RU2320087C2 - Способ и устройство для мультиплексирования данных и информации управления в системах беспроводной связи на основе множественного доступа с частотным разделением - Google Patents

Способ и устройство для мультиплексирования данных и информации управления в системах беспроводной связи на основе множественного доступа с частотным разделением Download PDF

Info

Publication number
RU2320087C2
RU2320087C2 RU2006115276/09A RU2006115276A RU2320087C2 RU 2320087 C2 RU2320087 C2 RU 2320087C2 RU 2006115276/09 A RU2006115276/09 A RU 2006115276/09A RU 2006115276 A RU2006115276 A RU 2006115276A RU 2320087 C2 RU2320087 C2 RU 2320087C2
Authority
RU
Russia
Prior art keywords
symbol block
control information
data
module
information
Prior art date
Application number
RU2006115276/09A
Other languages
English (en)
Inventor
Дзоон-Янг ЧО (KR)
Дзоон-Янг ЧО
Дзу-Хо ЛИ (KR)
Дзу-Хо ЛИ
Хван-Дзоон КВОН (KR)
Хван-Дзоон КВОН
Юн-Ок ЧО (KR)
Юн-Ок ЧО
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Application granted granted Critical
Publication of RU2320087C2 publication Critical patent/RU2320087C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Transmitters (AREA)

Abstract

Изобретение относится к беспроводной системе связи, построенной на основе множественного доступа с частотным разделением и предназначено для мультиплексирования и передачи данных и информации управления в системе множественного доступа с частотным разделением. Технический результат - повышение скорости передачи данных при снижении отношения пиковой к средней мощности передаваемых сигналов. Устройство включает в себя генератор блоков символов, предназначенный для генерирования блока символов в течение заранее заданного периода блока символов, в пределах одного TTI, когда информация управления, предназначенная для передачи, присутствует в TTI, модуль FFT, предназначенный для выполнения FFT над блоком символов, и модуль IFFT, предназначенный для выполнения IFFT, над сигналами, выводимыми из модуля FFT, с последующей передачей сигналов. Блок символов включает в себя информацию управления и данные для передачи. TTI включает в себя множество периодов блоков символов. 4 н. и 16 з.п. ф-лы, 9 ил.

