RU2365408C1 - Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления - Google Patents

Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления Download PDF

Info

Publication number
RU2365408C1
RU2365408C1 RU2008113613/04A RU2008113613A RU2365408C1 RU 2365408 C1 RU2365408 C1 RU 2365408C1 RU 2008113613/04 A RU2008113613/04 A RU 2008113613/04A RU 2008113613 A RU2008113613 A RU 2008113613A RU 2365408 C1 RU2365408 C1 RU 2365408C1
Authority
RU
Russia
Prior art keywords
catalyst
manganese
oxidation
bentonite clay
temperature
Prior art date
Application number
RU2008113613/04A
Other languages
English (en)
Inventor
Владимир Павлович Доронин (RU)
Владимир Павлович Доронин
Павел Григорьевич Цырульников (RU)
Павел Григорьевич Цырульников
Лилия Александровна Белая (RU)
Лилия Александровна Белая
Татьяна Павловна Сорокина (RU)
Татьяна Павловна Сорокина
Артем Анатольевич Слептерев (RU)
Артем Анатольевич Слептерев
Original Assignee
Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) filed Critical Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН)
Priority to RU2008113613/04A priority Critical patent/RU2365408C1/ru
Application granted granted Critical
Publication of RU2365408C1 publication Critical patent/RU2365408C1/ru

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к области нефтепереработки, в частности к катализаторам окисления СО, используемым в качестве добавки к катализатору крекинга для окисления оксида углерода в диоксид углерода в процессе регенерации катализатора крекинга. Предлагаемый катализатор для окисления СО в процессе регенерации катализаторов крекинга содержит соединения марганца, оксид алюминия и природную бентонитовую глину, при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 6-20, бентонитовая глина 24-44, Al2O3 - остальное, и имеет микросферическую форму частиц со средним размером 70 мк, износоустойчивостью 92-97%, насыпной плотностью 0,7-0,8 г/см3. Описан способ приготовления катализатора для окисления СО в процессе регенерации катализаторов крекинга, включающий смешение гидроксида марганца (IV), полученного осаждением из водного раствора нитрата марганца аммиаком, с композицией, состоящей из гидроксида алюминия и бентонитовой глины, предварительно обработанной концентрированной азотной кислотой (12,78 моль/л), сушку композиции и прокаливание, которое проводят ступенчато: при температуре 500°С в течение 4-6 часов и затем при температуре 950-970°С в течение 4 часов. Технический эффект - повышение активности и износоустойчивости катализатора. 2 н.п. ф-лы, 1 табл.

