого управления;
Этап 2 - блок обнаружения аварий соответствующего элемента сети определяет состояния оптической линии в режиме реального времени, а блок обнаружения сигналов выявляет изменения сигнальных байтов и служебных байтов «прозрачного» канала в режиме реального времени;
Этап 3 - если обнаружена аварийная или управляющая команда переключения, выполняется этап 4; если обнаружено изменение служебных байтов «прозрачного» канала, выполняется этап 5; а если обнаружено изменение сигнальных байтов, выполняется этап 6;
Этап 4 - после того, как элемент сети, обнаруживающий аварийный или управляющий сигнал переключения, завершает обработку протокола, кросс-блок служебных данных отключает «прозрачный» канал направления «Восток-Запад» и копирует сигнальные байты неаварийного направления для отправки служебным байтам, соответствующим прозрачному каналу, или кросс-блок служебных данных генерирует упрощенный сигнал в соответствии с сигнальной информацией протокола, предназначенный для отправки, и записывает его в служебные байты; соответствующие «прозрачному» каналу для отправки, затем выполняют этап 7;
Этап 5 - для элемента сети, который обнаруживает изменения служебных байтов «прозрачного» канала: если текущее состояние является состоянием переключения, то служебные байты не обрабатываются; если текущее состояние - состояние простоя или передачи, то служебные байты направляются к блоку обработки протокола для обработки в качестве сигнальных байтов, полученных блоком обнаружения сигналов соответствующего направления; или если получены упрощенные сигналы, то генерируется информационный сигнал, соответствующий полученным упрощенным сигналам и отправляется на обработку блоку обработки протокола, затем - переход к этапу 2;
Этап 6 - если полученные сигналы являются запросом краткого пути до данного элемента сети, то после завершения обработки данных протокола и отключения «прозрачного» канала направления «Восток-Запад», кросс-блок служебных данных копирует сигнальные байты, предназначенные для отправки в служебные байты, соответствующего «прозрачного» канала, и отправляет их в направлении, противоположном направлению получения запроса краткого пути; или создает упрощенные сигналы в соответствии с информацией, предназначенной для отправки, и записывает их в служебные байты, соответствующие «прозрачному» каналу, для отправки; в противном случае обработка производится согласно протоколу G.841;
Этап 7 - если авария исчезает или отменяется управляющая команда переключения, два переключающих элемента сети автоматически записывают тип сигнального кода неисправности по протоколу защитного переключения на «прозрачный» канал и вновь включают «прозрачный» канал направления «Восток-Запад», а затем осуществляется переход к этапу 2; в противном случае производится прямой переход к этапу 2.
На вышеупомянутом этапе 1 реализуется следующий способ конфигурирования «прозрачного» канала: в соответствии со служебными сигналами мультиплексных секционных элементов сети происходит определение двух доступных служебных байтов на секциях восточного и западного направления элемента сети и включение канала направления «Восток-Запад», в котором служебные байты проходят через кросс-блок служебных данных.
Кроме того, возможен следующий способ конфигурирования «прозрачного» канала: при использовании служебных сигналов мультиплексных секций соответствующего элемента сети происходит последовательное определение одного доступного служебного байта на секциях восточного и западного направления элемента сети и включение канала направления «Восток-Запад», в котором служебные байты проходят через кросс-блок служебных данных.
