RU2334311C1 - Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли - Google Patents

Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли Download PDF

Info

Publication number
RU2334311C1
RU2334311C1 RU2007112096/09A RU2007112096A RU2334311C1 RU 2334311 C1 RU2334311 C1 RU 2334311C1 RU 2007112096/09 A RU2007112096/09 A RU 2007112096/09A RU 2007112096 A RU2007112096 A RU 2007112096A RU 2334311 C1 RU2334311 C1 RU 2334311C1
Authority
RU
Russia
Prior art keywords
battery
level
charge
batteries
charging
Prior art date
Application number
RU2007112096/09A
Other languages
English (en)
Inventor
Виктор Владимирович Коротких (RU)
Виктор Владимирович Коротких
Original Assignee
Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" filed Critical Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева"
Priority to RU2007112096/09A priority Critical patent/RU2334311C1/ru
Application granted granted Critical
Publication of RU2334311C1 publication Critical patent/RU2334311C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (НВАБ), преимущественно в автономных системах электропитания (АСЭ) искусственного спутника Земли (ИСЗ). Согласно изобретению способ эксплуатации герметичной НВАБ в АСЭ ИСЗ путем проведения заряд-разрядных циклов, контроля уровня заряженности, напряжения и температуры аккумуляторов, отключения заряда после достижения контролируемого нижнего уровня заряженности аккумуляторов и сообщения дополнительной емкости с ограничением ее по предельно допустимой температуре аккумуляторов, корректировки величины дополнительной емкости, сообщаемой от контролируемого нижнего уровня заряженности аккумуляторов исходя из уровня достигаемой на конец заряда температуры. Величину сообщаемой дополнительной емкости ограничивают в диапазоне (0,08-0,1) номинальной емкости аккумуляторной батареи (АБ) и, при достижении в процессе корректировки сообщаемой дополнительной емкости указанной величины, повышают соответственно величину контролируемого нижнего уровня заряженности АБ. Техническим результатом изобретения является повышение функциональной надежности способа эксплуатации НВАБ. 1 ил.