Description

ПРИОРИТЕТ
В этой заявке в соответствии с 35 U.S.C. $119(а), испрашивается приоритет заявки на корейский патент, поданный 3 мая 2005 г. в Корейское ведомство промышленной собственности и которой присвоен регистрационный № 2005-37294, полное раскрытие которой включено таким образом сюда посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение относится к беспроводной системе связи, построенной на основе множественного доступа с частотным разделением. Более конкретно, настоящее изобретение относится к способу и устройству, предназначенным для мультиплексирования и передачи данных и информации управления в системе беспроводной связи на основе множественного доступа с частотным разделением.
Предшествующий уровень техники
Развитие в последнее время технологии широковещательной передачи и мобильных систем связи привело к широкому использованию схемы передачи с ортогональным мультиплексированием с частотным разделением (OFDM, ОМЧР). Схема OFDM устраняет взаимные помехи между сигналами, полученными в результате многолучевого распространения, которое часто возникает в каналах беспроводной связи. Кроме того, схема OFDM гарантирует ортогональность между пользователями множественного доступа и способствует эффективному использованию ресурсов. Поэтому схему OFDM чаще используют для высокоскоростной передачи данных в системах широковещательной передачи, чем обычную схему многостанционного доступа с кодовым разделением каналов (CDMA, МДКР). Однако схема OFDM представляет собой схему передачи с множеством несущих, в которой передаваемые данные распределяют по множеству поднесущих и затем передают параллельно. В результате этого в схеме OFDM повышается отношение пиковой к средней мощности (PAPR, ОПСМ) передаваемых сигналов.
Большое отношение PAPR приводит к искажению выходных сигналов в радиочастотном (РЧ) усилителе мощности передатчика. Поэтому для решения такой проблемы требуется обеспечить снижение мощности в передатчике путем уменьшения входной мощности, подаваемой в усилитель. Поэтому, когда схему OFDM применяют для восходящего канала в мобильной системе связи, терминал должен выполнять снижение мощности передаваемых сигналов, в результате чего уменьшается зона обслуживания ячейки.
В качестве решения проблемы PAPR в соответствии с технологией OFDM активно исследуют множественный доступ с частотным разделением с перемежением (IFDMA, МДЧРП). Схема IFDMA гарантирует ортогональность между пользователями множественного доступа, такую же, как OFDM, и представляет собой технологию, основанную на одной поднесущей, что обеспечивает очень низкое отношение PAPR передаваемых сигналов. С применением системы IFDMA в системе мобильной связи уменьшается проблема сокращения зоны обслуживания ячейки из-за повышения PAPR.
На фиг.1 представлена структура типичного передатчика IFDMA.
Хотя в структуре, показанной на фиг.1, используется модуль 104 быстрого преобразования Фурье (FFT, БПФ) и модуль 106 обратного быстрого преобразования Фурье (IFFT, ОБПФ), примерные варианты выполнения настоящего изобретения не ограничиваются представленной структурой и могут быть выполнены с использованием дополнительных структур. Вариант выполнения, в котором используется модуль 104 FFT и модуль 106 IFFT, является предпочтительным, поскольку он способствует простому изменению параметров системы IFDMA без необходимости усложнения аппаратных средств.
OFDM и IFDMA могут иметь следующие различия в структуре передатчика. В дополнение к модулю 106 IFFT, который используют для многочастотной передачи в передатчике OFDM, передатчик IFDMA включает в себя модуль 104 FFT, расположенный перед модулем 106 IFFT. Поэтому символы 100 модуляции передачи (TX) по фиг.1 подают в модуль 104 FFT поблочно, причем каждый из блоков включает в себя М символов модуляции передачи. Такой блок называют "блоком символов", и период, в течение которого блок символов передают в модуль FFT, называется "периодом блока символов". Сигнал, поступающий с выхода модуля 104 FFT, передают в модуль 106 IFFT через равные интервалы времени, в результате чего элементы сигнала передачи IFDMA передают в области частот с помощью поднесущих с равными интервалами. В этом процессе обычно количество N входов/выходов модуля 106 IFFT больше, чем количество M входов/выходов модуля 104 FFT. В передатчике OFDM блоки 100 символов передачи подают непосредственно в модуль 106 IFFT, без пропускания их через модуль 104 FFT и затем передают с использованием множества поднесущих, генерируя, таким образом, большое значение PAPR.
В передатчике IFDMA передаваемые символы предварительно обрабатывают с помощью модуля 104 FFT перед обработкой их модулем 106 IFFT. Это происходит даже, несмотря на то, что символы передачи были окончательно обработаны модулем 106 IFFT перед передачей их с использованием множества несущих. Предварительная обработка передаваемых символов позволяет, в результате взаимного уравновешивания между модулем 104 FFT и модулем 106 IFFT, получить эффект, аналогичный эффекту, который возникает, когда выходные сигналы модуля 106 IFFT передают с использованием одной поднесущей, что обеспечивает низкое значение PAPR. Наконец, выходные сигналы модуля 106 IFFT преобразуют в последовательный поток с помощью преобразователя параллельного кода в последовательный (PSC, ППП) 102. Перед передачей последовательного потока данных к последовательному потоку данных присоединяют цикличный префикс (CP, ЦП) или защитный интервал так же, как и в системе OFDM, для предотвращения взаимных помех между элементами сигнала канала многолучевого распространения.
На фиг.2 показана структура передатчика, основанная на технологии локализованного множественного доступа с частотным разделением (LFDMA, ЛМДЧР), которая аналогична технологии IFDMA. Технология LFDMA также гарантирует ортогональность между пользователями множественного доступа, основана на передаче одной несущей и позволяет получить более низкое значение PAPR, чем в системе OFDM. Как показано на фиг.1 и 2, разница между LFDMA и IFDMA в структуре передатчика состоит в том, что выходы модуля 204 FFT преобразованы во входы модуля 206 IFFT, которые имеют последовательные индексы, следующие после последнего индекса модуля 204 FFT. В области частот сигналы LFDMA занимают полосу, составленную соседними поднесущими, используемыми, когда выходы модуля 204 FFT отображают на входы модуля 206 IFFT. Другими словами, в области частот сигналы IFDMA занимают полосы поднесущих (подполосы), распределенные через равный интервал, и сигналы LFDMA занимают полосу поднесущих, составленную соседними поднесущими.
При применении систем, основанных на технологиях IFDMA и LFDMA, для широковещательной передачи или для системы мобильной связи необходимо передавать данные и информацию управления, а также пилот-сигнал для демодуляции и декодирования данных в приемнике. Пилот-сигнал имеет гарантированно известную структуру для передатчика и приемника. Поэтому, когда принятый сигнал получает искажение из-за затухания в беспроводном канале связи, приемник должен оценить и устранить, на основе пилот-сигнала, искажение принимаемого сигнала, полученное в результате затухания в беспроводном канале. Информация управления включает в себя схему модуляции, применяемую для передаваемых данных, схему кодирования канала, размер блока данных и информацию, относящуюся к гибридному запросу автоматического повторения (HARQ, ГЗАП), такую, как ИД (ID) служебного (сервисного) пакета. При приеме информации управления приемник может анализировать информацию, прилагаемую к передаваемым данным, при выполнении различных операций, включающих в себя демодуляцию и декодирование принимаемых данных.
В соответствии с методикой CDMA, широко применяемой в современных мобильных системах связи, данные, информацию управления и пилот-сигнал передают с использованием разных кодов формирования каналов. Это позволяет приемнику разделять и детектировать сигналы без возникновения помех. В соответствии с технологией OFDM данные, информацию управления и пилот-сигнал передают с использованием разных поднесущих или после временного разделения.
Поскольку информация управления составляет небольшое количество информации, которая может полностью занять один временной интервал (slot), применение схемы мультиплексирования с разделением по времени может привести к ненужному расходованию ресурсов. Когда информацию управления передают с помощью отдельной поднесущей, отличающейся от поднесущих, на которых передают данные, как в схеме OFDM, возникает проблема, состоящая в том, что передаваемый сигнал имеет повышенное отношение PAPR.
В соответствии с этим существует потребность в улучшенном способе и устройстве для мультиплексирования данных и информации управления, для снижения соотношения PAPR передаваемого сигнала и для обеспечения эффективного использования ресурсов в системе связи на основе схемы IFDMA или LFDMA.
Сущность изобретения
Аспект примерных вариантов выполнения настоящего изобретения направлен на решение, по меньшей мере, указанных выше проблем и/или недостатков и для обеспечения, по меньшей мере, описанных ниже преимуществ. В соответствии с этим аспект примерных вариантов выполнения настоящего изобретения состоит в обеспечении способа и устройства, предназначенных для мультиплексирования данных и информации управления, для снижения отношения PAPR передаваемого сигнала и для обеспечения эффективного использования ресурсов в системе связи на основе IFDMA или LFDMA.
Другой целью примерного варианта выполнения настоящего изобретения является способ и устройство мультиплексирования данных и информации управления на стороне входа FFT в течение периода одного блока FFT в системе связи на основе IFDMA или LFDMA.
Также другой целью примерного варианта выполнения настоящего изобретения является способ и устройство мультиплексирования данных путем распределения информации управления в каждом из периодов блоков символов в пределах интервала времени передачи (TTI, ИВП) в системе связи на основе IFDMA или LFDMA.
Для достижения этой цели предусмотрено устройство, предназначенное для передачи данных в системе связи на основе множественного доступа с частотным разделением. Это устройство включает в себя генератор блоков символов, модуль быстрого преобразования Фурье (FFT) и модуль обратного быстрого преобразования Фурье (IFFT). Генератор блоков символов генерирует блок символов с заданным периодом блока символов в пределах одного интервала времени передачи (TTI, ИВП), когда в TTI присутствует информация управления, предназначенная для передачи. Кроме того, блок символов включает в себя информацию управления и данные, предназначенные для передачи, и TTI включает в себя множество периодов блока символов. Модуль быстрого преобразования Фурье (FFT) выполняет FFT над блоком символов, и модуль обратного быстрого преобразовании Фурье (IFFT) выполняет IFFT сигналов, поступающих с выхода модуля FFT, и затем передает эти сигналы.
В соответствии с другим аспектом примерного варианта выполнения настоящего изобретения предложен способ передачи данных в системе связи на основе множественного доступа с частотным разделением. Блок символов генерируют с заранее заданным периодом блока символов в пределах одного интервала времени передачи (TTI), когда информация управления, предназначенная для передачи, присутствует в TTI. Блок символов включает в себя информацию управления и данные, предназначенные для передачи, и TTI включает в себя множество периодов блока символов. Быстрое преобразование Фурье (FFT) выполняют над блоком символов, обратное быстрое преобразование Фурье (IFFT) выполняют для сигналов после FFT и затем передают сигналы, обработанные IFFT.