В случае если вышеупомянутый «прозрачный» канал является каналом одного служебного байта, способ быстродействующей защиты в оптической кольцевой сети передачи данных содержит следующие этапы:
Этап 1 - конфигурирование «прозрачного» канала на уровне сетевого управления;
Этап 2 - блок обнаружения аварий соответствующих элементов сети выявляет состояния оптической линии в режиме реального времени, а блок обнаружения сигналов выявляет изменения сигнальных байтов и служебного байта «прозрачного» канала в режиме реального времени;
Этап 3 - если обнаружена аварийная или управляющая команда переключения, выполняется этап 4; если обнаружено изменение служебного байта «прозрачного» канала, выполняется этап 5; а если обнаружено изменение сигнальных байтов, выполняется этап 6;
Этап 4 - после того как элемент сети, обнаруживающий аварийную или управляющую команду переключения, завершает обработку протокола, кросс-блок служебных данных отключает «прозрачный» канал направления «Восток-Запад» и генерирует упрощенные сигналы в соответствии с сигнальной информацией протокола, предназначенные для отправки, а затем записывает их в служебный байт, соответствующий «прозрачному» каналу, для отправки;
Этап 5 - для элемента сети, который обнаруживает изменения служебного байта «прозрачного» канала: если текущее состояние является состоянием переключения, то служебный байт не обрабатываются; если текущее состояние - состояние простоя или передачи, то генерируется сигнальная информация, соответствующая полученной, в соответствии с упрощенными сигналами и отправляется блоку обработки протокола для обработки;
Этап 6 - если полученные сигналы являются запросом краткого пути до данного элемента сети, то после завершения элементом сети обработки данных протокола и отключения «прозрачного» канала направления «Восток-Запад», кросс-блок служебных данных генерирует упрощенные сигналы в соответствии с информацией, предназначенной для отправки, и записывает их в служебный байт, соответствующий «прозрачному» каналу, для отправления их в направлении, противоположном направлению получения запроса краткого пути;
Этап 7 - если авария исчезает или отменяется управляющая команда переключения, два переключающих элемента сети автоматически записывают тип сигнального кода неисправности по протоколу защитного переключения на «прозрачный» канал и вновь включают «прозрачный» канал направления «Восток-Запад», а затем осуществляется переход к этапу 2; в противном случае производится прямой переход к этапу 2.
Для внедрения данного изобретения в оптическую кольцевую сеть передачи данных элементы сети, за исключением блока обнаружения неисправности, могут получать запрашиваемую информацию, передаваемую по «прозрачному» каналу, спустя некоторое время t0 задержки прохождения сигнала после того, как неисправный элемент сети отправил запрос. После установки «прозрачного» канала, элемент сети, который производит мониторинг аварий, отправляет информацию в «прозрачный» канал, а поскольку «прозрачный» канал представляет собой, как правило, кольцо, информация, записываемая элементом сети, который производит мониторинг аварий, будет передана со скоростью света. Поэтому другие элементы сети, расположенные после элемента, производящего мониторинг аварий, могут обнаружить информацию после некоторой временной задержки прохождения сигнала. Таким образом, время переключения, рассчитываемое для предлагаемого способа настоящего изобретения:
Figure 00000002
где N - количество элементов оптической кольцевой сети передачи данных, a t0, t1, t2, t3, и t4 - соответствуют тому же, что и в формуле (1).
Например, пусть N=8, t0=1 миллисекунда, t1=t2=t3=t4=3 миллисекундам, тогда время защитного переключения в соответствии со способом, описанным в G.841, может быть рассчитано по формуле (1) и равно 82 миллисекундам. Если исключить время t4 обработки данных абонентским кросс-блоком одного элемента сети, время переключения по способу, предложенному в заявке №98113149.2, составляет 79 миллисекунд. Если исключить время t2 обработки данных протокола шести средних элементов сети, время переключения по способу заявки №5636205 составит 64 миллисекунды. Однако если принять способ, предложенный настоящим изобретением, то в соответствии с формулой (2) можно увидеть, что время защитного переключения составляет лишь 28 миллисекунд. Таким образом, способ, предлагаемый данным изобретением, отличается лучшим техническим эффектом.
Краткое описание чертежей
На Фиг.1 показана схема, на которой изображен элемент оптической сети передачи данных, который осуществляет защитное переключение в соответствии с рекомендацией G.841;
На Фиг.2 (А) представлена схема двухволоконного двунаправленного мультиплексного секционного кольца для защиты сети из 8 элементов;
На Фиг.2 (В) представлена схема, используемая для расчета времени защитного переключения сети, представленной на Фиг.2 (А), в соответствии с рекомендацией G.841;
На Фиг.3 (А) показана блок-схема защитного переключения для элемента оптической сети передачи данных при внедрении способа, предлагаемого данным изобретением;
На Фиг.3 (В) приведена схема сети, представленной на Фиг.2 (А), оснащенная «прозрачным» каналом;
На Фиг.4 представлена схема, используемая для расчета времени защитного переключения кольцевой сети из N-элементов при внедрении способа, предлагаемого данным изобретением;
На Фиг.5 показана схема этапов способа, предлагаемого данным изобретением.
