RU2367556C2 - Способ подачи смазочно-охлаждающих технологических средств - Google Patents

Способ подачи смазочно-охлаждающих технологических средств Download PDF

Info

Publication number
RU2367556C2
RU2367556C2 RU2007141450/02A RU2007141450A RU2367556C2 RU 2367556 C2 RU2367556 C2 RU 2367556C2 RU 2007141450/02 A RU2007141450/02 A RU 2007141450/02A RU 2007141450 A RU2007141450 A RU 2007141450A RU 2367556 C2 RU2367556 C2 RU 2367556C2
Authority
RU
Russia
Prior art keywords
temperature
workpiece
cutting
ionized
gas stream
Prior art date
Application number
RU2007141450/02A
Other languages
English (en)
Other versions
RU2007141450A (ru
Inventor
Алексей Андреевич Яковлев (RU)
Алексей Андреевич Яковлев
Владимир Михайлович Труханов (RU)
Владимир Михайлович Труханов
Елена Викторовна Яковлева (RU)
Елена Викторовна Яковлева
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority to RU2007141450/02A priority Critical patent/RU2367556C2/ru
Publication of RU2007141450A publication Critical patent/RU2007141450A/ru
Application granted granted Critical
Publication of RU2367556C2 publication Critical patent/RU2367556C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1061Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using cutting liquids with specially selected composition or state of aggregation

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

Способ включает подачу в зону резания ионизированного в поле коронного разряда газового потока. Для повышения эффективности обработки одновременно с подачей в зону резания ионизированного газового потока с температурой 40-80°С на поверхность детали подают поток распыленной жидкости, причем пятно контакта потока распыленной жидкости с поверхностью обрабатываемой детали расположено за пределами пятна контакта ионизированного газового потока. 1 ил.

