RU2324746C1 - Способ разделения минеральной оксидной смеси на индивидуальные компоненты - Google Patents

Способ разделения минеральной оксидной смеси на индивидуальные компоненты Download PDF

Info

Publication number
RU2324746C1
RU2324746C1 RU2006139585A RU2006139585A RU2324746C1 RU 2324746 C1 RU2324746 C1 RU 2324746C1 RU 2006139585 A RU2006139585 A RU 2006139585A RU 2006139585 A RU2006139585 A RU 2006139585A RU 2324746 C1 RU2324746 C1 RU 2324746C1
Authority
RU
Russia
Prior art keywords
separation
temperature
fluorides
subjected
pyrohydrolysis
Prior art date
Application number
RU2006139585A
Other languages
English (en)
Inventor
ченко Александр Николаевич Дь (RU)
Александр Николаевич Дьяченко
Роман Иванович Крайденко (RU)
Роман Иванович Крайденко
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет filed Critical Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет
Priority to RU2006139585A priority Critical patent/RU2324746C1/ru
Application granted granted Critical
Publication of RU2324746C1 publication Critical patent/RU2324746C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической и угольной промышленности. Способ разделения минеральной оксидной смеси на индивидуальные компоненты включает операции гидрофторирования при температуре 150-200°С с помощью фторида аммония, сублимационное отделение летучих фторидов при 350-400°С, пирогидролиз, выщелачивание из профторированной массы растворимых фторидов, аммиачное осаждение нерастворимых гидроксидов, фильтрационное разделение, гидрохлорирование при температуре 200-250°С с помощью хлорида аммония. Предложенное изобретение позволяет разделить минеральное сырье на индивидуальные компоненты с возможностью повторного использования реагентов. 1 ил.