Description

Изобретение относится к области нефтепереработки, в частности к катализаторам окисления СО, используемым в качестве добавки к катализатору крекинга для окисления оксида углерода в диоксид углерода в процессе регенерации катализатора крекинга. Катализатор обладает активностью в окислении СО, сопоставимой с активностью промоторов, приготовленных с применением драгоценных металлов (Pt, Pd).
Известны катализаторы окисления СО, применяемые в качестве промотирующих добавок к катализатору крекинга, и способы их приготовления с использованием металлов платиновой группы и редкоземельных элементов (патенты US №7045056 и 5565399; патенты РФ №2082498 и 1591248), нанесенных на оксид алюминия или алюмосиликат. Недостатком таких катализаторов является высокая стоимость драгоценных металлов, применяемых для их приготовления. Кроме того, такие катализаторы демонстрируют существенное отличие от катализаторов крекинга по физическим свойствам - прочности и насыпной плотности, что приводит к неравномерному распределению катализатора крекинга и промотирующей добавки в объеме регенератора и быстрому износу добавки.
Известны катализаторы с применением марганца для окисления СО, преимущественно при более низких температурах, в сравнении с температурой процесса регенерации катализаторов крекинга (патент US №5017357; Jong Soo Park et al. / High catalytic activity of PdOx/MnO{2} for CO oxidation and importance of oxidation state of Mn / Topics in Catalysis/, 10 (2000), 1-2, 127-131). Как правило, катализаторы на основе оксида марганца прокаливают при температуре 550-850°С, они характеризуются невысокой активностью в окислении углеводородов и СО, так как активным компонентом в них являются оксиды марганца, имеющие состав в зависимости от температуры и времени прокаливания β-MnО2 или β-Mn3O4, представленные крупными частицами размером до 500 Å. Так, например, катализаторы, приготовленные в соответствии с Бахтадзе В.Ш. Изучение марганцевого катализатора в реакциях окисления углеводородов и окиси углерода. Автореферат кандидатской диссертации. Тбилиси, 1970; патент Японии №52-38977, B01D 53/34, опубл. 01.10.77 позволяют достичь 50% степени превращения СО лишь при температуре 250-255°С (примеры 12 и 13 в прототипе).
Известен катализатор и способ его приготовления на основе оксида марганца и оксида алюминия (патент РФ №2063803, прототип). Катализатор получают в результате высокотемпературной обработки в интервале температур 900-1000°С, что приводит к образованию высокотемпературных оксидов алюминия (α-Al2О3 и α+δ+θ-Al2О3) и марганца, причем атомы марганца в активном компоненте распределены между дефектным нестехиометрическим оксидом β-Mn3O4+х, где значения х находятся в интервале от 0,1 до 0,25 (80-95% от всех атомов марганца) и алюминатом марганца (20-5% от всех атомов марганца). При этом частицы активного компонента достигают размеров 50-70 Å и имеют блочную дефектную структуру, что способствует повышению его активности. В целом в состав описанного катализатора входит 2,7-11,5 мас.% марганца (в расчете на марганец) и оксид алюминия - остальное. Катализатор проявил более высокую каталитическую активность по отношению к углеводородам и СО по сравнению с известными ранее марганцевыми катализаторами - 50% степень превращения СО достигается при температуре 173-185°С.
Недостатком данного катализатора в контексте настоящего изобретения является невозможность обеспечить приемлемые для условий крекинга размеры частиц, износоустойчивость и насыпной вес.
Цель изобретения - создание высокоэффективного катализатора для окисления СО в процессе регенерации катализаторов крекинга на основе соединений марганца, не содержащего драгоценных металлов, с износоустойчивостью 93-97% и насыпной плотностью 0,7-0,8 г/см3.
Предлагаемый катализатор для окисления СО в процессе регенерации катализаторов крекинга содержит соединения марганца, оксид алюминия и природную бентонитовую глину (основная фаза - монтмориллонит Са-формы), при следующем содержании компонентов, мас.%: марганец в пересчете на MnО2 6-20, бентонитовая глина 24-44, Al2O3 - остальное, и имеет микросферическую форму частиц со средним размером 70 мк, износоустойчивостью 92-97%, насыпной плотностью 0,7-0,8 г/см3.