Осуществление изобретения
Настоящее изобретение далее дополнительно описывается со ссылками на прилагаемые чертежи и варианты осуществления.
Фиг.1, 2 (А) и 2 (В) относятся к существующим способам, известным из уровня техники. На Фиг.4 представлена схема, используемая для расчета времени защитного переключения при внедрении способа, предлагаемого данным изобретением.
На Фиг.3 (А) показана блок-схема защитного переключения для элемента оптической сети передачи данных при внедрении способа, предлагаемого данным изобретением. Как показано на Фиг.3 (А), блок обработки данных кросс-блока добавлен на основе Фиг.1. Кросс-блок служебных данных включает или отключает «прозрачный» канал направления «Восток-Запад» по команде блока обработки протокола и записывает специальную информацию и пр. в «прозрачный» канал в соответствии с информацией, указанной блоком обработки протокола.
На Фиг.3 (В) приведена схема сети, представленной на Фиг.2 (А), оснащенная «прозрачным» каналом. Как показано на Фиг.3 (В), два двунаправленных «прозрачных» канала, окружающих всю кольцевую сеть передачи данных, создаются на основе Фиг.2 (А). Более того, при наличии кросс-блока служебных данных можно гарантировать, что в ситуации простоя служебные байты, передаваемые через «прозрачный» канал, представляют собой сигнальный код неисправности по протоколу защитного переключения.
На Фиг.5 показана схема этапов способа, предлагаемого данным изобретением. Соответственно, принимая, что сеть, показанная на Фиг.3 (В), выходит из строя между элементами сети 1 и 8 и неисправность исчезает как, например, в сочетании с Фиг.3, 4 и 5, операция выполнения технического решения, предлагаемого данным изобретением, путем использования двух «прозрачных» каналов служебных байтов подробно описана ниже.
Этап 1 - на уровне сетевого управления определяются доступные служебные сигналы оптоволоконных секций, таких как 1-8, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8 и т.д. Затем при помощи кросс-блока служебных данных элемент сети 1 вводит доступные служебные сигналы оптоволоконных секций 1-8 и 1-2. В соответствии с тем же способом элементы сети 2-8 соответственно вводят доступные служебные сигналы оптоволоконных секций, таких как 1-2 и 2-3, 2-3 и 3-4, 3-4 и 4-5, 4-5 и 5-6, 5-6 и 6-7, 6-7 и 7-8 и т.д. Наконец, конфигурируется «прозрачный» канал, окружающий всю кольцевую сеть передачи данных, как показано на Фиг.3 (В). Кроме того, во время ввода доступных служебных сигналов элементы сети конфигурируют служебные байты, передаваемые по «прозрачным» каналам, как сигнальный код неисправности по протоколу защитного переключения через кросс-блок служебных данных, например 0x0ff0.
Этап 2 - элемент сети 1 обнаруживает аварию секции между элементами 1-8 и сообщает блоку обработки протокола об аварии; блок обработки протокола генерирует запрос сигнала, при этом запрос, тип которого определяется байтом К1, посылаемым по оптоволокну в направлении элемента 1-2 сети, является запросом неисправности, а целевым элементом сети является элемент 8. Затем производится переход к следующему этапу.
Этап 3 - кросс-блок служебных данных элемента сети 1 отключает «прозрачные» каналы оптоволоконных секций элементов сети 1-8 и 1-2 и копирует К1 и К2, передаваемые по направлению от элемента 1 сети к элементу 2 сети для служебных байтов, соответствующих «прозрачному» каналу направления от элемента 1 сети к элементу 2 сети, и отправляет их.