В соответствии с другим аспектом примерного варианта выполнения настоящего изобретения предложено устройство для приема данных в системе связи на основе множественного доступа с частотным разделением. Устройство включает в себя модуль быстрого преобразования Фурье (FFT), обратного быстрого преобразования Фурье (IFFT), демодулятор/декодер информации управления и демодулятор/декодер данных. Модуль FFT принимает сигналы, принимаемые в течение одного периода блока символов, и выполняет FFT над этими сигналами. Модуль IFFT выполняет IFFT обработку сигналов, поступающих с выхода модуля FFT, восстанавливая, таким образом, блоки символов. Когда период блока символов представляет собой заранее заданный период блока символов, в котором мультиплексированы данные и информация управления, демодулятор/декодер информации управления принимает символы модуляции, соответствующие заранее заданным выходным индексам IFFT, среди блоков символов, и демодулирует и декодирует символы модуляции, выводя, таким образом, информацию управления. Демодулятор/декодер данных принимает символы модуляции, соответствующие другим выходным индексам IFFT, за исключением индексов, соответствующих информации управления, среди блоков символов, путем использования информации управления, демодулирует и декодирует принятые символы модуляции и затем выводит эти данные.
В соответствии с другим аспектом примерного варианта выполнения настоящего изобретения предложен способ приема данных в системе связи, основанной на множественном доступе с частотным разделением. Этот способ включает в себя этапы: приема сигналов, принимаемых в течение одного периода блока символов, и выполнение быстрого преобразования Фурье (FFT) для этих сигналов с использованием блока FFT; восстановления блоков символов из сигналов, обработанных FFT, с помощью модуля обратного быстрого преобразования Фурье (IFFT); когда период блока символов представляет собой заранее заданный период блока символов, в котором мультиплексированы данные и информация управления, приема символов модуляции, соответствующих заранее заданным выходным индексам IFFT, среди блоков символов из модуля IFFT, и демодуляции и декодирования символов модуляции, выводя, таким образом, информацию управления; и приема символов модуляции, соответствующих другим выходным индексам IFFT, за исключением индексов, соответствующих информации управления среди блоков символов из модуля IFFT, с использованием информации управления, демодуляции и декодирования принятых символов модуляции и затем вывода данных.
Другие цели, преимущества и существенные свойства изобретения будут очевидны для специалиста в данной области техники из следующего подробного описания, которое при рассмотрении его совместно с прилагаемыми чертежами раскрывает примерные варианты выполнения изобретения.
Краткое описание чертежей
Указанные выше и другие примерные цели, свойства и преимущества определенных примерных вариантов выполнения настоящего изобретение будут более очевидными из следующего подробного описания, при рассмотрении его совместно с прилагаемыми чертежами, на которых:
На фиг.1 представлена структура обычного передатчика IFDMA.
На фиг.2 представлена структура обычного передатчика LFDMA.
На фиг.3 приведена иллюстрация устройства мультиплексирования и передачи данных, информации управления и пилот-сигналов в соответствии с первым примерным вариантом выполнения настоящего изобретения.
На фиг.4 приведена иллюстрация отображения FFT в периоде блока символов, в котором мультиплексированы информация управления и данные в соответствии с первым примерным вариантом выполнения настоящего изобретения.
На фиг.5 приведена иллюстрация структуры приемника в соответствии с первым примерным вариантом выполнения настоящего изобретения.
На фиг.6 приведена иллюстрация способа мультиплексирования информации управления и данных в соответствии со вторым примерным вариантом выполнения настоящего изобретения.
На фиг.7 приведена структура отображения выводов IFFT в демодулятор/декодер информации управления и демодулятор/декодер данных в приемнике в соответствии с первым или вторым примерными вариантами выполнения настоящего изобретения.
На фиг.8 показана блок-схема последовательности выполнения операций, предназначенная для иллюстрации работы приемника в соответствии с первым примерным вариантом выполнения настоящего изобретения.
На фиг.9 показана блок-схема последовательности выполнения операций, представляющая работу передатчика в соответствии с примерным вариантом выполнения настоящего изобретения.
Следует понимать, что на чертежах одинаковыми ссылочными позициями обозначены одинаковые элементы, свойства и структуры.
Подробное описание изобретения
Темы, определенные в описании, такие, как подробная конструкция и элементы, представлены с тем, чтобы способствовать всестороннему пониманию вариантов выполнения изобретения. Соответственно, для специалистов в данной области техники будет понятно, что различные изменения и модификации вариантов выполнения, описанных здесь, могут быть выполнены без отхода от объема и сущности изобретения. Кроме того, описание хорошо известных функций и конструкций исключено для ясности и краткости.
В примерном варианте выполнения настоящего изобретения предложен способ мультиплексирования данных и информации управления, по меньшей мере, в одном блоке символов среди множества блоков символов, включенных в один TTI, и одновременной передачи мультиплексированных данных и информации управления. Способ мультиплексирования и одновременной передачи позволяет получить более низкое отношение PAPR и приводит к более эффективному использованию ресурсов по сравнению с существующими способами. Информация управления включает в себя схему модуляции, применяемую для передаваемых данных, схему кодирования канала, размер блока данных и информацию, относящуюся к гибридному запросу автоматического повторения (HARQ), такую, как ИД подпакета. Она может быть включена вместе с информацией управления, такой, как индикатор качества канала (CQI, ИКК) или ACK/NACK (индикатор подтверждения/неподтверждения приема).
На фиг.3 представлено устройство, предназначенное для мультиплексирования и передачи данных, информации управления и пилот-сигнала в соответствии с первым примерным вариантом выполнения настоящего изобретения.
Как показано на фиг.3, генератор 304 блоков символов передатчика генерирует блок символов путем мультиплексирования данных, информации управления или пилот-сигналов, предназначенных для передачи, для каждого периода блока символов. Примерный вариант выполнения по фиг.3 иллюстрирует один интервал времени передачи (TTI), который включает в себя восемь периодов блока символов.
Генератор 304 блоков символов определяет, присутствует ли информация управления в текущем TTI 300. Когда информация управления присутствует в текущем TTI 300, генератор 304 блоков символов генерирует блок символов, включающий в себя информацию управления и данные в течение заранее заданного периода 302 блока символов, в пределах TTI 300. Генератор 304 блоков символов генерирует блоки символов, которые включают в себя данные или пилот-сигнал без информации управления в другие периоды блока символов. Каждый блок символов включает в себя М символов, которые отображают на М входов модуля 310 FFT.
На фиг.3 представлена технология передачи IFDMA или LFDMA в виде выходных сигналов модуля 310 FFT по множеству несущих, с использованием модуля 314 IFFT. Здесь N выходных сигналов модуля 314 IFFT преобразуют в последовательный поток данных с помощью PSC 102, как показано на фиг.1, который затем передают с прикреплением к нему CP. В это время каждый период, в течение которого генерируют N выходных сигналов, соответствует периоду блока символов.
Поэтому каждый из восьми блоков символов в TTI 300 вводят в модуль 310 FFT в течение соответствующего периода блока символов. Каждый из блоков символов представляет собой входной блок FFT, подаваемый через все входные отводы модуля 310 FFT, и имеет такой же размер, что и размер М отводов модуля 310 FFT. Кроме того, М выходов модуля 310 FFT отображают на входы модуля 314 IFFT в соответствии с правилом отображения, которое соответствует применяемой технологии IFDMA или LFDMA, которая аналогична технологиям, представленным на фиг.1 и 2. Наконец, выходы модуля 314 IFFT преобразуют в последовательный поток данных, который затем передают вместе с прикрепленным к нему CP.
На фиг.9 показана блок-схема последовательности выполнения операций, иллюстрирующая работу передатчика в соответствии с примерным вариантом выполнения настоящего изобретения.
На этапе 900 передатчик генерирует кадры в TTI, то есть, передаваемые данные, путем мультиплексирования данных, информации управления и пилот-сигналов, предназначенных для передачи. Когда присутствует информация управления, предназначенная для передачи в течение одного TTI, передатчик вставляет информацию управления в блок символов, заранее определенный в пределах TTI, и вставляет данные в остальной участок блока символов. Пилот-сигнал включают в один блок символов и передают с ним, и данные включают в участок блока символов, включающего в себя сигнал управления, и в другие блоки символов, за исключением блока символов, включающего в себя пилот-сигнал. На этапе 902 передатчик выполняет FFT блока символов с соответствующим периодом в каждый период блока символов.
На этапе 904 выходы модуля FFT отображают на входы модуля IFFT в соответствии с правилом отображения, которое соответствует применяемой технологии IFDMA или LFDMA, и затем выполняют IFFT. На этапе 906 передатчик прикрепляет CP к выходному сигналу модуля IFFT и затем передает его.
Как описано выше, способ, предложенный в первом примерном варианте выполнения настоящего изобретения, состоит в мультиплексировании данных 306 и информации 304 управления на стороне входа FFT в течение одного периода блока символов. Пилот-сигнал 308 передают в течение одного целого периода блока символов. Этот способ передачи отличается от способа передачи данных 306 и информации 304 управления. В случае передачи IFDMA или LFDMA, когда пилот-сигнал 308 мультиплексируют вместе с данными в пределах одного и того же периода блока символов, становится трудно выполнить оценку канала и нормально демодулировать принимаемые данные и информацию управления. Однако, как отмечено в предыдущем описании работы приемника, даже когда информация 304 управления мультиплексирована вместе с данными 306 в пределах одного периода блока символов, становится возможным демодулировать и декодировать принимаемые данные 306 и информацию 304 управления.
Способ мультиплексирования данных 306, информации 304 управления и пилот-сигнала 308 можно применять даже к передатчику IFDMA или LFDMA, работа которого не основана на FFT и IFFT.
Мультиплексирование данных и информации управления в одном потоке символов IFDMA, как представлено на фиг.3, позволяет получить более низкое отношение PAPR, по сравнению со случаем данных и информации управления, которые разделены в области частот и которые затем передают в соответствии со схемой IFDMA или схемой LFDMA, с использованием разных полос поднесущих, как в системе OFDM. Кроме того, такой способ, как показан на фиг.3, способствует более эффективному использованию ресурсов, по сравнению со случаем временного мультиплексирования данных и информации управления с последующей передачей их в разные периоды блока символов с помощью схем IFDMA или LFDMA. Такой результат получают на основе того факта, что информация управления обычно имеет небольшой объем, и выделение одного периода блока символов для передачи информации управления привело бы к выделению излишне большого количества ресурсов для передачи информации управления и привело бы к уменьшению многих ресурсов, которые в противном случае можно было бы использовать для передачи данных. Эта проблема становится более острой, когда необходимо передавать большое количество данных с высокой скоростью передачи данных.