Способ приготовления катализатора для окисления СО в процессе регенерации катализаторов крекинга включает смешение гидроксида марганца (IV), полученного осаждением из водного раствора нитрата марганца аммиаком, с композицией, состоящей из гидроксида алюминия и бентонитовой глины, предварительно обработанной концентрированной азотной кислотой (12,78 моль/л), сушку композиции и прокаливание, которое проводят ступенчато: при температуре 500°С в течение 4-6 часов и затем при температуре 950-970°С в течение 4 часов.
Введение в состав катализатора бентонитовой глины, обладающей высокими связующими и прочностными свойствами, позволяет повысить его износоустойчивость. Благодаря содержанию бентонитовой глины и оксида алюминия получаемый катализатор по своим физическим характеристикам близок к катализатору крекинга, что обеспечивает равномерное распределение обоих катализаторов в зоне регенерации.
Азотную кислоту на стадии приготовления композиции гидроксид алюминия-монтмориллонит вводят для придания катализатору прочностных свойств.
Активный компонент предлагаемого катализатора окисления СО представляет собой фазу алюмината марганца Mn0,27Аl2O3,27 (0,27 MnO·Al2О3), формирование которой происходит в ходе термообработки при температуре 950-970°С. Состав активной фазы определен рентгенографическим методом (идентифицирован по картотеке ICDD).
Износоустойчивость катализаторов определяют в соответствии с отраслевым стандартом, разработанным для микросферических катализаторов крекинга [ОСТ 38.01161-78], как долю катализатора, сохранившую размер частиц свыше 20 мк, после истирания его в шаровой мельнице в течение 15 минут.
Активность катализаторов в реакции окисления СО определяют проточным методом, приняв за меру активности конверсию СО при заданном составе реакционной смеси (модельная смесь: 2 об.% СО, 5 об.% O2 в азоте) и заданной температуре. Время контакта составляет 0,02 с. Концентрацию СО в газе определяют с помощью хроматографического анализа (параметры хроматографии: насадочная колонка с цеолитом СаА, скорость газа-носителя (гелий) - 33 мл/мин, ток детектора 260 мА).
Результаты определения активности катализаторов приведены в таблице. Для иллюстрации изобретения приведены следующие примеры.
Пример 1. 293,3 г гидроксида алюминия псевдобемитной модификации (в пересчете на Al2О3 - 30%) тщательно перемешивают, прикапывают при постоянном перемешивании 6,0 мл HNO3 (концентрация HNО3 составляет 12,78 моль/л) и 249,0 мл раствора Mn(NО3)2 (концентрация марганца составляет 30,42 г/л). После получения однородной композиции ее упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мкм. Полученную фракцию сушат при температуре 120°С 4 часа и прокаливают при температурах 500 и 970°С по 4 часа. Содержание марганца - 12 мас.% в пересчете на оксид марганца (IV).
Износоустойчивость катализатора составляет 92%, насыпная плотность - 0,71 г/см3.
Пример 2. Тщательно смешивают 176,0 г влажной (влажность 75%) бентонитовой глины и 146,7 г гидроксида алюминия. Прикапывают 3,0 мл HNО3 (концентрация HNO3 составляет 12,78 моль/л) и 249,0 мл раствора Mn(NO3)2 (концентрация марганца составляет 30,42 г/л). После получения однородной композиции ее упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мкм. Полученную фракцию сушат при температуре 120°С 4 часа и прокаливают при температурах 500 и 970°С по 4 часа. Содержание марганца - 12 мас.% в пересчете на оксид марганца (IV). Износоустойчивость катализатора составила 96%. Насыпная плотность катализатора - 0,82 г/см3.
Пример 3. К 230 г влажной бентонитовой глины (влажность 75%) приливают 414,0 мл раствора Mn(NO3)2 (концентрация марганца составляет 30,42 г/л). После получения однородной композиции ее упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мкм. Полученную фракцию сушат при температуре 120°С 4 часа и прокаливают при температурах 500 и 970°С по 4 часа. Содержание марганца - 20 мас.% в пересчете на оксид марганца (IV). Износоустойчивость катализатора составляет 97%. Насыпная плотность катализатора - 0,76 г/см3.
Пример 4. К 140,7 г гидроксида алюминия добавляют воду до состояния суспензии (концентрация алюминия 10% в пересчете на Al2О3), тщательно перемешивают, добавляют 10 мл щелочи, доводя рН суспензии до 9,6. В полученную суспензию порциями добавляют 249,0 мл раствора Mn(NО3)2 (концентрация марганца составляет 30,42 г/л) при постоянном перемешивании и раствор аммиака, поддерживая рН смеси равным 9,6. Полученный осадок фильтруют, отмывают от нитратов и смешивают с 176,0 г бентонитовой глины (влажность 75%) и 3,0 мл HNО3 (концентрация HNO3 составила 12,78 моль/л), тщательно перемешивают. После получения однородной композиции образец упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мкм. Полученную фракцию сушат при 120°С 4 часа и прокаливают при 500 и 970°С по 4 часа. Содержание марганца - 12 мас.% в пересчете на оксид марганца (IV). Износоустойчивость катализатора составила 92%. Насыпная плотность катализатора - 0,78 г/см3.