Этап 4 - элемент 2 сети выявляет изменения служебных байтов «прозрачного» канала в направлении от элемента 1 сети к элементу 2 сети. Элемент 3 сети выявляет изменения служебных байтов «прозрачного» канала в направлении от элемента 2 сети к элементу 3 сети. Подобным образом элементы 4, 5, 6 и 7 также выявляют изменения. Затем производится переход к следующему этапу.
Этап 5 - элемент 2 сети не находится в состоянии переключения. Служебные байты «прозрачного» канала, полученные в направлении от элемента 1 сети к элементу 2 сети, как и сигнальные байты К1 и К2, полученные в том же направлении, отправляются для обработки к блоку обработки протокола, проходя по каналу защиты. Элементы 3-7 сети обрабатываются аналогичным способом.
Этап 6 - элемент 8 сети выявляет изменения сигналов протокола (которые отправляются на элемент 7 сети после обработки по этапу 5) в направлении от элемента 7 сети к элементу 8 сети. Кроме того, сигнальный байт К1 указывает, что целевым является текущий элемент сети, а запрос - запросом о неисправности, следовательно, элемент 8 сети незамедлительно начинает переключение.
Этап 7 - когда элемент 1 сети обнаруживает аварию, элемент 8 сети также обнаруживает аварию в секции 1-8 сети. Таким образом, элементы 8 и 1 сети выполняют указанную обработку примерно в одно и то же время, причем вид этой обработки у этих элементов одинаковый, а единственная разница заключается в том, что направление передачи сигналов элемента 8 сети противоположно направлению элемента 1 сети, поэтому служебные байты «прозрачного» канала сети 8 передаются по направлению 8-7-6-5-4-3-2-1.
Этап 8 - примерно в то же время, когда элемент 8 сети обнаруживает сигнал по этапу 6, элемент 1 сети обнаруживает, что сигнал (отправляемый элементом 2 сети) в направлении от элемента 2 сети к элементу 1 сети изменился и сигнальный байт К1 определяет, что целевым является текущий элемент сети, запрос является запросом о неисправности, следовательно, элемент 1 сети незамедлительно начинает переключение.
Этап 9 - после исчезновения аварии на секции между элементами 1-8 сети элементы 1 и 8 сети автоматически записывают тип сигнального кода неисправности по протоколу защитного переключения в «прозрачный» канал по направлениям 1-2-3-4-5-6-7-8 и 8-7-6-5-4-3-2-1 соответственно как, например, 0x0ff0, и вновь включают «прозрачный» канал между 1-2 и 1-8, и 1-8 и 7-8. Другая обработка полностью выполняется в соответствии с рекомендацией G.841.
Разница между внедрением технических решений настоящего изобретения путем использования одного служебного байта «прозрачного» канала и путем использования двух служебных байтов «прозрачного» канала заключается в том, что в данном изобретении элемент сети, который отправляет информацию «прозрачного» канала, предназначен для генерирования упрощенной сигнальной информации в соответствии с сигнальной информацией протокола, предназначенной для отправки. Элемент сети, получающий информацию «прозрачного» канала, предназначен для восстановления упрощенной сигнальной информации в виде сигнальной информации протокола.
То есть на этапе 3, в соответствии с идентификатором исходного элемента сети и идентификатором целевого элемента сети, указываемых в К1 и К2, которые передаются по направлению от элемента 1 сети к элементу 2, элемент 1 объединяет К1 и К2 в качестве служебного байта, соответствующего «прозрачному» каналу в направлении от элемента 1 сети к элементу 2 сети одного байтового протокола, и отправляет его. Например, пусть элементом сети по сигналу запроса является элемент 1 сети, а целевым элементом сети по сигналу запроса - элемент 8 сети, тогда содержание байта есть 0х18.
На этапе 5 элемент 2 сети восстанавливает соответствующие К1 и К2 в соответствии со служебным байтом «прозрачного» канала, получаемого в направлении от элемента 1 к элементу 2 сети, тип запроса принимается по умолчанию как сигнал неисправности и отправляется к блоку обработки протокола как сигнальные байты К1 и К2, полученные в направлении от элемента 1 сети к элементу 2 сети для обработки.