Description

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации герметичных никель-водородных аккумуляторных батарей, преимущественно в автономных системах электропитания ИСЗ.
Известен способ эксплуатации никель-водородной аккумуляторной батареи (см."Металл-водородные электрохимические системы". Б.И.Центер, Н.Ю.Лызлов. Ленинград, "Химия", Ленинградское отделение, 1989 г., стр.262).
Способ эксплуатации заключается в следующем. При снижении, за счет саморазряда или разряда, давления в аккумуляторах батареи до установленного в алгоритме управления уровня по показаниям аналоговых датчиков давления подключают зарядное устройство к батарее. При повышении, в процессе заряда, давления в аккумуляторах батареи до установленного в алгоритме управления уровня по показаниям аналоговых датчиков давления отключают зарядное устройство от аккумуляторной батареи.
Заряд отключается также при срабатывании контактов дискретного датчика давления, настроенного на предельно допустимое давление.
Описанный способ позволяет эксплуатировать батарею не на предельных уровнях давления, гибко управлять уровнем заряженности батареи в зависимости от требуемой для питания нагрузки разрядной энергии, т.е. эксплуатировать батарею на минимально необходимом уровне заряженности.
Однако этот способ не позволяет эффективно осуществлять управление зарядом при изменениях температуры аккумуляторной батареи. Этот способ можно применять только при какой-то определенной температуре (узком диапазоне температур), так как давление водорода, как и любого газа, зависит от температуры. Кроме того, этот способ неизбежно ведет к разбалансу аккумуляторов в аккумуляторной батарее по емкости, что снижает эффективность использования аккумуляторной батареи.
Известен «Способ эксплуатации герметичной никель-водородной батареи, включающий измерение давления водорода в батарее и проведение заряд-разрядных циклов при отклонении величины измеряемого параметра от заданного значения, отличающийся тем, что дополнительно измеряют температуру батареи и на основании полученных данных вычисляют плотность водорода, сравнивают полученное значение плотности с заданным, отключают заряд батареи при равенстве или превышении плотности заданной величины и включают заряд батареи при снижении плотности на 5-10% ниже заданного уровня» (см. патент РФ 2084055, кл. Н01М 10/44, 1995 г.).
Недостатком известного способа является его низкая функциональная надежность при обеспечении эффективного использования (обеспечение максимальной разрядной емкости) аккумуляторной батареи.
Наиболее близким к изобретению по технической сущности и достигаемым результатам является «Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника Земли путем проведения заряд-разрядных циклов, с отключением заряда по заданному уровню измеряемых степени заряженности и температуре аккумуляторов и включением заряда батареи при снижении давления водорода в аккумуляторах до контролируемого нижнего уровня заряженности, при этом отключают заряд после сообщения от контролируемого нижнего уровня заряженности аккумуляторов емкости заранее заданной величины с ограничением ее по предельно допустимой температуре аккумуляторов, причем величину емкости, сообщаемой от контролируемого нижнего уровня заряженности аккумуляторов, корректируют в процессе эксплуатации аккумуляторной батареи исходя из уровня достигаемой на конец заряда температуры аккумуляторов», принятый за прототип (см. патент РФ №2294581, кл. Н01М 10/44, 2007 г.).
Недостатком известного способа является его низкая функциональная надежность при обеспечении длительной (10 лет и более) эксплуатации аккумуляторной батареи.
Это обусловлено тем, что известный способ не учитывает ресурсные изменения характеристик аккумуляторов в процессе длительной эксплуатации, таких как накопление балластного водорода в результате коррозии активной массы, см. ("Металл-водородные электрохимические системы". Б.И.Центер, Н.Ю.Лызлов. Ленинград, "Химия", Ленинградское отделение, 1989 г., стр.268).
Задачей заявляемого изобретения является повышение функциональной надежности способа эксплуатации никель-водородной аккумуляторной батареи.
Поставленная задача достигается тем, что величину сообщаемой дополнительной емкости ограничивают в диапазоне (0,08-0,1) номинальной емкости аккумуляторной батареи и, при достижении в процессе корректировки сообщаемой дополнительной емкости указанной величины, повышают соответственно величину контролируемого нижнего уровня заряженности аккумуляторной батареи.
Действительно, при эксплуатации аккумуляторной батареи в составе ИСЗ более важным параметром является нижний уровень давления (плотности водорода) в аккумуляторах, иначе говоря, уровень заряженности аккумуляторов (в сравнении с верхним уровнем), определяющий энергетические возможности автономной системы электропитания, который берется в расчет организацией, эксплуатирующей ИСЗ, для обеспечения гарантированной связи потребителей.
Поэтому важнейшей задачей является сохранение именно нижнего уровня заряженности всех аккумуляторов, а это достигается зарядом аккумуляторной батареи до верхнего уровня заряженности, при котором имеющие меньший саморазряд аккумуляторы подвергаются перезаряду, но при этом имеющие больший саморазряд аккумуляторы достигают верхнего уровня их заряженности, что положительно сказывается на емкостных характеристиках аккумуляторной батареи в целом.
Следует отметить, что выбор контрольной точки давления или плотности водорода, соответствующих верхнему уровню заряженности, является очень непростой задачей. Ошибка в расчете может привести к тому, что установленный уровень не будет достигнут из-за так называемого явления «теплового разгона».
При превышении температуры аккумуляторов выше расчетной величины для данной конструкции аккумуляторной батареи может развиваться явление так называемого «теплового разгона», состоящего в том, что дальнейшее повышение температуры при перезаряде вызывает более интенсивное выделение кислорода из положительного электрода и увеличивает активность отрицательного электрода, что увеличивает в свою очередь скорость рекомбинации кислорода с водородом и интенсифицирует тепловыделение. В итоге процесс развивается с положительной обратной связью. В этом случае заданного уровня давления или плотности водорода в аккумуляторах можно не достигнуть, что приведет к выводу аккумуляторной батареи из строя. Это снижает эффективность и надежность эксплуатации аккумуляторной батареи.