Пример 5. Аналогичен примеру 4, но без введения азотной кислоты.
Износоустойчивость катализатора составила 90%. Насыпная плотность катализатора - 0,76 г/см3.
Пример 6. Из 280 мл раствора Mn(NО3)2 (концентрация марганца составляет 30,42 г/л) осаждают гидроксид Mn(ОН)2 при добавлении 5% раствора аммиака, доводят рН раствора до 7,3 и проводят старение осадка в течение 20 часов при температуре 40°С. Отфильтрованный осадок смешивают с композицией, приготовленной следующим образом: 206 г гидроксида алюминия (концентрация алюминия 30% в пересчете на Al2О3) смешивают с влажной бентонитовой глиной (влажность 75%), добавляют 4,3 мл HNO3 (концентрация HNO3 составляет 12,78 моль/л). Смесь осадка гидроксида марганца и матрицы тщательно перемешивают. После получения однородной композиции образец упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мк. Полученную фракцию сушат при 120°С 4 часа и прокаливают при температуре 500°С 6 часов и 950°С 4 часа (подъем до 950°С за 2 часа). Содержание марганца - 13,5 мас.% в пересчете на оксид марганца (IV). Износоустойчивость катализатора составляет 97%. Насыпная плотность катализатора - 0,80 г/см3.
Пример 7 (по прототипу). Катализатор готовят в соответствии с примером 4 (патент РФ №2063803, стр.3). 149,6 г гидроксида алюминия псевдобемитной модификации пропитывают раствором нитрата марганца по влагоемкости. Общее содержание марганца в образце - 12 г в пересчете на элементный марганец. После термообработки при 900°С в течение 4 часов имеют катализатор состава: дефектная шпинель Mn3O4,18 - 12,8 мас.%, алюминат марганца (в пересчете на элементный марганец) - 1,4 мас.%. В целом катализатор содержит 14,9 мас.% марганца в пересчете на MnО2. Износоустойчивость катализатора составляет 92%. Насыпная плотность катализатора - 0,70 г/см3.
Пример 8 (для сравнения). Приведена активность стандартного катализатора окисления СО КО-10, содержащего 0,05 мас.% Pt, оксид алюминия - остальное. Износоустойчивость катализатора составляет 90%. Насыпная плотность катализатора - 0,71 г/см3.
Пример 9. Аналогичен примеру 6. Отличие в том, что содержание марганца в пересчете на MnО2 составляет 6 мас.%. Содержание бентонитовой глины - 27,4 мас.%, оксид алюминия - остальное. Износоустойчивость катализатора составляет 97%. Насыпная плотность катализатора - 0,80 г/см3.
Пример 10. Аналогичен примеру 6, но содержание марганца в пересчете на MnО2 составляет 10 мас.%. Содержание бентонитовой глины - 25,7 мас.%, оксид алюминия - остальное. Износоустойчивость катализатора составляет 97%. Насыпная плотность катализатора - 0,79 г/см3.
Пример 11. Аналогичен примеру 6, но содержание марганца в пересчете на MnО2 составляет 16 мас.% Содержание бентонитовой глины - 24 мас.%, оксид алюминия - остальное. Износоустойчивость катализатора составляет 96%. Насыпная плотность катализатора - 0,75 г/см3.
Пример 12. Приготовление катализатора проводят как в примере 6, но содержание марганца в пересчете на MnО2 составляет 16,0 мас.%. Содержание бентонитовой глины - 42 мас.%, оксид алюминия - остальное. Износоустойчивость катализатора составляет 98%. Насыпная плотность катализатора - 0,82 г/см3.
Как следует из примеров и таблицы, предлагаемый катализатор нового состава обладает активностью в реакции окисления СО, сопоставимой с активностью катализаторов, приготовленных с использованием драгоценных металлов, в частности, платинусодержащего катализатора.
Таблица
Каталитическая активность катализаторов в реакции окисления СО
Пример Состав катализатора, мас.% Активность в окислении СО* Износоустойчивость катализатора, %
Содержание Мn в пересчете на МnO2 Аl2O3 Содержание бентонитовой глины Температура испытаний, °С
680 700 720
1 12 88 0 90,2 91,3 92,3 92
2 12 44 44 62,9 63,6 65,6 96
3 20 0 80 70,8 74,0 75,4 97
4 12 44 44 75,6 78,3 81,4 92
5 12 44 44 77,2 79,4 83,7 90
6 13,5 61,8 24,7 94,4 95,0 95,4 97
7 (прото-
тип)
14,9 85,1 0 91,5 92,8 94,0 92
8 КО-10 (0,05% Pt) 0 99,95 0 94,3 95,1 96,4 90
9 6 68,5 27,4 65,2 67,5 70,0 97
10 10 64,3 25,7 92,3 93,8 94,5 97
11 16 60,0 24,0 94,5 95,5 96,3 96
12 16 42 42 93,0 94,2 95,1 98
* Степень превращения СО в указанных выше условиях