Элементы 1 и 8 сети не обрабатывают полученные служебные байты «прозрачного» канала. По вышеописанным этапам видно, что элементы 1 и 8 сети одновременно обнаруживают аварию и генерируют сигнал протокола и служебную информацию «прозрачного» канала в одно и то же время, а средние элементы 2-7 сети быстро генерируют сигнал для отправки и отправляют его через защитный канал в соответствии с информацией, переданной служебными байтами, отправляемыми от двунаправленного «прозрачного» канала перед получением измененного сигнала протокола, отличающегося быстротой и эффективностью.
Также, по вышеописанным этапам видно, что главной особенностью способа, предлагаемого настоящим изобретением, является конфигурирование «прозрачного» канала для быстрой отправки запроса информации без изменения исходного протокола защитного переключения блока обработки протокола, чем достигается высокая надежность. Между тем, в мультиплексной секции сети стандарта SDH/SONET существует большое количество доступных служебных сигналов, и по сравнению с другими способами, известными из уровня техники, способ, предлагаемый настоящим изобретением, является низкозатратным.

Claims (4)

1. Способ быстродействующей защиты оптической кольцевой сети передачи данных, характеризующийся выполнением следующих этапов:
Этап 1 - конфигурирование «прозрачного» канала на уровне сетевого управления;
Этап 2 - блок обнаружения аварий соответствующих элементов сети определяет состояния оптической линии в режиме реального времени, а блок обнаружения сигналов выявляет изменения сигнальных байтов и служебных байтов «прозрачного» канала в режиме реального времени;
Этап 3 - если обнаружена аварийная или управляющая команда переключения, выполняют этап 4; если обнаружено изменение служебных байтов «прозрачного» канала, выполняют этап 5; а если обнаружено изменение сигнальных байтов, выполняют этап 6;
Этап 4 - после того, как элемент сети, обнаруживающий аварийный или управляющий сигнал переключения, завершает обработку протокола, кросс-блок служебных данных отключает «прозрачный» канал направления «Восток-Запад» и копирует сигнальные байты, предназначенные для отправки из неаварийного направления к служебным байтам, соответствующим прозрачному каналу, для отправки, и выполняют этап 7;
Этап 5 - для элемента сети, который обнаруживает изменения служебных байтов «прозрачного» канала, если текущее состояние является состоянием переключения, то служебные байты не обрабатываются; если текущее состояние - состояние простоя или передачи, то служебные байты направляются к блоку обработки протокола для обработки в качестве сигнальных байтов, полученных блоком обнаружения сигналов соответствующего направления, и затем - переход к этапу 2;
Этап 6 - если полученные сигналы являются запросом краткого пути до данного элемента сети, после завершения обработки данных протокола и отключения «прозрачного» канала направления «Восток-Запад», кросс-блок служебных данных копирует сигнальные байты, предназначенные для отправки, в служебные байты, соответствующие «прозрачному» каналу, для отправки их в направлении, противоположном направлению получения запроса краткого пути; или, в противном случае, обработка осуществляется согласно протоколу G.841; и
Этап 7 - если авария исчезает или отменяется управляющая команда переключения, два переключающих элемента сети автоматически записывают тип сигнального кода неисправности по протоколу защитного переключения на «прозрачный» канал и вновь включают «прозрачный» канал направления «Восток-Запад», а затем осуществляется переход к этапу 2; в противном случае производится прямой переход к этапу 2.
2. Способ по п.1, отличающийся тем, что способ конфигурирования «прозрачного» канала по этапу 1 является следующим: при использовании мультиплексных секционных служебных сигналов в секциях элементов сети происходит определение двух доступных служебных байтов последовательно на секциях восточного и западного направления элемента сети и включение канала горизонтального направления, в котором служебные байты проходят через кросс-блок служебных данных.