Ниже будет приведено описание формата кадра сигнала передачи IFDMA или LFDMA для нормальной демодуляции и декодирования данных в приемнике, когда данные и информация управления мультиплексированы, как описано выше. В соответствии с количеством данных, предназначенных для передачи, или с параметрами радиоканала передачи могут быть использованы разные схемы модуляции и схемы кодирования передаваемых данных. Когда применяют методику HARQ, различная информация управления HARQ может быть передана в соответствии с состоянием повторной передачи. Поэтому нормальная демодуляция данных возможна только, когда приемник распознал информацию управления путем демодуляции и декодирования информации управления.
Формат передачи информации управления должен быть определен фиксированно для конкретного формата передачи или как один формат, используемый как для передатчика, так и для приемника, во время установки радиолинии для обеспечения нормальной демодуляции информации управления для пользователя. Приемник может нормально демодулировать и декодировать информацию управления, когда информацию управления отображают и передают с использованием постоянно фиксированной схемы модуляции и схемы кодирования канала с фиксированным количеством битов информации управления и с фиксированными временными интервалами, а также входами FFT. Примерный вариант выполнения по фиг.3 иллюстрирует информацию управления, кодируемую со сверткой с коэффициентом кодирования 1/3 и с последующей передачей в соответствии со схемой модуляции QPSK (ФМЧС, фазовая манипуляция с четвертичными сигналами), которая включает в себя L символов модуляции. L символов модуляции передают после использования входов FFT со входными индексами 0~(L-1) во втором периоде блока символов в пределах TTI. Затем приемник может демодулировать и декодировать информацию управления с использованием формата передачи информации управления, которую уже распознал приемник. Если управление не передают с использованием фиксированного формата, приемник должен пытаться определить формат среди различных возможных форматов, применяя слепой способ определения формата.
На фиг.4 представлено FFT отображение в период блока символов, в котором информация управления и данные мультиплексированы в соответствии с первым примерным вариантом выполнения настоящего изобретения. Как показано на фиг.4, информацию 400 управления, включающую в себя L символов модуляции, применяют по входам модуля 404 FFT со входными индексами 0~(L-1) и данные подают на другие входы FFT, такие, как входы FFT со входными индексами L~(M-1). Следует отметить, что расположения, в которые отображают символы модуляции информации 400 управления, не ограничиваются верхними индексами 0~(L-1). Информация управления может отображаться на любое количество L отводов, заранее известных для передатчика и приемника среди М входных отводов модуля FFT.
На фиг.5 представлена структура приемника в соответствии с первым примерным вариантом выполнения настоящего изобретения.
Как показано на фиг.5, приемник вначале удаляет CP из принятого сигнала, выполняет FFT с помощью модуля 502 FFT, выделяет пилот-сигнал из выходного сигнала модуля 502 FFT и затем выполняет оценку канала. Например, модуль 502 FFT в приемнике преобразует принимаемый сигнал, подаваемый в модуль 502 FFT, в сигнал частотной области, соответствующий модулю 314 IFFT, показанному на фиг.3. Когда выходной сигнал модуля 502 FFT соответствует пилот-сигналу 510, выходной сигнал модуля 502 FFT подают в блок 504 оценки канала. Когда период блока символов, в котором имеет место выходной сигнал FFT 502, представляет собой заранее заданный период пилот-сигнала в одном TTI, как показано на фиг.3, выходной сигнал модуля 502 FFT рассматривают как пилот-сигнал 510.
Блок 504 оценки канала генерирует информацию 512 оценки канала путем оценки состояния канала на основании пилот-сигналов 510 и передает сгенерированную информацию 512 оценки канала в блок 524 компенсации канала, в результате чего модуль 506 IFFT может демодулировать данные и информацию управления. После этого выходной сигнал блока 502 FFT компенсируют по каналу с использованием информации 512 оценки канала с помощью блока 524 компенсации канала. Выделение пилот-сигнала 510 с помощью блока 504 оценки канала и компенсация канала с помощью блока 524 компенсации канала могут быть выполнены на стороне выхода модуля 506 IFFT.
Канально скомпенсированный сигнал 526 вводят в модуль 506 IFFT в соответствии с правилом отображения IFDMA или LFDMA, используемым в передатчике, и затем подвергают демодуляции и декодированию.
В случае, когда период блока символов включает в себя информацию управления и данные, поскольку информация управления была передана после применения по входным индексам 0~(L-1) модуля 404 FFT, модуль 506 IFFT по фиг. 5 применяет выходы 520 с выходными индексами 0~(L-1) к демодулятору/декодеру 508 информации управления, в результате чего обеспечивается возможность выделить информацию управления. Кроме того, в случае данных, поскольку только данные могут иногда передаваться в одном периоде блока символов, все выходы модуля 506 IFFT, такие, как выходы 518 с выходными индексами 0~(М-1), применяют к демодулятору/декодеру 522 данных. Когда схемы модуляции и кодирования, используемые для передачи передаваемых данных, количество данных, информацию 516 управления HARQ и т.д. передают в демодулятор/декодер 522 данных путем демодуляции и декодирования информации управления в периоде блока символов, который соответствует информации управления, декодированные данные окончательно выводят из демодулятора/декодера 522 данных.
На фиг.8 показана блок-схема последовательности выполнения операций, предназначенная для иллюстрации работы приемника в соответствии с первым примерным вариантом выполнения настоящего изобретения.
На этапе 800 приемник исключает CP из принятого сигнала, выполняет FFT, выделяет пилот-сигнал из выхода FFT и затем выполняет оценку канала. На этапе 802, когда выход FFT соответствует периоду блока символов, включающему данные и информацию управления или период блока символа, включающему в себя только данные, выход FFT компенсируют по каналу с помощью блока 524 компенсации канала.
Канально компенсированный сигнал на этапе 804 подают в модуль IFFT в соответствии с правилом отображения IFDMA или LFDMA, используемым в передатчике. Выход с индексом, соответствующим информации управления среди выходов IFFT, соответствующих периоду блока символов, включающего в себя данные и информацию управления, преобразуют, используя демодуляцию и декодирование информации управления, включающей в себя схему модуляции и кодирования, применяемые для данных, информацию управления HARQ и т.д.
На этапе 806 информацию управления используют для восстановления данных путем демодуляции и декодирования выхода IFFT в соответствии с периодом блока символов, включающим в себя данные и информацию управления, или периодом блока символов, включающим в себя только данные.
На фиг.6 представлен способ мультиплексирования информации управления и данных в соответствии со вторым примерным вариантом выполнения настоящего изобретения.
Второй вариант выполнения отличается от первого варианта выполнения тем, что информацию 602 управления передают после распределения среди множества блоков символов в пределах одного TTI 600. Суть второго примерного варианта выполнения настоящего изобретения состоит в том, что информацию 602 управления мультиплексируют с данными в каждом периоде 604 блока символов и передают после распределения по множеству периодов блоков символов в TTI 600, получая, таким образом, разнесение по времени в канале с затуханием, что может обеспечить возможность улучшить рабочие характеристики детектирования информации управления. Как показано на фиг.6, в периоде блока символов, в котором мультиплексированы данные и информация управления, информация управления включает в себя K символов, данные включают в себя (М-K) символов, и информация управления и данные применяют для входных индексов 0~(K-1) и K~(М-1) модуля 610 FFT соответственно. Параметры K и М имеют значения, которые определяют по количеству необходимой информации управления и количеству данных, предназначенных для передачи, соответственно.
В первом примерном варианте выполнения настоящего изобретения, с учетом применяемой схемы модуляции и кодирования, количество всех символов, отображение входов FFT и т.д. в информации 602 управления определяют заранее между передатчиком и приемником, при этом приемник может демодулировать и декодировать информацию управления на основе заранее определенного формата передачи информации управления. Кроме того, во втором примерном варианте выполнения настоящего изобретения возможно передавать пилот-сигнал 606 в четвертом периоде блока символов в пределах одного TTI, для уменьшения издержек на пилот-сигнал, по сравнению со случаем первого примерного варианта выполнения настоящего изобретения.
В первом примерном варианте выполнения настоящего изобретения сигнал передачи отображают на вход 612 модуля IFFT в соответствии с технологией IFDMA или LFDMA после пропускания через модуль 610 FFT, обработки с помощью модуля 614 IFFT и с последующей передачей вместе с прикрепленным к ним CP. Структура приемника для обработки сигнала передачи, в принципе, аналогична структуре первого примерного варианта выполнения, показанной на фиг.5 и 8. В отличие от первого варианта выполнения демодуляцию и декодирование символов данных выполняют после получения информации управления в ходе приема, демодуляции и декодирования всех символов информации управления, распределенных среди множества периодов блоков символов.
Блок-схемы последовательности выполнения операций, показанные на фиг.8 и 9, в соответствии с первым примерным вариантом выполнения настоящего изобретения применимы для второго примерного варианта выполнения настоящего изобретения.
На фиг.7 показана структура отображения выходов IFFT на демодулятор/декодер информации управления и демодулятор/декодер данных в приемнике в соответствии с первым или вторым примерными вариантами выполнения настоящего изобретения.
Как показано на фиг.7, в приемнике выходы с индексами 0~(K-1) и K~(М-1) применяют для демодулятора/декодера 702 информации управления и демодулятора/декодера 704 данных соответственно. Каждый демодулятор/декодер 702 или 704 может выполнять нормальную демодуляцию и декодирование информации управления и данных.
В соответствии с примерным вариантом выполнения настоящего изобретения, как описано выше, данные и информацию управления мультиплексируют в одном и том блоке символов и затем передают с помощью одной несущей, с использованием схемы LFDMA или IFDMA. Поэтому примерный вариант выполнения настоящего изобретения позволяет улучшить эффективность использования ресурсов и достичь более низкого отношения пиковой к средней мощности (PAPR) по сравнению с существующим способом мультиплексирования с временным разделением или частотным разделением.
Хотя настоящее изобретение было представлено и описано со ссылкой на определенные примерные варианты его выполнения, для специалистов в данной области техники будет понятно, что различные изменения в форме и деталях могут быть выполнены без отхода от сущности и объема изобретения в том виде, как они определены приложенной формулой изобретения и ее эквивалентами.