Description

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической и угольной промышленности.
Известен способ разложения циркона (природной смеси оксида циркония и оксида кремния) сплавлением с фторидом аммония. Смесь циркона и фторида аммония загружают в автоклав и выдерживают в изохорных условиях при температуре 400°С, после выдержки автоклав открывают и методом сублимации отделяют оксид кремния в виде гексафторосиликата аммония [Патент РФ №2211804]. Недостатком метода является использование автоклавных аппаратов, что приводит к удорожанию аппаратуры и сложности организации непрерывного процесса.
Известен способ разложения силикатных минералов спеканием с карбонатом натрия. Предварительно измельченный силикат смешивают с карбонатом натрия. Температура 1100°С, необходимая для завершения реакции, достигается в конце процесса без оплавления смеси [Б.Ластман, Ф.Керз. Металлургия циркония. ИЛ, 1959].
Недостатками этого метода является высокая температура процесса и большие энергозатраты, а также сложность аппаратурного оформления. Также стоимость карбоната натрия приводит к удорожанию процесса.
Известен способ разложения силикатных шлаков медеплавильных заводов сплавлением с коксом и негашеной известью. Шлаки разогревали до расплавления и на поверхность засыпали 3% кокса, затем небольшими порциями досыпали негашеную известь и пирит. После полного расплавления и гомогенизации системы, печь отключали, шлак отстаивали и сливали [И.Ф.Худяков, И.Э.Кляйн, Н.Г.Агеев. Металлургия меди, никеля, сопутствующих элементов. М.: Металлургия, 1993].
Недостатками приведенного способа разложения является большой расход негашеной извести и высокие температуры процесса, достигающие 1200°С.
Известен способ разложения силикатного минерала циркона. Суть метода заключается в внесении фториона при спекании циркона с K2SiF6 при температуре 700°С. Взаимодействие идет по реакции:
ZrSiO4+K2SiF6=K2ZrF6+2SiO2.
В результате получается хорошо растворимое соединение - фтороцирконат калия, и оксид кремния [Сажин Н.П., Пепеляева Е.А. Доклад на I Женевской конференции по мирному использованию атомной энергии. Сб. «Исследования в области геологии, химии и металлургии» АН СССР, 1955, стр.142].
Недостатком способа является применение в больших количествах дорогостоящего реактива фторосиликата калия, высокие температуры и соответственно повышеные энергозатраты, приводящие к большой себестоимости продукта.
Известен способ переработки титансодержащего минерального сырья, выбранный в качестве прототипа, путем фторирования его бифторидом аммония, термообработки перфторированной массы с разделение продуктов фторирования и последующего гидролиза выделенного фтороаммонийного комплекса, гидролизом шлама получают оксид железа, обработкой выделенного конденсата гексафторосиликата аммония аммиачной водой получают диоксид кремния [Патент РФ 2058408]. Недостатком способа является невозможность отделения конечных продуктов от ряда примесей, присутствующих в природном сырье.
Задачей предлагаемого изобретения является разработка универсального способа разделения минерального сырья на индивидуальные компоненты.
В качестве объекта исследований изучалась модельная смесь, состоящая из восьми основных минеральных оксидов: SiO2, Fe2O3, CuO, Al2O3, CaO, NiO, K2O, TiO2. Смесь является универсальной моделью многих руд, металлургических и угольных шлаков. Решением поставленной задачи явился разработанный способ промышленного разделения смеси компонентов на индивидуальные компоненты с помощью фторида и хлорида аммония.
Важным экономическим фактором использования фторида аммония является возможность его регенерации и возврата в процесс, в то время как элементный фтор практически невозможно регенерировать и после фторирования он безвозвратно теряется.
Физико-химические основы процесса разложения минерального сырья заключаются в различии свойств фторидов составляющих компонентов. Как правило, некоторые фториды являются летучими и легко отделяются от основной массы. Другие фториды являются растворимыми и могут выщелачиваться из профторированной массы. Некоторые подвергаются пирогидролизу или имеют различные pH осаждения. Таким образом, после фторирования в расплаве фторида аммония получается смесь фторидов, а варьируя различиями в физико-химических свойствах фторидов, можно подобрать режимы для полного разделения минеральной смеси на индивидуальные компоненты (см. чертеж).