При этом контролируемый нижний уровень заряженности заранее известен и надежен.
Известны и емкостные характеристики аккумуляторной батареи.
Поэтому заряд выше контролируемого нижнего уровня на величину заранее заданной емкости, с ограничением ее по предельно допустимой температуре аккумуляторов, эффективен и функционально высоконадежен, так как не может привести к критичному перезаряду аккумуляторной батареи (тепловому разгону).
Величину заранее заданной емкости в процессе эксплуатации аккумуляторной батареи корректируют исходя из уровня достигаемой на конец заряда температуры аккумуляторов.
В то же время нельзя относиться и к нижнему уровню заряженности как к догме, так как уровень заряженности, определяемый по давлению (или плотности) водорода, деградирует в процессе длительной эксплуатации аккумуляторной батареи по отношению к ее истинной емкости вследствие коррозии активной массы.
При этом следует иметь в виду, что оптимальная разница верхнего и нижнего уровней заряженности находится в диапазоне 5-10% (см. патент РФ 2084055, кл. Н01М 10/44, 1995 г.).
Учитывая изложенное, увеличение сообщаемой дополнительной емкости сверх известного диапазона является неэффективным и, при достижении в процессе корректировки сообщаемой дополнительной емкости величины (0,08-0,1) номинальной емкости аккумуляторной батареи, дальнейшую корректировку сообщаемой дополнительной емкости в сторону ее увеличения проводить нецелесообразно. Более эффективно, с точки зрения эффективного использования аккумуляторной батареи, дальнейшее увеличение степени заряда проводить путем соответствующего повышения величины контролируемого нижнего уровня заряженности аккумуляторной батареи.
На чертеже приведена функциональная схема автономной системы электропитания поясняющая работу по предлагаемому способу.
Устройство содержит солнечную батарею 1, подключенную к нагрузке 2, через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3.
При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.
Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов 7 (в частности, напряжения, давления и температуры аккумуляторов) аккумуляторной батареи связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).
В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 8.
Зарядный преобразователь 5 состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе Тр, транзисторах Т1 и Т2 и выпрямителя на диодах D1 и D2.
Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.
Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра С1 и выходного фильтра на диоде D, дросселе L и конденсаторе С.
Схемы управления: 10-зарядного преобразователя 5, 12-разрядного преобразователя 6, 14 - преобразователя напряжения 3, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10-зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2, в качестве обратных связей по величине зарядного тока и напряжения нагрузки соответственно.
Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном (на геостационарных ИСЗ - 98% ресурса) в режиме хранения и периодических дозарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности на случай аварийных ситуаций (потеря ориентации ИСЗ на Солнце) или на прохождение штатных теневых участков орбиты.
Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.
При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.
Устройство контроля аккумуляторов 7 контролирует напряжение, давление и температуру аккумуляторов и передает информацию об их состоянии в нагрузку 2, в которой реализуют следующие технологические операции:
1. Обрабатываются данные по текущему значению давления, напряжения и температуры аккумуляторов, при необходимости рассчитывается текущая плотность водорода в аккумуляторах.
2. При достижении контролируемого нижнего уровня заряженности аккумуляторов запускается контроль сообщаемой зарядной емкости заранее заданной величины. После сообщения аккумуляторной батарее дополнительной емкости заранее заданной величины либо достижения предельно допустимой температуры аккумуляторов формируется команда на выключение зарядного преобразователя.
3. При снижении уровня заряженности аккумуляторов до нижнего контролируемого уровня формируется команда на включение зарядного преобразователя и начинается очередной отсчет сообщаемой аккумуляторной батарее емкости с последующим отключением зарядного преобразователя и так далее.
4. Если снижение уровня заряженности аккумуляторов до нижнего контролируемого уровня произошло в режиме разряда аккумуляторной батареи (например, на «теневом» участке орбиты ИСЗ), то отсчет сообщаемой емкости начинается после появления зарядного тока (выход ИСЗ на освещенный участок орбиты) и достижения уровня заряженности аккумуляторов нижнего контролируемого значения.
5. В процессе эксплуатации аккумуляторной батареи, по результатам анализа телеметрических данных о величине достигаемой на конец заряда температуры аккумуляторов, периодически, по командам с Земли через командно-измерительную радиолинию, корректируют величину емкости, сообщаемой от контролируемого нижнего уровня заряженности аккумуляторов, а в случае достижения сообщаемой дополнительной емкости величины (0,08-0,1) номинальной емкости аккумуляторной батареи дальнейшую корректировку сообщаемой дополнительной емкости - в сторону ее увеличения не проводят, а корректируют соответственно величину контролируемого нижнего уровня заряженности аккумуляторной батареи.
Таким образом, предлагаемый способ позволяет поддерживать высокую степень заряженности аккумуляторной батареи и при этом повышает функциональную надежность длительной эксплуатации никель-водородной аккумуляторной батареи и, следовательно, надежность автономной системы электропитания и ИСЗ в целом.