Claims (20)

1. Устройство для передачи данных в системе связи на основе множественного доступа с частотным разделением, содержащее
генератор блоков символов, предназначенный для генерирования блока символов в период блока символов в пределах одного интервала времени передачи (TTI), когда информация управления, предназначенная для передачи, присутствует в TTI, причем блок символов содержит информацию управления и данные, предназначенные для передачи, и TTI содержит множество периодов блоков символов;
модуль быстрого преобразования Фурье (FFT), предназначенный для выполнения FFT над блоком символов; и
модуль обратного быстрого преобразования Фурье (IFFT), предназначенный для выполнения IFFT над сигналами, поступающими с выхода модуля FFT и с последующей передачей этих сигналов.
2. Устройство по п.1, в котором информация управления содержит, по меньшей мере, одну из информации модуляции передаваемых данных, информацию кодирования канала, информацию, относящуюся к количеству символов, и информацию FFT отображения.
3. Устройство по п.1, в котором генератор блоков символов генерирует блоки символов, содержащие, по меньшей мере, одни из сигналов данных и пилот-сигналов в другие периоды блоков символов в пределах TTI.
4. Способ передачи данных в системе связи на основе множественного доступа с частотным разделением, содержащий
генерирование блока символов в период блока символов в пределах одного интервала времени передачи (TTI), когда информация управления, предназначенная для передачи, присутствует в TTI, в котором блок символов содержит информацию управления и данные, предназначенные для передачи, и TTI содержит множество периодов блоков символов;
выполнение быстрого преобразования Фурье (FFT) над блоком символов; и
выполнение обратного быстрого преобразования Фурье (IFFT) над сигналами после обработки FFT и с последующей передачей сигналов после обработки IFFT.
5. Способ по п.4, в котором информация управления содержит, по меньшей мере, одну из информации модуляции, информации кодирования канала, информации, относящейся к количеству символов, и информации отображения FFT.
6. Способ по п.4, в котором во время генерирования блоки символов, содержащие, по меньшей мере, одни из сигналов данных и пилот-сигналов генерируют в другие периоды блоков символов в пределах TTI.
7. Устройство, предназначенное для приема данных в системе связи на основе множественного доступа с частотным разделением, содержащее
модуль быстрого преобразования Фурье (FFT), предназначенный для приема сигналов, принятых в течение одного периода блока символов, и для выполнения обработки FFT над этими сигналами;
модуль обратного быстрого преобразования Фурье (IFFT), предназначенный для выполнения IFFT над сигналами, поступающими с выхода модуля FFT, в результате чего восстанавливают блоки символов;
демодулятор/декодер информации управления, предназначенный для приема символов модуляции, соответствующих выходным индексам IFFT среди блоков символов, и демодуляции и декодирования символов модуляции, выводя, таким образом, информацию управления, когда период блока символов содержит период блока символов, в котором мультиплексированы данные и информация управления; и
демодулятор/декодер данных, предназначенный для приема символов модуляции, соответствующих другим выходным индексам IFFT, за исключением индексов, соответствующих информации управления среди блоков символов, путем использования информации управления, демодуляции и декодирования принятых символов модуляции, и с последующим выводом данных.
8. Устройство по п.7, дополнительно содержащее
блок оценки канала, предназначенный для генерирования информации оценки канала, путем использования символов пилот-сигнала, выводимых из модуля FFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
компенсатор канала, предназначенный для канальной компенсации блока символов содержащего данные и информацию управления, поступающего с выхода модуля FFT, путем использования информации оценки канала, с последующим выводом блока символов в модуль IFFT.
9. Устройство по п.7, дополнительно содержащее
блок оценки канала, предназначенный для генерирования информации оценки канала, путем использования символов пилот-сигнала, поступающих с выхода модуля IFFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
компенсатор канала, предназначенный для канальной компенсации блока символов, содержащего данные и информацию управления, поступающего с выхода модуля FFT, путем использования информации оценки канала, с последующим выводом блока символов в модуль IFFT.
10. Устройство по п.7, дополнительно содержащее
блок оценки канала, предназначенный для генерирования информации оценки канала, путем использования символов пилот-сигнала, поступающих с выхода модуля IFFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
компенсатор канала, предназначенный для канальной компенсации блока символов, содержащего данные и информацию управления, поступающего с выхода модуля IFFT, путем использования информации оценки канала с последующим выводом блока символов в демодулятор.
11. Устройство по п.7, дополнительно содержащее
блок оценки канала, предназначенный для генерирования информации оценки канала, путем использования символов пилот-сигнала, выводимых из модуля IFFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
компенсатор канала, предназначенный для канальной компенсации блока символов, содержащего данные и информацию управления, выводимого из модуля FFT, путем использования информации оценки канала и с последующим выводом блока символов в демодулятор.
12. Устройство по п.7, в котором информация управления содержит, по меньшей мере, одну из информации модуляции, информации кодирования канала, информации, относящейся к количеству символов, и информации отображения FFT.
13. Устройство по п.7, в котором, когда период блока символов содержит период блока символов, содержащий данные, демодулятор/декодер данных принимает блоки символов, содержащие данные, из модуля IFFT, и затем демодулирует и декодирует блоки символов, выводя, таким образом, данные.
14. Способ приема данных в системе связи, основанной на множественном доступе с частотным разделением, содержащий
прием сигналов, принимаемых в течение одного периода блоков символов и выполнение быстрого преобразования Фурье (FFT) над сигналами с помощью модуля FFT;
восстановление блоков символов из сигналов, обработанных FFT, с помощью модуля обратного быстрого преобразования Фурье (IFFT);
прием символов модуляции, соответствующих выходным индексам IFFT, среди блоков символов, поступающих из модуля IFFT, когда период блока символов содержит период блока символов, в котором мультиплексированы данные и информация управления, и демодуляцию и декодирование символов модуляции, в результате чего выводят информацию управления; и
прием символов модуляции, соответствующих другим выходным индексам IFFT, за исключением индексов, соответствующих информации управления, среди блоков символов, из модуля IFFT, путем использования информации управления, демодуляцию и декодирование принятых символов модуляции с последующим выводом данных.
15. Способ по п.14, дополнительно содержащий
генерирование информации оценки канала путем использования символов пилот-сигнала, поступающих с выхода модуля FFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
канальную компенсацию блока символа, содержащего данные и информацию управления, поступающего с выхода модуля FFT, путем использования информации оценки канала с последующим выводом блока символов в модуль IFFT.
16. Способ по п.14, дополнительно содержащий
генерирование информации оценки канала путем использования символов пилот-сигнала, поступающих с выхода модуля IFFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
канальную компенсацию блока символа, содержащего данные и информацию управления, поступающего с выхода модуля FFT, путем использования информации оценки канала с последующим выводом блока символов в модуль IFFT.
17. Способ по п.14, дополнительно содержащий
генерирование информации оценки канала путем использования символов пилот-сигнала, выводимых из модуля FFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
канальную компенсацию блока символов, содержащего данные и информацию управления, выводимые из модуля IFFT, путем использования информации оценки канала, с последующим выводом блока символов в демодулятор.
18. Способ по п.14, дополнительно содержащий
генерирование информации оценки канала путем использования символов пилот-сигнала, поступающих с выхода модуля IFFT, когда период блока символов содержит период блока символов, содержащий пилот-сигнал; и
канальную компенсацию блока символов, содержащего данные и информацию управления, поступающего с выхода модуля FFT, путем использования информации оценки канала с последующим выводом блока символов в демодулятор.
19. Способ по п.14, в котором информация управления содержит, по меньшей мере, одну из информации модуляции, информации кодирования канала, информации, относящейся к количеству символов, и информации отображения FFT.
20. Способ по п.14, в котором в течение приема символов модуляции, когда период блока символов содержит период блока символов, содержащий данные, блоки символов, содержащие данные, предоставляют из модуля IFFT, и затем демодулируют и декодируют, в результате чего выводят данные.
RU2006115276/09A 2005-05-03 2006-05-03 Способ и устройство для мультиплексирования данных и информации управления в системах беспроводной связи на основе множественного доступа с частотным разделением RU2320087C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050037294A KR100724949B1 (ko) 2005-05-03 2005-05-03 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
KR10-2005-0037294 2005-05-03