Поставленная задача достигается тем, что смешивают предварительно измельченную минеральную смесь с фторидом аммония и нагревают при температуре 150-200°С, сублимационное отделение летучих фторидных соединений титана и кремния происходит при температуре 350-400°С. Отделенные таким образом титан и кремний разделяют методом пирогидролиза. При обработке смеси фторидов титана и кремния водяным паром при температуре 300-350°С фторид титана подвергается пирогидролизу и выпадает в твердом виде в виде оксида титана, гексафторосиликат аммония пирогидролизу не подвергается и в виде газа поступает на стадию аммиачного гидролиза и осаждается в виде оксида кремния, раствор подвергали упариванию и получали фторид аммония. После отделения летучих фторидов в твердом остатке остаются фториды железа, меди, алюминия, кальция, никеля и калия. Твердый остаток подвергается пирогидролизу при температуре 350-400°С с последующим водным выщелачиванием и фильтрационным разделением пульпы. В результате проведенных операций в раствор переходят фториды никеля, калия и алюминия, в твердый остаток переходят фторид кальция, оксиды меди и железа. Перешедшие в раствор фториды обрабатываются аммиачной водой, в осадок выпадают гидроксид алюминия, а в раствор переходят гидроксид калия и аммиакат никеля. При упаривании такого раствора аммиакат никеля превращается в гидроксид никеля и выпадает в осадок. После разбавления раствор подвергается фильтрации - в твердом виде выделяется гидроксид никеля, в раствор переходит гидроксид калия, при упаривании регенерируется аммиак и отделяется фторид калия. Оставшиеся в твердом виде фторид кальция, оксид железа и оксид меди обрабатывают хлоридом аммония, температура 200-250°С, при этом происходит сублимационное отделение летучего трихлорида железа при температуре 350-400°С, в твердом остатке остаются хлорид меди и фторид кальция. Газообразный трихлорид железа обрабатывают аммиаком, в результате в твердую фракцию выпадает гидроксид железа, а в раствор переходит регенерированный хлорид аммония. Оставшиеся в твердом виде после гидрохлорирования хлорид меди и фторид кальция подвергают водному выщелачиванию, полученную пульпу фильтруют. В раствор переходит хлорид меди, в твердом виде выделяется фторид кальция. Раствор хлорида меди подвергают аммиачному гидролизу для осаждения гидроксида меди и регенерации хлорида аммония. Технологическая карта процессов разделения оксидов показана на чертеже. Все операции, показанные на технологической карте, реализуемы в промышленных масштабах. Химической промышленностью выпускаются необходимые аппараты - основные из них: барабанные вращающиеся печи, аппараты с мешалками, вакуумные фильтры и пресс-фильтры.
Таким образом, выполнена поставленная задача - все компоненты смеси разделены на индивидуальные элементы.
Отличительным признаком заявленного способа является возможность регенерации основных реагентов - фторида и хлорида аммония. Важным экономическим фактором заявленного способа является возможность использовать для проведения процесса стандартную аппаратуру, выпускаемую химической промышленностью.
Пример 1
Смесь оксидов кремния (IV), железа (III), меди (II), алюминия (III), кальция (II), никеля (II), титана (IV), калия (I), взятых в равных пропорциях, по 12,5%, и фторид аммония смешивали в фарфоровой посуде и нагревали до температуры 350°С, летучие фторидные соединения титана и кремния отводились из системы и подвергались пирогидролизу при температуре 350°С, в твердом виде выпадал оксид титана, фтороаммонийный комплекс кремния подавался на аммиачный гидролиз и выпадал в виде оксида кремния, раствор подвергали упариванию с получением фторида аммония.
Твердый остаток после гидрофторирования содержащий фтороаммонийные комплексы алюминия и железа, фториды меди, кальция, калия, никеля подвергали пирогидролизу при температуре 350-400°С, в осадок выпадают оксиды меди, железа и фторид кальция, твердый осадок подвергали гидрохлорированию с помощью хлорида аммония при температуре 200°С с сублимационным отделением хлорида железа при температуре 350°С, его аммиачным осаждением и регенирацией из раствора хлорида аммония. Твердые хлорид меди и фторид кальция подвергали выщелачиванию, в твердой фракции остается фторид кальция, а из раствора аммиачным осаждением отделяли в твердую фракцию гидроксид меди, последующим прокаливанием которого получали оксид меди, а из раствора регенерировали хлорид аммония.
Не подвергшиеся второму пирогидролизу фториды алюминия, никеля и калия растворяли в воде и проводили аммиачное осаждение, в результате выпадает в осадок гидроксид алюминия, в растворе остаются аммиакат никеля, гидроксид калия и фторид аммония, раствор упаривали, выпадал гидроксид никеля, при упаривании оставшегося раствора происходит регенирация аммиака и выделение фторида калия.
Пример 2
Отличается от Примера 1 тем, что реакцию проводят в изохорических условиях (в автоклаве) при температуре 400°С. При этом уменьшается потеря фторида аммония за счет испарения и десублимации и увеличивается скорость процесса.
Пример 3
Отличается от Примера 1 тем, что реакцию ведут при недостатке хлорида аммония, что предотвращает загрязнение трихлорида железа хлоридом аммония, а после окончания реакции смесь нагревают до 400°С. Полученный трихлорид железа возгоняется при температуре выше 303°С и отделяется от нелетучих хлоридов.