Claims (1)

  1. Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника Земли путем проведения заряд-разрядных циклов, контроля уровня заряженности, напряжения и температуры аккумуляторов, отключения заряда после достижения контролируемого нижнего уровня заряженности аккумуляторов и сообщения дополнительной емкости, с ограничением ее по предельно допустимой температуре аккумуляторов, корректировки величины дополнительной емкости, сообщаемой от контролируемого нижнего уровня заряженности аккумуляторов, исходя из уровня достигаемой на конец заряда температуры аккумуляторов, отличающийся тем, что величину сообщаемой дополнительной емкости ограничивают в диапазоне (0,08-0,1) номинальной емкости аккумуляторной батареи и при достижении в процессе корректировки сообщаемой дополнительной емкости указанной величины повышают соответственно величину контролируемого нижнего уровня заряженности аккумуляторной батареи.
RU2007112096/09A 2007-04-02 2007-04-02 Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли RU2334311C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007112096/09A RU2334311C1 (ru) 2007-04-02 2007-04-02 Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007112096/09A RU2334311C1 (ru) 2007-04-02 2007-04-02 Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Publications (1)

Publication Number Publication Date
RU2334311C1 true RU2334311C1 (ru) 2008-09-20

Family

ID=39868131

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007112096/09A RU2334311C1 (ru) 2007-04-02 2007-04-02 Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Country Status (1)

Country Link
RU (1) RU2334311C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475921C2 (ru) * 2011-04-28 2013-02-20 Открытое акционерное общество "Научно-производственный центр "Полюс" Автономная система электроснабжения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475921C2 (ru) * 2011-04-28 2013-02-20 Открытое акционерное общество "Научно-производственный центр "Полюс" Автономная система электроснабжения

Similar Documents

Publication Publication Date Title
KR101097261B1 (ko) 전력 저장 시스템 및 그 제어 방법
US6194793B1 (en) Apparatus and method for charging an energy storage source
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
US20100201195A1 (en) Independent power system
US20130015819A1 (en) Power storage unit, correction method for capacity values of storage batteries, and power storage system
JP2003244854A (ja) 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
JP3529660B2 (ja) 独立型太陽光発電システム及び発電方法
KR101351349B1 (ko) 연료전지와 2차 전지를 이용한 하이브리드 전원 공급 장치
KR20150011301A (ko) 선박용 전력관리장치
US20120248870A1 (en) Battery charger and method using an irregular power source
RU2337452C1 (ru) Способ питания нагрузки постоянным током в составе автономной системы электропитания искусственного спутника земли и автономная система электропитания для его реализации
WO2019155507A1 (ja) 直流給電システム
CN102379061A (zh) 燃料电池系统和配备有该燃料电池系统的电动车辆
KR101631150B1 (ko) 선박용 전력 관리 방법
CN102379060B (zh) 燃料电池系统和配备有该燃料电池系统的车辆
US20120253537A1 (en) Power supply method, recording medium which is computer readable and power generation system
RU2334337C1 (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли
RU2510105C2 (ru) Способ заряда комплекта аккумуляторных батарей в составе автономной системы электропитания космического аппарата
RU2334311C1 (ru) Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли
RU2294581C1 (ru) Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли
JP2004064855A (ja) 光電池を使用した電源装置
US11418051B2 (en) Direct current power supplying system
RU2331955C1 (ru) Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли
RU2314602C1 (ru) Способ эксплуатации никель-водородной аккумуляторной батареи
US11552315B2 (en) Control system and method of fuel cell stacks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140403