Publications (1)

Publication Number Publication Date
RU2320087C2 true RU2320087C2 (ru) 2008-03-20

Family

ID=36649568

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006115276/09A RU2320087C2 (ru) 2005-05-03 2006-05-03 Способ и устройство для мультиплексирования данных и информации управления в системах беспроводной связи на основе множественного доступа с частотным разделением

Country Status (15)

Country Link
US (4) US7613245B2 (ru)
EP (2) EP1720310B1 (ru)
JP (1) JP4319665B2 (ru)
KR (1) KR100724949B1 (ru)
CN (1) CN1863181B (ru)
AU (1) AU2006201869B2 (ru)
DK (2) DK3454516T3 (ru)
ES (2) ES2958746T3 (ru)
FI (1) FI3454516T3 (ru)
HU (2) HUE055073T2 (ru)
LT (1) LT3454516T (ru)
PL (2) PL1720310T3 (ru)
PT (2) PT1720310T (ru)
RU (1) RU2320087C2 (ru)
SI (2) SI1720310T1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470467C2 (ru) * 2008-05-07 2012-12-20 Квэлкомм Инкорпорейтед Пакетирование информации аск в системе беспроводной связи
RU2684636C1 (ru) * 2018-05-25 2019-04-11 Общество с ограниченной ответственностью "НИРИТ-СИНВЭЙ Телеком Технолоджи" Способ передачи данных на основе OFDM-сигналов