3. Способ быстродействующей защиты оптической кольцевой сети передачи данных, характеризующийся выполнением следующих этапов:
Этап 1 - конфигурирование «прозрачного» канала на уровне сетевого управления;
Этап 2 - блок обнаружения аварий соответствующих элементов сети выявляет состояния оптической линии в режиме реального времени, а блок обнаружения сигналов выявляет изменения сигнальных байтов и служебных байтов «прозрачного» канала в режиме реального времени;
Этап 3 - если обнаружена аварийная или управляющая команда переключения, выполняют этап 4; если обнаружено изменение служебных байтов «прозрачного» канала, выполняют этап 5; а если обнаружено изменение сигнальных байтов, выполняют этап 6;
Этап 4 - после того, как элемент сети, обнаруживающий аварийную или управляющую команду переключения, завершает обработку протокола, кросс-блок служебных данных отключает «прозрачный» канал направления «Восток-Запад» и генерирует упрощенные сигналы в соответствии с сигнальной информацией протокола, предназначенной для отправки, а затем записывает их в служебные байты, соответствующие «прозрачному» каналу, для отправки;
Этап 5 - для элемента сети, который обнаруживает изменения служебных байтов «прозрачного» канала, если текущее состояние является состоянием переключения, то служебные байты не обрабатываются; если текущее состояние - состояние простоя или передачи, то генерируется сигнальная информация, соответствующая полученной, в соответствии с упрощенными сигналами и отправляется блоку обработки протокола для обработки;
Этап 6 - если полученные сигналы являются запросом краткого пути до данного элемента сети, после завершения элементом сети обработки данных протокола и отключения «прозрачного» канала направления «Восток-Запад», кросс-блок служебных данных генерирует упрощенные сигналы в соответствии с информацией, предназначенной для отправки, и записывает их в служебные байты, соответствующие «прозрачному» каналу, для отправки их в направлении, противоположном направлению получения запроса краткого пути; и
Этап 7 - если авария исчезает или отменяется управляющая команда переключения, два переключающих элемента сети автоматически записывают тип сигнального кода неисправности по протоколу защитного переключения в «прозрачный» канал и вновь включают «прозрачный» канал горизонтального направления, а затем осуществляется переход к этапу 2; в противном случае производится прямой переход к этапу 2.
4. Способ по п.3, отличающийся тем, что способ конфигурирования «прозрачного» канала по этапу 1 является следующим: при использовании мультиплексных секционных служебных сигналов секций элементов сети происходит определение одного доступного служебного байта на секции восточного и западного направления элемента сети и включение канала направления «Восток-Запад», в котором служебные байты проходят через кросс-блок служебных данных.
RU2007116977/09A 2004-09-28 2005-03-16 Быстродействующий способ защиты оптической сети передачи данных RU2371857C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2004100800963A CN100367729C (zh) 2004-09-28 2004-09-28 一种光传输环网快速保护方法
CN200410080096.3 2004-09-28

Publications (2)

Publication Number Publication Date
RU2007116977A RU2007116977A (ru) 2008-11-10
RU2371857C2 true RU2371857C2 (ru) 2009-10-27

Family

ID=36118562

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007116977/09A RU2371857C2 (ru) 2004-09-28 2005-03-16 Быстродействующий способ защиты оптической сети передачи данных

Country Status (5)

Country Link
EP (1) EP1796296A4 (ru)
