RU2342231C2 - Способ соединения двух твердотельных образцов - Google Patents

Способ соединения двух твердотельных образцов Download PDF

Info

Publication number
RU2342231C2
RU2342231C2 RU2006138887/02A RU2006138887A RU2342231C2 RU 2342231 C2 RU2342231 C2 RU 2342231C2 RU 2006138887/02 A RU2006138887/02 A RU 2006138887/02A RU 2006138887 A RU2006138887 A RU 2006138887A RU 2342231 C2 RU2342231 C2 RU 2342231C2
Authority
RU
Russia
Prior art keywords
layer
metal
alloy
layers
solder
Prior art date
Application number
RU2006138887/02A
Other languages
English (en)
Other versions
RU2006138887A (ru
Inventor
Петр Борисович Константинов (RU)
Петр Борисович Константинов
Юлий Абрамович Концевой (RU)
Юлий Абрамович Концевой
Олег Вениаминович Сопов (RU)
Олег Вениаминович Сопов
Владимир Викторович Чернокожин (RU)
Владимир Викторович Чернокожин
Original Assignee
Олег Вениаминович Сопов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Вениаминович Сопов filed Critical Олег Вениаминович Сопов
Priority to RU2006138887/02A priority Critical patent/RU2342231C2/ru
Publication of RU2006138887A publication Critical patent/RU2006138887A/ru
Application granted granted Critical
Publication of RU2342231C2 publication Critical patent/RU2342231C2/ru

Links

Landscapes

  • Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение может быть использовано для соединения несмачиваемых припоем диэлектрических материалов, а именно полупроводниковых пластин с диэлектрическими слоями. Проводят предварительное напыление на соединяемые поверхности, по меньшей мере, двух слоев металла или сплава, образующих припой. Каждый последующий слой имеет температуру плавления ниже температуры плавления предыдущего слоя. В качестве первого слоя напыляют металл, выбранный из группы титан, хром, ванадий. В качестве внешнего слоя напыляют индий, или алюминий, или его сплав. Материалы соединяют напыленными поверхностями и нагревают при одновременном действии сжимающего усилия в течение времени, достаточного для плавления металлических слоев. Образуется соединение, имеющее температуру плавления выше температуры плавления припоя. Способ обеспечивает расширение сортамента соединяемых материалов при одновременном увеличении механической прочности соединения. 3 з.п. ф-лы.