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135088B2 (en) 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US7715460B2 (en) 2005-04-22 2010-05-11 Interdigital Technology Corporation Hybrid orthogonal frequency division multiple access system and method
KR100724949B1 (ko) * 2005-05-03 2007-06-04 삼성전자주식회사 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
CA2605556C (en) * 2005-06-22 2013-06-11 Yong-Jun Kwak Method and transmission apparatus for allocating resources to transmit uplink packet data in an orthogonal frequency division multiplexing system
TW200733622A (en) * 2006-01-17 2007-09-01 Interdigital Tech Corp Method and apparatus for mapping an uplink control channel to a physical channel in a single carrier frequency division multiple access system
US7623487B2 (en) * 2006-05-24 2009-11-24 Nortel Networks Limited OFDM system and method for supporting a wide range of mobility speeds
US8374161B2 (en) 2006-07-07 2013-02-12 Qualcomm Incorporated Method and apparatus for sending data and control information in a wireless communication system
US9143288B2 (en) * 2006-07-24 2015-09-22 Qualcomm Incorporated Variable control channel for a wireless communication system
JP5259409B2 (ja) 2006-08-18 2013-08-07 パナソニック株式会社 基地局装置および制御チャネル配置方法
US8363606B2 (en) * 2006-09-05 2013-01-29 Qualcomm Incorporated Method and apparatus for data and control multiplexing
US7848446B2 (en) * 2006-09-27 2010-12-07 Telefonaktiebolaget L M Ericsson (Publ) Reduction of peak-to-average-power ratio in a telecommunications system
WO2008041110A2 (en) 2006-10-04 2008-04-10 Nokia Corporation Method for symbol multiplexing control and data channel
WO2008047874A1 (fr) * 2006-10-19 2008-04-24 Nec Corporation Dispositif de génération de signal, procédé et son programme dans un système de transmission par hyperfréquences
KR101060884B1 (ko) * 2006-10-31 2011-08-31 콸콤 인코포레이티드 무선 통신 시스템을 위한 ack 자원들을 증가시키는 방법 및 장치
RU2433535C2 (ru) 2006-11-01 2011-11-10 Квэлкомм Инкорпорейтед Мультиплексирование управляющей информации и данных с переменными смещениями по мощности в системе множественного доступа с частотным разделением каналов с одной несущей (sc-fdma)
KR101288215B1 (ko) * 2006-11-17 2013-07-18 삼성전자주식회사 이동 통신 시스템에서 데이터 송수신 방법 및 장치
JP4930006B2 (ja) * 2006-11-22 2012-05-09 日本電気株式会社 移動通信装置、移動通信システム及びそれに用いる消費電力削減方法
US8954105B2 (en) * 2006-12-18 2015-02-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data and control information through an uplink in a wireless communication system
KR101351020B1 (ko) * 2007-01-04 2014-01-16 엘지전자 주식회사 이동 통신 시스템에서의 제어 신호 다중화 방법
US8223854B2 (en) * 2007-01-10 2012-07-17 Motorola Mobility, Inc. Method and apparatus for transmission of uplink control signaling and user data in a single carrier orthogonal frequency division multiplexing communication system
KR101372927B1 (ko) 2007-01-22 2014-03-12 삼성전자주식회사 디지털 방송수신기 및 그 채널 선국 방법
KR100987266B1 (ko) 2007-02-14 2010-10-12 삼성전자주식회사 단일 반송파 주파수 분할 다중접속 시스템에서 제어정보 송수신 방법 및 장치
WO2008112314A1 (en) * 2007-03-14 2008-09-18 Interdigital Technology Corporation Transmission of ack/nack and transmit power control feedback in evolved utra
US8831042B2 (en) 2007-03-29 2014-09-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US8331328B2 (en) 2007-06-08 2012-12-11 Samsung Electronic Co., Ltd Control and data signaling in SC-FDMA communication systems
KR100956494B1 (ko) 2007-06-14 2010-05-07 엘지전자 주식회사 제어신호 전송 방법
JP4916389B2 (ja) * 2007-06-19 2012-04-11 株式会社エヌ・ティ・ティ・ドコモ 無線通信制御方法、基地局装置、およびユーザ装置
WO2008156293A2 (en) 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
EP2846560B1 (en) * 2007-07-06 2016-12-28 Huawei Technologies Co., Ltd. Mobile communication system, method and mobile station device
US8467367B2 (en) * 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
US8542697B2 (en) 2007-08-14 2013-09-24 Lg Electronics Inc. Method of transmitting data in a wireless communication system
PL3806365T3 (pl) 2007-08-14 2022-12-27 Lg Electronics Inc. Sposób uzyskiwania informacji o regionie zasobu dla phich
KR101405974B1 (ko) 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
KR101507785B1 (ko) 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
BRPI0816715B1 (pt) * 2007-09-12 2020-05-05 Apple Inc sistemas e métodos para sinalização de enlace ascendente.
KR101531416B1 (ko) 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 상향링크 신호 전송 방법
US7970067B1 (en) * 2007-10-31 2011-06-28 Samsung Electronics Co., Ltd. OFDM receiver and method for enhancing channel estimation performance in communication environment where high doppler frequency exists
ES2519766T3 (es) 2007-12-20 2014-11-07 Optis Wireless Technology, Llc Señalización de canal de control usando un campo de señalización común para el formato de trnasporte y la versión de redundancia
JP5061892B2 (ja) 2007-12-28 2012-10-31 富士通株式会社 無線通信システムにおける信号多重方法、送信局及び受信局
WO2009134094A2 (ko) * 2008-04-30 2009-11-05 엘지전자주식회사 무선통신 시스템에서 제어신호 전송 방법 및 장치
KR101441147B1 (ko) 2008-08-12 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
US8121232B2 (en) 2008-11-06 2012-02-21 Lg Electronics Inc. Transmitting/receiving system and method of processing broadcast signal in transmitting/receiving system
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
KR101587281B1 (ko) * 2009-03-12 2016-01-20 삼성전자주식회사 통신 시스템에서 제어 정보를 부호화하는 방법과 그 제어 정보를 송수신하는 방법 및 장치
CN102077627B (zh) * 2009-04-30 2013-03-27 华为技术有限公司 一种上行信号的处理方法、基站和用户终端
KR101784189B1 (ko) * 2009-10-28 2017-10-12 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어정보 전송 방법 및 장치
US9094083B2 (en) * 2010-05-18 2015-07-28 Qualcomm Incorporated Systems, apparatus and methods to facilitate efficient repeater usage
WO2012058648A2 (en) 2010-10-29 2012-05-03 Neocific, Inc. Transmission of synchronization and control signals in a broadband wireless system
KR101452022B1 (ko) * 2010-11-09 2014-10-23 한국전자통신연구원 변조방식에 따라 고속퓨리에 변환기의 입력비트를 제공하는 수신장치 및 방법
CN104969522B (zh) 2012-12-21 2019-03-15 三星电子株式会社 在无线通信系统中使用调制技术收发信号的方法和设备
US10826663B2 (en) * 2013-03-13 2020-11-03 Huawei Technologies Co., Ltd. System and method for determining a pilot signal
US9716573B2 (en) 2014-06-13 2017-07-25 Futurewei Technologies, Inc. Aggregated touchless wireless fronthaul
US10404441B2 (en) 2014-11-11 2019-09-03 Electronics And Telecommunications Research Institute Method and apparatus for configuring transmission time interval in mobile communication system
US9755779B2 (en) * 2015-04-17 2017-09-05 Futurewei Technologies, Inc. Digital representations of analog signals and control words using different multi-level modulation formats
US10868650B2 (en) * 2015-05-27 2020-12-15 Qualcomm Incorporated Pilot reconfiguration and retransmission in wireless networks
US10027413B2 (en) 2015-06-18 2018-07-17 Futurewei Technologies, Inc. Cascaded waveform modulation with an embedded control signal for high-performance mobile fronthaul
CN113726495A (zh) 2016-08-01 2021-11-30 诺基亚技术有限公司 用于数据传输的控制资源的使用
EP3591919A1 (en) * 2018-07-05 2020-01-08 Nxp B.V. Signal communication with decoding window
US11689343B2 (en) * 2020-04-15 2023-06-27 Qualcomm Incorporated Peak suppression information multiplexing on downlink shared channel