KR (1) KR101023601B1 (ru)
CN (1) CN100367729C (ru)
RU (1) RU2371857C2 (ru)
WO (1) WO2006034614A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034940B (zh) * 2007-04-05 2011-04-06 华为技术有限公司 光传输网络中复用段状态检测的方法及设备
CN101453288B (zh) * 2007-12-06 2011-11-16 华为技术有限公司 一种环网保护方法和网络设备
CN101330343A (zh) * 2008-07-30 2008-12-24 中兴通讯股份有限公司 一种网元内交叉单元倒换状态同步方法
CN101931464B (zh) * 2009-06-19 2013-08-14 京信通信系统(中国)有限公司 光纤混合网络及其通信链路建立与维护方法
CN101944950B (zh) * 2009-07-06 2014-01-01 中兴通讯股份有限公司 光传送网中额外业务加载处理方法及装置
CN102404048B (zh) * 2011-11-29 2014-06-25 南京中新赛克科技有限责任公司 一种sonet/sdh网络线路用无告警切换的方法及监控设备
CN102739445B (zh) * 2012-06-18 2017-12-22 中兴通讯股份有限公司 一种环网故障快速定位的方法和系统
CN118283461A (zh) * 2022-12-29 2024-07-02 中兴通讯股份有限公司 分布式同步数字体系sdh环网保护方法及sdh环网网元

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795225A (ja) * 1993-09-20 1995-04-07 Fujitsu Ltd 双方向リングネットワーク制御方式
JP3976397B2 (ja) * 1998-04-28 2007-09-19 株式会社日立コミュニケーションテクノロジー Blsrネットワークシステム
CN1129261C (zh) * 1999-07-15 2003-11-26 华为技术有限公司 多安全机制下的同步触发复用段保护倒换和检测方法
CN1136688C (zh) * 2001-02-27 2004-01-28 北京邮电大学 波分复用线路倒换环通用节点保护装置
US7289428B2 (en) * 2001-08-13 2007-10-30 Tellabs Operations, Inc. Inter-working mesh telecommunications networks
CN1266869C (zh) * 2002-12-04 2006-07-26 华为技术有限公司 一种在分组双环网上实现保护切换的方法
KR100487215B1 (ko) * 2003-01-03 2005-05-04 삼성전자주식회사 파장분할다중방식 자기치유 환형 광통신망
US20040179472A1 (en) * 2003-03-14 2004-09-16 Farid Khalilzadeh Shared path protection method and system

Also Published As

Publication number Publication date
RU2007116977A (ru) 2008-11-10
KR20070057786A (ko) 2007-06-07
CN100367729C (zh) 2008-02-06
KR101023601B1 (ko) 2011-03-22
CN1756223A (zh) 2006-04-05
WO2006034614A1 (fr) 2006-04-06
EP1796296A1 (en) 2007-06-13
EP1796296A4 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
RU2371857C2 (ru) Быстродействующий способ защиты оптической сети передачи данных
US5479608A (en) Group facility protection in a digital telecommunications system
CN101197634B (zh) 主备板的自动保护倒换实现方法、系统及单板装置
US8000600B2 (en) Method and an apparatus for preventing traffic interruptions between client ports exchanging information through a communication network
US7877008B2 (en) WDM layer-based optical chanel protecting device and method thereof
CN101047547B (zh) 实现端口保护的方法和装置
EP1411663B1 (en) Traffic handling in a protected synchronous communication network
JPH07264223A (ja) ネットワークの信号救済方法および装置
US20040085954A1 (en) Out-of-band signalling apparatus and method for an optical cross connect
CN1665174A (zh) 光网络中提供节点保护的装置及其实现方法
CN101345600B (zh) 一种用电交叉方式实现子波长通道共享保护的方法及系统
JP2988440B2 (ja) 端局装置
CN1324848C (zh) 分段串行连接的激活/释放
US20030235152A1 (en) Network system incorporating protection paths in the transmission bandwidth of a virtual concatenation signal
JPH1117724A (ja) データ伝送系
AU769923B2 (en) Method and system for communication protection
US7590046B1 (en) Protected SONET/SDH networks having delayed fault propagation
US8233791B2 (en) Methods, systems, and computer readable media for providing virtual 1:N automatic protection switching (APS) and dynamic, in service configuration change for optical network interface equipment
US7013059B2 (en) Methods for protecting data signals which are being transmitted via optical conductors
JP2737639B2 (ja) 伝送路切替え制御システム
Anelli et al. Evaluation of the APS protocol for SDH rings reconfiguration
JP2009159481A (ja) 光切替方法および光切替システム
CN1650558A (zh) 在波分复用网络中实现保护传输的方法
CA2356643C (en) Virtual line switched ring
EP1051055A2 (en) System and method for eliminating the capacity required for protection of an optical line system