Claims (2)

1. Катализатор для окисления СО в процессе регенерации катализаторов крекинга, включающий соединения марганца и оксид алюминия, отличающийся тем, что в качестве компонента матрицы дополнительно содержит природную бентонитовую глину при следующем содержании компонентов, мас.%: марганец в пересчете на MnO3 6-20, бентонитовая глина 24-44, Al2О3 - остальное, и имеет сферическую форму частиц со средним размером 70 мкм, износоустойчивостью 92-97%, насыпной плотностью 0,7-0,8 г/см3.
2. Способ приготовления катализатора для окисления СО в процессе регенерации катализаторов крекинга, включающий нанесение соединений марганца на гидроксид алюминия, сушку композиции и прокаливание, отличающийся тем, что гидроксид марганца, полученный осаждением нитрата марганца аммиаком, смешивают с матрицей, состоящей из гидроксида алюминия и бентонитовой глины, предварительно обработанной концентрированной азотной кислотой, а прокаливание проводят ступенчато: при температуре 500°С в течение 4-6 ч, и затем при температуре 950-970°С в течение 4 ч.
RU2008113613/04A 2008-04-07 2008-04-07 Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления RU2365408C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008113613/04A RU2365408C1 (ru) 2008-04-07 2008-04-07 Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008113613/04A RU2365408C1 (ru) 2008-04-07 2008-04-07 Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2365408C1 true RU2365408C1 (ru) 2009-08-27

Family

ID=41149733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008113613/04A RU2365408C1 (ru) 2008-04-07 2008-04-07 Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2365408C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2513106C1 (ru) * 2013-01-09 2014-04-20 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления
RU2621350C1 (ru) * 2016-07-06 2017-06-02 Акционерное общество "Газпромнефть-Омский НПЗ" Катализатор для процессов высокотемпературного окисления СО

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2513106C1 (ru) * 2013-01-09 2014-04-20 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления
RU2621350C1 (ru) * 2016-07-06 2017-06-02 Акционерное общество "Газпромнефть-Омский НПЗ" Катализатор для процессов высокотемпературного окисления СО

Similar Documents

Publication Publication Date Title
US9511355B2 (en) System and methods for using synergized PGM as a three-way catalyst
US10183276B2 (en) Rhodium-containing catalysts for automotive emissions treatment
RU2428248C2 (ru) КОМПОЗИЦИИ, ПРИМЕНЯЮЩИЕСЯ, В ЧАСТНОСТИ, ДЛЯ УЛАВЛИВАНИЯ ОКСИДОВ АЗОТА (NOx)
JP5859366B2 (ja) 排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
JP5190196B2 (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒、並びにディーゼル排ガス浄化用フィルター
KR20180136996A (ko) 세륨- 및 지르코늄-기재 혼합 산화물
CN108778490A (zh) 用于还原氮氧化物的催化剂
RU2288888C1 (ru) Катализатор для селективного окисления сероводорода, способ его получения и способ селективного окисления сероводорода до элементарной серы
EP3064270A1 (en) Carrier for exhaust gas purification catalyst, and exhaust gas purification catalyst
RU2365408C1 (ru) Катализатор для окисления со в процессе регенерации катализаторов крекинга и способ его приготовления
JP2024501748A (ja) 貴金属が単独原子状態で担持された三元触媒、その調製方法及び使用
CN111957312A (zh) 机动车尾气用催化剂及制备方法和用途
JP4779461B2 (ja) 触媒担体及びその製造方法、並びに排ガス浄化触媒
CN106076360A (zh) 废气净化催化剂
CN114904565B (zh) 锰基脱硝催化剂及其制备方法和烟气脱硝的方法
JP2006043683A (ja) 触媒担体及びその製造方法、並びに排ガス浄化触媒
CN111375423A (zh) 一种高温催化燃烧催化剂及其制备方法
WO2021049525A1 (ja) セリウム元素及びジルコニウム元素を含有する複合酸化物の粉末、及びこれを使用した排ガス浄化用触媒組成物、並びにその製造方法
RU2513106C1 (ru) Каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления
RU2135279C1 (ru) Катализатор для очистки газов от углеводородов, оксидов азота, оксида углерода и способ его получения
RU2199386C1 (ru) Катализатор для очистки газов от оксидов азота и способ его получения
JP4665458B2 (ja) 排ガス浄化触媒及びその製造方法
KR102325638B1 (ko) 일산화탄소 또는 포름알데히드 제거용 백금/안티몬/티타니아 상온 산화촉매 및 그 제조방법, 이를 이용한 일산화탄소 또는 포름알데히드 제거방법
JPS63175640A (ja) 触媒担体
KR100494542B1 (ko) 2중층 코팅구조의 팔라듐 삼원촉매 제조방법

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20191017

PD4A Correction of name of patent owner