Claims (1)

  1. Способ разделения минеральной оксидной смеси на индивидуальные компоненты, включающий операции гидрофторирования с помощью фторида аммония, сублимационное отделение летучих фторидов, пирогидролиз, выщелачивание из профторированной массы растворимых фторидов, аммиачное осаждение нерастворимых гидроксидов, фильтрационное разделение, гидрохлорирование с помощью хлорида аммония, отличающийся тем, что гидрофторирование проводят при температуре 150-200°С. сублимационное отделение летучих фторидов проводят при температуре 350-400°С, первый пирогидролиз фторидного газа проводят при температуре 300-350°С, негидролизующийся газ подвергают аммиачному осаждению с выделением нерастворимых гидроксидов и фторида аммония, нелетучие фториды, оставшиеся в твердой фракции после сублимации, подвергают второму пирогидролизу при температуре 350-400°С с последующим выщелачиванием из гидролизованной массы растворимых фторидов, раствор после выщелачивания подвергают аммиачному осаждению с последующим фильтрационным отделением нерастворимых гидроксидов, твердый остаток после второго пирогидролиза подвергают гидрохлорированию с помощью хлорида аммония при температуре 200-250°С, сублимационное отделение летучих хлоридов проводят при температуре 350-400°С, сублимирующиеся хлориды подвергают аммиачному осаждению с выделением нерастворимых гидроксидов и хлорида аммония, нелетучие фториды и хлориды, оставшиеся после гидрохлорирования, подвергают выщелачиванию, в твердую фракцию уходят нерастворимые фториды, растворимые хлориды подвергают аммиачному осаждению с выделением нерастворимых гидроксидов и хлорида аммония.
RU2006139585A 2006-11-07 2006-11-07 Способ разделения минеральной оксидной смеси на индивидуальные компоненты RU2324746C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006139585A RU2324746C1 (ru) 2006-11-07 2006-11-07 Способ разделения минеральной оксидной смеси на индивидуальные компоненты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006139585A RU2324746C1 (ru) 2006-11-07 2006-11-07 Способ разделения минеральной оксидной смеси на индивидуальные компоненты

Publications (1)

Publication Number Publication Date
RU2324746C1 true RU2324746C1 (ru) 2008-05-20

Family

ID=39798822

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006139585A RU2324746C1 (ru) 2006-11-07 2006-11-07 Способ разделения минеральной оксидной смеси на индивидуальные компоненты

Country Status (1)

Country Link
RU (1) RU2324746C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149792A1 (ru) * 2022-02-03 2023-08-10 Товарищество С Ограниченной Ответственностью "Isl Metals Group" Способ переработки силикатных и алюмосиликатных горных пород

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ХУДЯКОВ И.Ф., КЛЯЙН С.Э., АГЕЕВ Н.Г., Металлургия меди, никеля, сопутствующих элементов и проектирование цехов, Москва, Металлургия, 1993, с.179-180. САЖИН Н.П., ПЕПЕЛЯЕВА Е.А., Отделение гафния от циркония и получение чистой двуокиси циркония, Исследования в области геологии, химии и металлургии, Москва, Издательство Академии наук, 1955, с.142-143. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149792A1 (ru) * 2022-02-03 2023-08-10 Товарищество С Ограниченной Ответственностью "Isl Metals Group" Способ переработки силикатных и алюмосиликатных горных пород

Similar Documents

Publication Publication Date Title
RU2579843C2 (ru) Способы обработки красного шлама
RU2633579C2 (ru) Способы обработки летучей золы
Matjie et al. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal
US10273561B2 (en) Deriving high value products from waste red mud
US5993758A (en) Process for recovery of alumina and silica
CN101111456B (zh) 使用含水氟化物制备二氧化钛的方法
CN104507867B (zh) 生产氧化铝的方法
CN104039706A (zh) 制备氧化铝和各种其他产品的工艺
KR102090348B1 (ko) 희토류 추출을 위한 시스템 및 방법
US10407316B2 (en) Extraction of products from titanium-bearing minerals
CA1191698A (en) Treatment of aluminous materials
Meng et al. Recovery of titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching
CA2356988A1 (en) Treating niobium and/or tantalum containing raw materials
CN106315640A (zh) 处理氧化铝生产中高蒸母液的方法
RU2324746C1 (ru) Способ разделения минеральной оксидной смеси на индивидуальные компоненты
CN111989413A (zh) 处理钛磁铁矿矿石材料的方法
RU2058408C1 (ru) Способ переработки титансодержащего минерального сырья
US2567544A (en) Process for the manufacture of sodium aluminum fluoride
RU2576710C1 (ru) Способ бифторидной переработки редкого и редкоземельного минерального сырья
US7063824B1 (en) Beneficiation of zircon
RU2572119C1 (ru) Способ переработки алюминийсодержащего сырья
EP2699516A1 (en) Process of purifying a residue with calcium ions
RU2149912C1 (ru) Способ получения окислов тугоплавких металлов из лопаритового концентрата
WO2023149792A1 (ru) Способ переработки силикатных и алюмосиликатных горных пород
Sagarunyan et al. Investigation of the processing of serpentinites

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081108