Description

Изобретение относится к области обработки твердотельных материалов, а именно к области соединения плоских элементов, и может быть использовано для соединения немачиваемых припоем диэлектрических материалов.
Известен (SU, авторское свидетельство 927458 В23К 31/02, 1982) способ пайки полупроводниковых пластин с коммутационными шинами. Согласно известному способу на полупроводниковые пластины наносят металлическое покрытие, проводят сборку, нагрев, заполнение паяемых зазоров припоем и охлаждение. При реализации способа собранные пластины и шины размещают ребрами на залуженной расплавленным припоем поверхности нагревательной плиты, а после заполнения паяемых зазоров припоем из слоя полуды собранный узел передвигают по поверхности плиты в зону охлаждения, выполненную из материала, несмачиваемого припоем.
Недостатком известного способа следует признать непригодность его для спаивания пластин значительных размеров, поскольку затягивание припоя в зазор за счет действия капиллярных сил не позволяет припою высоко подняться по объему капилляра.
Известен также способ (SU, авторское свидетельство 910378 В23К 1/00, 1982) пайки. Согласно известному способу соединяемые поверхности полупроводниковых пластин диаметром 40 мм первоначально шлифуют, а затем травят по стандартной технологии. Пластины соединяют подготовленными поверхностями и помещают в графитовую кассету. В верхней части кассеты над местом соединения размещают навеску алюминия, а в нижней части размещают навеску молибдена. Подготовленную указанным образом кассету помещают в трубчатую печь вакуумной установки, создают вакуум, нагревают до 900°С и выдерживают в течение 15 мин. При этом навеска алюминия плавилась и под действием капиллярных сил втягивалась в зазор между пластинами, образуя прослойку жидкой фазы кремний - алюминий между спаиваемыми пластинами. По окончании процесса заполнения капиллярного зазора жидкая фаза кремний - алюминий контактирует с нагретым тугоплавким материалом - молибденом и вступает с ним в химическую реакцию. В результате указанной реакции алюминий практически полностью вытягивается из шва, который при этом закристаллизовывался, спаивая пластины в единой целое. В данном случае алюминий при реализации способа выполнял не функцию припоя, а функцию депрессанта - снижения температуры припоя.
Недостатком известного способа следует признать его сложность, а также возможность использования только для спаивания поверхностей малых линейных размеров из-за незначительности капиллярных сил, затягивающих расплав алюминия между пластинами.
Наиболее близким аналогом заявленного способа можно признать (SU, авторское свидетельство 774868 В23К 31/02, 1980) способ пайки деталей из разнородных материалов. Согласно известному способу на поверхность подложки из керамики «поликор» в вакууме последовательно напыляют слои хрома (0,03-0,05 мкм), меди (7-8 мкм), гальванически осаждают слой золота (2-3 мкм) и облуживают оловоиндиевым припоем ОИ-52 с использованием спиртово-канифольного флюса. В качестве металлического основания используют пластину из металлического сплава с формированием на паяемой поверхности конусных штырей высотой 3 мм, в теле каждого из которых было выполнено капиллярное отверстие диаметром 1 мм. Указанное основание покрывали последовательно слоями никеля (15 мкм), меди (6 мкм) и сплавом олово - висмут (9 мкм). Затем основание погружали в ванну с расплавленным припоем ОИ-52 для заполнения указанных капиллярных отверстий припоем. Между основанием и подложкой укладывали фольгу оловоиндиевого припоя ОИ-52 толщиной 50 мкм. Пайку образцов проводили в среде азота при температуре 150°С с использованием спиртово-канифольного флюса.
К недостаткам известного способа следует отнести его сложность, обусловленную использованием значительного количества вспомогательных операций.
Техническая задача, решаемая посредством предлагаемого способа, состоит в обеспечении возможности соединение двух образцов, обладающих несмачиваемыми припоем поверхностями.
Технический результат, получаемый при реализации предлагаемого способа, состоит в расширении области соединяемых материалов при одновременном увеличении механической прочности соединения при нагревании места соединения выше температуры плавления припоя.
Для достижения указанного технического результата предложено использовать способ соединения твердотельных образцов, согласно которому предварительно на соединяемые поверхности напыляют, по меньшей мере, один слой металла или сплава, имеющего адгезию к материалу соединяемого образца, а затем слой алюминия или его сплава, или индия и его сплава, причем каждый последующий слой имеет температуру плавления ниже температуры плавления предыдущего слоя, затем соединяемые образцы соединяют последними слоями, прикладывают сжимающее усилие, нагревают и выдерживают при нагреве в течение времени, достаточном для плавления металлических слоев, и охлаждают. Предпочтительно, в качестве металла первых напыляемых слоев используют титан, хром или ванадий. Толщины первых слоев обычно составляют от 0,05 до 0,3 мкм, толщина наружного слоя - от 0,8 до 3,5 мкм. В случае использования алюминия или сплава на его основе в качестве металла внешнего слоя нагрев осуществляют до температуры от 670 до 760°С, а в случае использования индия - 170-310°С. Нагрев образцов при пайке предпочтительно осуществляют в вакууме. Напыление металлов на спаиваемые подложки может быть проведено любым известным способом, обеспечивающим получения слоя металла нужной толщины.