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659569A (en) 1990-06-25 1997-08-19 Qualcomm Incorporated Data burst randomizer
US5151919A (en) 1990-12-17 1992-09-29 Ericsson-Ge Mobile Communications Holding Inc. Cdma subtractive demodulation
US5396516A (en) 1993-02-22 1995-03-07 Qualcomm Incorporated Method and system for the dynamic modification of control paremeters in a transmitter power control system
US5790551A (en) 1995-11-28 1998-08-04 At&T Wireless Services Inc. Packet data transmission using dynamic channel assignment
DE19617293A1 (de) * 1996-04-30 1997-11-20 Bosch Gmbh Robert Verfahren zum Aufbau eines Transportdatenstromes
US5859840A (en) 1996-05-31 1999-01-12 Qualcomm Incorporated Spread spectrum communication system which defines channel groups comprising selected channels that are additional to a primary channel and transmits group messages during call set up
JP3254390B2 (ja) 1996-10-18 2002-02-04 三菱電機株式会社 送信電力制御装置
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
CN1231089A (zh) 1997-07-01 1999-10-06 株式会社高级数字电视广播系统研究所 正交频分复用传输方式及其发送装置和接收装置
US6301237B1 (en) * 1997-12-30 2001-10-09 Matsushita Electric Industrial Co., Ltd. CDMA radio multiplex transmitting device and a CDMA radio multiplex receiving device
US6356569B1 (en) * 1997-12-31 2002-03-12 At&T Corp Digital channelizer with arbitrary output sampling frequency
EP0967763B1 (en) * 1998-06-29 2004-12-01 Alcatel Multicarrier receiver with per-carrier RLS frequency domain equalisation
JP3812203B2 (ja) 1999-02-17 2006-08-23 三菱電機株式会社 導波管スロットアレイアンテナ
EP1079576A3 (en) * 1999-08-25 2003-05-07 Matsushita Electric Industrial Co., Ltd. Multicarrier receiver with direct extraction of a control signal
US6798791B1 (en) 1999-12-16 2004-09-28 Agere Systems Inc Cluster frame synchronization scheme for a satellite digital audio radio system
KR100748490B1 (ko) * 2000-01-28 2007-08-13 엘지전자 주식회사 디브이비-티 수신 시스템의 티피에스 추출 장치
AU2001269484A1 (en) * 2000-07-10 2002-01-21 Matsushita Electric Industrial Co., Ltd. Multi-carrier communication device and peak power suppressing method
KR100781969B1 (ko) * 2001-03-26 2007-12-06 삼성전자주식회사 직교 주파수 분할 다중 접속에 기반한 데이타 통신 장치및 방법
KR100375350B1 (ko) * 2001-03-26 2003-03-08 삼성전자주식회사 직교 주파수 분할 다중 접속에 기반한 데이타 통신 장치및 방법
DE10115221A1 (de) * 2001-03-28 2002-10-10 Bosch Gmbh Robert Verfahren zur Rahmen- und Frequenzsynchronisation eines OFDM-Signals und Verfahren zum Senden eines OFDM-Signals
CN1159911C (zh) * 2002-02-01 2004-07-28 清华大学 低峰值平均功率比的时域同步正交频分复用调制方法
JP2003309533A (ja) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置及びその方法
KR100770912B1 (ko) * 2003-06-16 2007-10-26 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법
WO2005015775A1 (en) * 2003-08-11 2005-02-17 Nortel Networks Limited System and method for embedding ofdm in cdma systems
KR100511554B1 (ko) * 2003-09-02 2005-08-31 한국전자통신연구원 Ofdma fdd 기반 시스템에서의 순방향 채널 구성방법 및 순방향 채널 할당 방법
US7221680B2 (en) * 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
EP1521413A3 (en) * 2003-10-01 2009-09-30 Panasonic Corporation Multicarrier reception with channel estimation and equalisation
JP3877215B2 (ja) * 2003-10-10 2007-02-07 株式会社インテリジェント・コスモス研究機構 送信装置、通信システムおよび通信方法
US8526412B2 (en) * 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
KR100891806B1 (ko) * 2003-11-26 2009-04-07 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 적응적 채널할당을 위한 채널 상태 추정 장치 및 방법
US8135088B2 (en) 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US8031583B2 (en) * 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
KR100724949B1 (ko) * 2005-05-03 2007-06-04 삼성전자주식회사 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
US8019006B2 (en) * 2005-05-19 2011-09-13 Samsung Electronics Co., Ltd. Apparatus and method for FT pre-coding of data and control signals to reduce PAPR in a multi-carrier wireless network
JP4432933B2 (ja) * 2005-07-08 2010-03-17 セイコーエプソン株式会社 画像表示装置および画像表示方法
TW200733622A (en) * 2006-01-17 2007-09-01 Interdigital Tech Corp Method and apparatus for mapping an uplink control channel to a physical channel in a single carrier frequency division multiple access system
US20070189151A1 (en) * 2006-02-10 2007-08-16 Interdigital Technology Corporation Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
JP5121404B2 (ja) * 2006-11-15 2013-01-16 パナソニック株式会社 スペクトル拡散型レーダ装置用半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470467C2 (ru) * 2008-05-07 2012-12-20 Квэлкомм Инкорпорейтед Пакетирование информации аск в системе беспроводной связи
US8634333B2 (en) 2008-05-07 2014-01-21 Qualcomm Incorporated Bundling of ACK information in a wireless communication system
RU2684636C1 (ru) * 2018-05-25 2019-04-11 Общество с ограниченной ответственностью "НИРИТ-СИНВЭЙ Телеком Технолоджи" Способ передачи данных на основе OFDM-сигналов

Also Published As

Publication number Publication date
SI1720310T1 (sl) 2021-09-30
PT1720310T (pt) 2021-07-14
ES2958746T3 (es) 2024-02-14
SI3454516T1 (sl) 2024-02-29
PT3454516T (pt) 2024-02-02
US20090245412A1 (en) 2009-10-01
DK3454516T3 (da) 2023-12-18
DK1720310T3 (da) 2021-07-12
ES2879325T3 (es) 2021-11-22
JP4319665B2 (ja) 2009-08-26
HUE055073T2 (hu) 2021-10-28
EP3454516A1 (en) 2019-03-13
KR100724949B1 (ko) 2007-06-04
HUE064796T2 (hu) 2024-04-28
US20110170533A1 (en) 2011-07-14
EP3454516B1 (en) 2023-09-20
US20100172337A1 (en) 2010-07-08
US8571122B2 (en) 2013-10-29
US7929590B2 (en) 2011-04-19
AU2006201869A1 (en) 2006-11-23
CN1863181B (zh) 2010-11-24
PL1720310T3 (pl) 2021-10-25
JP2006314110A (ja) 2006-11-16
LT3454516T (lt) 2024-01-10
EP1720310B1 (en) 2021-06-16
EP1720310A2 (en) 2006-11-08
AU2006201869B2 (en) 2008-02-21
PL3454516T3 (pl) 2024-02-05
KR20060115027A (ko) 2006-11-08
US7613245B2 (en) 2009-11-03
CN1863181A (zh) 2006-11-15
EP1720310A3 (en) 2012-03-14
FI3454516T3 (fi) 2023-12-19
US20060262871A1 (en) 2006-11-23
US7697631B2 (en) 2010-04-13

Similar Documents

Publication Publication Date Title
RU2320087C2 (ru) Способ и устройство для мультиплексирования данных и информации управления в системах беспроводной связи на основе множественного доступа с частотным разделением
US7580400B2 (en) Apparatus and method for generating preamble signal for cell identification in an orthogonal frequency division multiplexing system
EP1917773B1 (en) Configurable pilots in a wireless communication system
RU2327290C2 (ru) Устройство и способ приема и передачи общей управляющей информации в системе беспроводной связи
EP1603266B1 (en) Method and apparatus for transmitting uplink acknowledgement information in an OFDMA communication system
AU2005205716B2 (en) Modulating and coding apparatus and method in a high-rate wireless data communication system
EP2286562B1 (en) Methods and arrangements in a wireless communication system for producing signal structure with cyclic prefix
EP1971064B1 (en) Initial access channel for scalable wireless mobile communication networks
EP1492280A1 (en) Quality driven adaptive channel assignment in an OFDMA radio communication system
EP1850548A1 (en) Method and apparatus for the detection of common control channel in an OFDMA cellular communication system
EP1298948A1 (en) Radio base station and communication terminal
WO2008032979A1 (en) Apparatus and method for transmitting a control channel message in a mobile communication system
US20040257981A1 (en) Apparatus and method for transmitting and receiving pilot patterns for identifying base stations in an OFDM communication system
EP1777869B1 (en) Apparatus and method for channel scheduling in an OFDM system
US8320493B2 (en) Wireless communication system
KR101319626B1 (ko) 하향링크 제어정보 전송 방법 및 이동통신 시스템
EP1999859B1 (en) Apparatus and method for efficiently transmitting/receiving a control channel in a mobile communication system simultaneously supporting a synchronous hrpd system and an ofdm system
KR20070046695A (ko) 다수의 부 반송파를 이용하여 데이터를 송수신하는 방법

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20111117