Description

Изобретение относится к машиностроению, а именно к механической обработке металлов, в частности к способам подачи смазочно-охлаждающих технологических средств (СОТС) и их компонентов.
Известен способ подачи СОТС, включающий подачу в зону резания ионизированной распыленной жидкости [а.с. СССР №210609, МПК В23b 1/00, опубл. 1968.11.06]. В основу способа положен процесс предварительной аэрации СОТС. В качестве жидкой среды используют дистиллированную воду или растворы на ее основе, подаваемые в количестве около 500 г/ч. Основным недостатком этого способа является невысокая стойкость инструмента, обусловленная низкой химической активностью СОТС. В соответствии с этим способом электроды расположены на пути движения распыленной СОТС. Относительно высокая влажность и низкая температура СОТС, которые необходимы для эффективного отвода тепла из зоны резания, приводят к неблагоприятным условиям образования электрического разряда. При этом существенно снижается концентрация ионизированных частиц в СОТС, что приводит к снижению эффективности резания. Кроме того, попадание на поверхность детали частиц распыленной жидкости мешает взаимодействию активных молекул ионизированного газа с ювенильными поверхностями и снижает эффективность образования окисных пленок на них.
Известен способ, реализованный в устройстве подачи СОТС [Патент РФ 2023567, МКИ В23Q 11/10, опубл. 1994.11.30], заключающийся в подаче в зону резания распыленной смазывающе-охлаждающей жидкости, имеющей пониженную температуру за счет ее предварительного охлаждения в холодном потоке, поступающем из вихревой трубы. Недостатком данного способа является повышенная загазованность окружающего станок пространства продуктами распыленной смазывающе-охлаждающей жидкости, что приводит к недопустимому ухудшению условий труда человека. Поэтому данный способ находит применение, главным образом, на тех операциях, где раньше обработка осуществлялась всухую, а также на станках с ЧПУ, где большие расходы смазывающе-охлаждающей жидкости могут привести к выходу из строя электрооборудования и гидравлики.
Наиболее близким по технической сущности и достигаемому эффекту является способ подачи СОТС, включающий подачу в зону резания ионизированного в поле коронного разряда газового потока отрицательной или положительной полярности, который могут подавать на переднюю и/или на заднюю поверхности режущего инструмента [Патент РФ 2125929, МПК В23Q 11/10, опубл. 1999.02.10].
Главным недостатком такого способа является то, что охлаждающие свойства СОТС при таком способе существенно снижаются. Это приводит к недопустимому перегреву обрабатываемой детали и инструмента, особенно на черновых операциях. Повышение влажности и снижение температуры потока СОТС, необходимые для более эффективного охлаждения обрабатываемой детали, приводят к нестабильности или невозможности образования коронного разряда.
Техническим результатом изобретения является повышение эффективности процесса обработки резанием за счет интенсификации функциональных свойств СОТС.
Поставленный технический результат достигается тем, что в способе подачи смазочно-охлаждающих технологических средств, включающем подачу в зону резания ионизированного в поле коронного разряда газового потока, согласно изобретению одновременно с подачей в зону резания ионизированного газового потока с температурой 40-80°С на поверхность детали подают поток распыленной жидкости, причем пятно контакта потока распыленной жидкости с поверхностью обрабатываемой детали находится за пределами пятна контакта ионизированного газового потока.
Первый компонент СОТС - ионизированный газовый поток - получают путем пропускания через ионизатор, например, воздуха. Повышение концентрации ионизированных частиц в воздухе достигается за счет создания благоприятных условий для образования коронного разряда. Воздух имеет повышенную температуру (40-80°С) и, вследствие этого, низкие значения относительной влажности. Оба фактора обусловливают более интенсивное образование ионизированных частиц в газовом потоке по сравнению с прототипом. Это, в свою очередь, повышает эффективность образования окисных пленок на ювенильных поверхностях обрабатываемой детали.
Охлаждение обрабатываемой детали осуществляется за счет второго компонента СОТС - потока распыленной в воздухе жидкости, например дистиллированной воды, подаваемой на поверхность детали при пониженной температуре 0-10°С в достаточном для эффективного охлаждения детали количестве (около 50-100 г/ч при чистовой обработке и 500-1000 г/ч при черновой обработке). Для того чтобы эффективность воздействия на деталь каждого из потоков не снизилась, необходимо, чтобы пятно контакта потока распыленной жидкости с поверхностью обрабатываемой детали находилось за пределами пятна контакта ионизированного газового потока.
Кроме того, достаточно сухой (относительная влажность около 5%) и имеющий повышенную температуру (40-80°С) поток ионизированного газа, попадая на поверхность детали, способствует интенсивному испарению влаги с поверхности детали, охлаждающей деталь и которая одновременно мешает взаимодействию активных молекул ионизированного газа с ювенильными поверхностями. Диапазон значений температуры ионизированного газового потока определяется из следующих соображений. Забор воздуха, как правило, осуществляется из атмосферы, поэтому значения его исходной температуры и влажности колеблются в некотором диапазоне. При неблагоприятных условиях, когда температура подаваемого в ионизатор воздуха около 20°С и его относительная влажность 100% подогрев воздуха до 80°С позволяет снизить его относительную влажность до 5% (значения определены по Id-диаграмме влажного воздуха Л.К.Рамзина). При благоприятных условиях, когда температура воздуха, например, 10°С и его относительная влажность 40%, для понижения относительной влажности до 5% требуется нагрев воздуха всего до 40°С.
Способ поясняется схемой, показанной на чертеже.
На схеме показаны обрабатываемая деталь 1, резец 2, сопло подачи ионизированного газа 3 и сопло подачи распыленной жидкости 4.
Ионизированный газовый поток из сопла 3 подается в зону контакта металлорежущего инструмента 2 и обрабатываемой детали 1 при температуре, которая необходима для устойчивого коронного разряда (40-80°С) и эффективной сушки поверхности детали. В непосредственной близости от зоны резания на обрабатываемую деталь 1 подается распыленная жидкость из сопла 4 в количестве 50-1000 г/ч при температуре 0-10°С, необходимой для эффективного охлаждения детали.
В данном способе теплота, выделяемая в результате силового воздействия инструмента на обрабатываемую деталь, уходит в тело самой детали. Перегрев детали исключается непрерывным съемом теплоты с поверхности детали посредством подачи на нее распыленной в воздухе жидкости, температура которой существенно ниже (на десятки градусов Цельсия), чем температура обрабатываемой детали и температуры подаваемого в зону резания ионизированного газа. Каждый из потоков имеет параметры (температуру, влажность и давление, химический состав) оптимальные для выполнения своих функций. Это позволяет повысить функциональные свойства СОТС в зоне резания и тем самым повысить эффективность резания.
Для проверки способа определялась средняя температура прутковой заготовки после ее токарной обработки. Эксперименты проводились на универсальном токарно-винторезном станке 1К62. В качестве обрабатываемой заготовки был использован цилиндрический пруток диаметром 80 мм и длиной 600 мм из стали 40Х. Подача ионизированного газового потока через сопло 3 осуществлялась на переднюю поверхность режущего инструмента при температуре 40°С.
В первом случае расход воды через сопло 4 составлял 600-700 г/ч. При непрерывном точении прутка в течение одной минуты резцом Т15К6 в режиме черновой обработки (скорость резания V=0,42 м/с, подача S=0,6 мм/об, глубина резания t=1,5 мм) средняя температура заготовки, замеренная с помощью термопары, повышалась с 21°С до 44°С и больше не росла.
Во втором случае расход воды через сопло 4 составлял 50-70 г/ч. При непрерывном точении того же прутка на чистовых режимах обработки в течение двух минут резцом из сплава Т15К6 (скорость резания V=1 м/с, подача S=1,5 мм/об, глубина резания t=0,2 мм) средняя температура прутка повышалась с 21°C до 39°С.
Повышение температуры ионизированного газового потока через сопло 3 до 80°С не вызывало существенного (более 10°С) дополнительного нагрева обрабатываемой детали.