В микроэлектронике известно применение припоев на основе индия (сплавы индия с медью, свинцом, цинком, алюминием, висмутом или оловом), но температура плавления припоя на основе индия составляет, по меньшей мере, 380°С (Готра З.Ю. Технология микроэлектронных устройств. М., «Радио и связь», 1991, стр.464-465). Кроме того, спай, полученный на основе известных припоев на основе индия, при нагревании расплавляется с последующим рассоединением спаянных деталей.
Разработанный способ в базовом варианте может быть реализован следующим образом.
На поверхности подлежащих соединению твердотельных объектов напыляют последовательно слои титана, хрома или ванадия, каждый из которых имеет толщину 0,1-0,2 мкм, а затем слой алюминия, или сплава на основе алюминия (предпочтительно, с кремнием), или индия толщиной 1-3 мкм. Затем образцы прижимают друг к другу напыленными поверхностями, прикладывают сжимающее усилие 5÷10 Н и помещают в нагреваемый реактор. Температуру в реакторе поднимают до величины 180-300°С (в случае использования индиевого припоя) или 680-750°С (в случае использования в качестве припоя алюминия или его сплава). Образцы выдерживают при указанной температуре 25-35 мин и охлаждают.
В реакторе может быть создан вакуум не выше 10-3 мм рт.ст. Также реактор может быть заполнен водородом или формир-газом (смесь азота и водорода).
В дальнейшем сущность и преимущества предлагаемого способа будут рассмотрены с использованием примеров реализации.
1. На пластины кремния диаметром 76 мм с термически выращенным слоем оксида кремния напылили последовательно слои титана толщиной 0,1 мкм и слой индия толщиной 1,5 мкм. Затем образцы прижали друг к другу напыленными поверхностями, приложили сжимающее усилие 7 Н и поместили в нагреваемый вакуумированный реактор. Температуру в реакторе подняли до величины 200°С. Образцы выдержали при указанной температуре 28 мин и охладили.
Из спаянных пластин вырезали квадратный образец размером 14×14 мм. К образцам приклеили клеем «Poxipol» металлические цилиндрические тяги диаметром 10 мм, на которые после затвердевания клея подали растягивающее усилия. При величине 700 Н/см2 произошел отрыв тяги от образца, при этом соединение пластин осталось целым.
Второй аналогичный образец поместили в разогреваемый реактор и выдерживали при температуре 1100°С. заведомо превышающей температуру плавления индия. Расслаивания спаянных пластин не произошло.
2. На пластины кремния диаметром 76 мм с напыленным слоем нитрида кремния напылили последовательно слои титана толщиной 0,1 мкм, хрома толщиной 1,0 мкм и слой индия толщиной 1,2 мкм. Затем образцы прижали друг к другу напыленными поверхностями, приложили сжимающее усилие 9 Н и поместили в нагреваемый вакуумированный реактор. Температуру в реакторе подняли до величины 190°С. Образцы выдержали при указанной температуре 30 мин и охладили.
Из спаянных пластин вырезали квадратный образец размером 14×14 мм. К образцам приклеили клеем «Poxipol» металлические цилиндрические тяги диаметром 10 мм, на которые после затвердевания клея подали растягивающее усилия. При величине 720 Н/см2 произошел отрыв тяги от образца, при этом соединение пластин осталось целым.
Второй аналогичный образец поместили в разогреваемый реактор и выдерживали при температуре 1150°С, заведомо превышающей температуру плавления индия. Расслаивания спаянных пластин не произошло.
3. На пластины кремния диаметром 76 мм с термически выращенным слоем оксида кремния напылили последовательно слои титана толщиной 0,1 мкм, ванадия толщиной 0,1 мкм и слой индия толщиной 2,0 мкм. Затем образцы прижали друг к другу напыленными поверхностями, приложили сжимающее усилие 8 Н и поместили в нагреваемый реактор, заполненный водородом. Температуру в реакторе подняли до величины 230°С. Образцы выдержали при указанной температуре 26 мин и охладили.
Из спаянных пластин вырезали квадратный образец размером 14×14 мм. К образцам приклеили клеем «Poxipol» металлические цилиндрические тяги диаметром 10 мм, на которые после затвердевания клея подали растягивающее усилие. При величине 740 Н/см2 произошел отрыв тяги от образца, при этом соединение пластин осталось целым.
Второй аналогичный образец поместили в разогреваемый реактор и выдерживали при температуре 1200°С, заведомо превышающей температуру плавления индия. Расслаивания спаянных пластин не произошло.
4. Эксперимент повторили согласно условиям эксперимента 1, но индий напылили непосредственно на поверхность окисленной пластины. При нагрузке 330 Н/см2 произошло разделение образцов по спаю.
5. Опыт повторили согласно условиям эксперимента 2, но слой титана напылили на слой хрома. При нагрузке 280 Н/см2 произошло разделение образцов по спаю.
6. Опыт повторили согласно условиям эксперимента 1, но металлы напыляли на подложки из поликора. Результаты тождественны результатам примера 1.
7. Опыт повторили согласно условиям эксперимента 3, но металлы напыляли на подложки из арсенида галлия. Результаты тождественны результатам примера 3.
8. Опыт повторили согласно условиям эксперимента 1, но в качестве металла припоя использовали сплав алюминия с кремнием (содержание кремния 4% масс). Температура разогрева реактора составила 700°С. Результаты опыта тождественны результатам примера 1.
9. Опыт повторили согласно условиям эксперимента 1, но в качестве металла припоя использовали алюминий. Температура разогрева реактора составила 720°С. Результаты опыта тождественны результатам примера 2.
10. Опыт повторили согласно условиям эксперимента 5, но в качестве металла припоя использовали алюминий. Температура разогрева реактора составила 740°С. Результаты опыта тождественны результатам примера 5.
Использование способа позволяет расширить область соединяемых материалов за счет несмачиваемых припоем материалов при одновременном увеличении механической прочности соединения при нагревании места соединения выше температуры плавления припоя.

Claims (4)

1. Способ соединения полупроводниковых пластин с нанесенными на них диэлектрическими слоями, включающий размещение между соединяемыми диэлектрическими слоями, по меньшей мере, двух слоев из металла или сплава, образующих припой, с температурой плавления каждого последующего слоя ниже температуры плавления предыдущего слоя, нагрев в течение времени, достаточного для плавления металлических слоев, и охлаждение, отличающийся тем, что размещение слоев металла или сплава осуществляют путем предварительного напыления на каждую из соединяемых поверхностей металла, выбранного из группы титан, хром, ванадий, а в качестве внешнего слоя - индия, или алюминия, или его сплава, при этом материалы соединяют напыленными поверхностями, а нагрев проводят при одновременном действии сжимающего усилия.
2. Способ по п.1, отличающийся тем, что осуществляют напыление последнего слоя толщиной от 0,8 до 3,5 мкм, а предыдущих слоев - толщиной от 0,05 до 0,03 мкм.
3. Способ по п.1, отличающийся тем, что при использовании алюминия или его сплава в качестве внешнего слоя нагрев осуществляют до температуры от 670 до 760°С.
4. Способ по п.1, отличающийся тем, что при использовании индия в качестве внешнего слоя нагрев осуществляют до температуры от 170 до 310°С.
RU2006138887/02A 2006-11-07 2006-11-07 Способ соединения двух твердотельных образцов RU2342231C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006138887/02A RU2342231C2 (ru) 2006-11-07 2006-11-07 Способ соединения двух твердотельных образцов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006138887/02A RU2342231C2 (ru) 2006-11-07 2006-11-07 Способ соединения двух твердотельных образцов

Publications (2)

Publication Number Publication Date
RU2006138887A RU2006138887A (ru) 2008-05-20
RU2342231C2 true RU2342231C2 (ru) 2008-12-27

Family

ID=39798303

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006138887/02A RU2342231C2 (ru) 2006-11-07 2006-11-07 Способ соединения двух твердотельных образцов

Country Status (1)

Country Link
RU (1) RU2342231C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2595285C2 (ru) * 2011-06-30 2016-08-27 Коммиссариат А Л'Энержи Атомик Э О Энержи Альтернатив Способ изготовления высокотемпературного ультразвукового преобразователя с использованием кристалла ниобата лития, спаянного с золотом и индием
RU2702616C1 (ru) * 2018-11-29 2019-10-09 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления электрического контактного соединения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2595285C2 (ru) * 2011-06-30 2016-08-27 Коммиссариат А Л'Энержи Атомик Э О Энержи Альтернатив Способ изготовления высокотемпературного ультразвукового преобразователя с использованием кристалла ниобата лития, спаянного с золотом и индием
RU2702616C1 (ru) * 2018-11-29 2019-10-09 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления электрического контактного соединения

Also Published As

Publication number Publication date
RU2006138887A (ru) 2008-05-20

Similar Documents

Publication Publication Date Title
KR102131484B1 (ko) 접합체 및 파워 모듈용 기판
EP0069510B1 (en) Method of metallizing sintered ceramics materials
US20070040003A1 (en) Low temperature methods of bonding components and related structures
Kim et al. Morphology of instability of the wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu
JP2004501047A (ja) 自立形反応性多層フォイル
EP2363373A1 (en) Bonding process for sensitive micro-and nano-systems
JP2019520220A (ja) 二元系において接合部を形成する方法及びその接合部
Tu et al. Morphological stability of solder reaction products in flip chip technology
US5106009A (en) Methods of joining components
RU2342231C2 (ru) Способ соединения двух твердотельных образцов
Chang et al. Enhancement of the wettability and solder joint reliability at the Sn–9Zn–0.5 Ag lead-free solder alloy–Cu interface by Ag precoating
JP2011243752A (ja) 半導体装置の製造方法、半導体内部接続部材および半導体内部接続部材群
JP2005032834A (ja) 半導体チップと基板との接合方法
Kim et al. Fluxless silicon-to-alumina bonding using electroplated Au–Sn–Au structure at eutectic composition
CN116352244B (zh) 一种利用瞬态液相扩散焊预置金锡焊片的制备方法
Yoon et al. Mechanical reliability of Sn-rich Au–Sn/Ni flip chip solder joints fabricated by sequential electroplating method
JP2018111111A (ja) 金属接合体及び半導体装置の製造方法
KR20120021152A (ko) 파워 모듈용 기판, 히트 싱크 부착 파워 모듈용 기판, 파워 모듈 및 파워 모듈용 기판의 제조 방법
JP4508189B2 (ja) 半導体モジュールの製造方法
WO2020095411A1 (ja) 接合構造体、半導体装置及びその製造方法
JP6516949B1 (ja) 金属接合体および金属接合体の製造方法、並びに半導体装置および導波路
US5031822A (en) Methods of joining components
Tang et al. Fabrication and microstructures of sequentially electroplated Sn-rich Au-Sn alloy solders
Hata et al. Interfacial reactions in Sn-57Bi-1Ag solder joints with Cu and Au metallization
Wang et al. Fluxless bonding of large silicon chips to ceramic packages using electroplated eutectic Au/Sn/Au structures

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081108