Claims (1)

  1. Способ подачи смазочно-охлаждающих технологических средств на обрабатываемую деталь, включающий подачу в зону резания ионизированного в поле коронного разряда газового потока, отличающийся тем, что ионизированный газовый поток подают в зону резания с температурой 40-80°С и одновременной подачей на поверхность обрабатываемой детали потока распыленной жидкости с расположением пятна контакта потока распыленной жидкости с поверхностью обрабатываемой детали за пределами пятна контакта с ней ионизированного газового потока.
RU2007141450/02A 2007-11-07 2007-11-07 Способ подачи смазочно-охлаждающих технологических средств RU2367556C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007141450/02A RU2367556C2 (ru) 2007-11-07 2007-11-07 Способ подачи смазочно-охлаждающих технологических средств

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007141450/02A RU2367556C2 (ru) 2007-11-07 2007-11-07 Способ подачи смазочно-охлаждающих технологических средств

Publications (2)

Publication Number Publication Date
RU2007141450A RU2007141450A (ru) 2009-05-20
RU2367556C2 true RU2367556C2 (ru) 2009-09-20

Family

ID=41021287

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007141450/02A RU2367556C2 (ru) 2007-11-07 2007-11-07 Способ подачи смазочно-охлаждающих технологических средств

Country Status (1)

Country Link
RU (1) RU2367556C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700223C1 (ru) * 2019-06-17 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ подачи смазочно-охлаждающих технологических средств
RU192972U1 (ru) * 2019-06-17 2019-10-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Устройство для подачи смазочно-охлаждающих технологических средств

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700223C1 (ru) * 2019-06-17 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ подачи смазочно-охлаждающих технологических средств
RU192972U1 (ru) * 2019-06-17 2019-10-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Устройство для подачи смазочно-охлаждающих технологических средств

Also Published As

Publication number Publication date
RU2007141450A (ru) 2009-05-20

Similar Documents

Publication Publication Date Title
Park et al. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V
Beravala et al. Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes
CN102601677B (zh) 大气压冷等离子体射流辅助切削方法
JP2010533601A (ja) 薄肉成形ワークをハイブリッド加工するための装置及び方法
RU2367556C2 (ru) Способ подачи смазочно-охлаждающих технологических средств
CN102172833B (zh) 基于放电诱导可控烧蚀的非导电工程陶瓷磨削加工方法
Li et al. An experimental study of radial-mode abrasive waterjet turning of steels
US4508950A (en) EDM Method and apparatus using liquid hydrocarbon decomposition yielded gases and a deionized water liquid
RU2355548C1 (ru) Устройство для охлаждения зоны резания металлорежущего станка
JP6266129B2 (ja) 切削加工装置
RU2688967C1 (ru) Способ охлаждения зоны резания заготовок из аустенитных сталей
JP5636603B2 (ja) 強アルカリ水を利用した切削加工装置及び切削加工方法
JPH0751980A (ja) 旋盤装置
RU2700223C1 (ru) Способ подачи смазочно-охлаждающих технологических средств
RU2355549C1 (ru) Устройство для охлаждения зоны резания металлорежущего станка
RU2524871C2 (ru) Способ охлаждения и смазки режущих инструментов
Guo et al. Improving energy utilization efficiency of electrical discharge milling in titanium alloys machining
KR20070030195A (ko) 캡 또는 저항 점 용접에 이용되는 전극을 세척하기 위한장치 및 방법과 저항 점 용접을 위한 장치
Mahalil et al. Performance Evaluation of Sustainable Coolant Techniques on Burnishing Process
RU2677441C1 (ru) Способ охлаждения и смазки режущих инструментов
JP2006102828A (ja) 気中放電加工方法及び装置
SU1161299A1 (ru) СПОСОБ ЭЛЕКТРОЭРОЗИОННОГО ШЛИФОВАНИЯ абразивными кругами на металлических связках с образованием слоя диэлектрика на обрабатываемой поверхности
RU2288088C2 (ru) Способ подачи смазочно-охлаждающих технологических средств (сотс)
JP2005279860A (ja) 切削チップ温度調節器
RU2177866C2 (ru) Способ подачи кислородосодержащих сотс в зону контакта металлических поверхностей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091108