RU2311339C2 - Получение водорода - Google Patents

Получение водорода

Info

Publication number
RU2311339C2
RU2311339C2 RU2004111010/15A RU2004111010A RU2311339C2 RU 2311339 C2 RU2311339 C2 RU 2311339C2 RU 2004111010/15 A RU2004111010/15 A RU 2004111010/15A RU 2004111010 A RU2004111010 A RU 2004111010A RU 2311339 C2 RU2311339 C2 RU 2311339C2
Authority
RU
Russia
Prior art keywords
fuel composition
alkylation
hydrogen
hydrocarbon fuel
hydrocarbon
Prior art date
Application number
RU2004111010/15A
Other languages
English (en)
Other versions
RU2004111010A (ru
Inventor
Майкл Грэм ХОДЖЕЗ (GB)
Майкл Грэм ХОДЖЕЗ
Original Assignee
Бп П.Л.К.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бп П.Л.К. filed Critical Бп П.Л.К.
Publication of RU2004111010A publication Critical patent/RU2004111010A/ru
Application granted granted Critical
Publication of RU2311339C2 publication Critical patent/RU2311339C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1666Measuring the amount of product the product being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Изобретение относится к способу получения водорода для топливного элемента. Способ получения водорода для топливного элемента из углеводородной топливной композиции включает следующие стадии: подготовку углеводородной топливной композиции, которую получают: i) введением жидкого углеводородного сырья, включающего алкилирующий агент, в контакт с кислотным катализатором в условиях, эффективных для алкилирования, по меньшей мере, части углеводородного сырья, где жидкое углеводородное сырье дополнительно включает ароматические соединения, которые алкилируют на стадии алкилирования, и ii) выделение со стадии алкилирования низкокипящей фракции, включающей углеводороды и ароматические углеводороды с пониженной концентрацией, в качестве углеводородной топливной композиции, превращение углеводородной топливной композиции в водород и необязательное введение полученного водорода в топливный элемент. Изобретение позволяет повысить эффективность процесса. 9 з.п. ф-лы, 3 табл.

Description

Настоящее изобретение относится к способу получения водорода для топливного элемента.
Топливный элемент представляет собой электрохимическое устройство, которое совмещает водородное топливо и кислород из воздуха с получением электричества, тепла и воды. Топливный элемент работает без горения, что делает его чистым и эффективным источником энергии. Существует все возрастающий интерес к применению топливных элементов в качестве источника энергии для транспортных средств.
Водород, используемый в топливном элементе, можно хранить непосредственно или получать in-situ, например превращением углеводорода в водород, моноксид углерода и/или диоксид углерода. Этот процесс превращения можно проводить частичным окислением углеводорода в присутствии или отсутствии катализатора. По другому варианту углеводородное топливо можно превращать в водород реформингом с водяным паром необязательно в присутствии катализатора.
Были предприняты попытки облагораживания обычного автомобильного бензина с целью получения водорода для топливных элементов. Однако при осуществлении таких попыток возможно образование побочных продуктов, таких как кокс, который повреждает катализатор реформинга. Кроме того, сера, содержащаяся в бензине, может вызвать ухудшение эксплуатационных свойств как катализатора реформинга, так и блока топливных элементов.
В настоящее время найдена углеводородная топливная композиция, наличие которой позволяет уменьшить эти проблемы.
В соответствии с настоящим изобретением предлагается способ получения водорода для топливного элемента из углеводородной топливной композиции, включающий следующие стадии:
подготовка углеводородной топливной композиции, которую получают введением жидкого углеводородного сырья, включающего алкилирующий агент, в контакт с кислотным катализатором в условиях, эффективных для алкилирования по меньшей мере части углеводородного сырья;
превращение углеводородной топливной композиции в водород; и
необязательное введение полученного водорода в топливный элемент.
В предпочтительном варианте этот способ включает следующие стадии:
контактирование жидкого углеводородного сырья, включающего алкилирующий агент, с кислотным катализатором в условиях, эффективных для алкилирования по меньшей мере части жидкого углеводородного сырья;
выделение по меньшей мере части продукта со стадии алкилирования с получением углеводородной топливной композиции,
превращение углеводородной топливной композиции в водород и введение полученного водорода в топливный элемент.
Жидкое углеводородное сырье может кипеть в пределах от 10 до 345°С, предпочтительно в пределах от 10 до 249°С. Такие исходные материалы могут образовываться в процессе переработки нефти, а также в процессе очистки продуктов сжижения угля и переработки горючих сланцев и битуминозных песчаников. Такие исходные материалы как правило включают сложные смеси углеводородов. Примеры приемлемых исходных материалов включают легкий лигроин, тяжелый лигроин, бензин, керосин, бензин легкого крекинга, бензин каталитического крекинга, бензин установки для коксования и легкий рецикловый газойль. Эти исходные материалы можно подвергать селективной гидроочистке, например до или после их алкилирования. В предпочтительном варианте выполнения изобретения в качестве жидкого углеводородного сырья используют бензинолигроиновую фракцию из процесса каталитического крекинга или бензинолигроиновую фракцию селективной гидроочистки (например, из процесса каталитического крекинга). Приемлемые исходные материалы подробно представлены в патентах US 5863419, 6025534 и 6048451, содержание которых включено в настоящее описание в качестве ссылок.
Жидкое углеводородное сырье включает алкилирующий агент. Такие алкилирующие агенты можно добавлять в сырье или оно их содержит по своей природе. Приемлемые алкилирующие агенты включают олефины, спирты (например, первичные, вторичные и третичные спирты) и их смеси. Алкилирующий агент может включать от 3 до 20 углеродных атомов, более предпочтительно от 3 до 10 углеродных атомов.
В предпочтительном варианте выполнения изобретения в качестве алкилирующих агентов используют один или несколько олефинов. Подходящие олефины включают циклические олефины, замещенные циклические олефины и олефины формулы R1R2C=CR2R2, в которой R1 обозначает гидрокарбильную группу, а каждый R2 независимо обозначает водородный атом или гидрокарбильную группу. Предпочтительные олефины включают от 3 до 15 углеродных атомов, более предпочтительно от 4 до 10 углеродных атомов, например от 5 до 7 углеродных атомов. Такие олефины могут от природы содержаться в жидком углеводородном сырье или могут быть добавлены в сырье преднамеренно.
Примеры приемлемых циклических олефинов и замещенных циклических олефинов включают циклопентен, 1-метилциклопентен, циклогексен, 1-метилциклогексен, 3-метилциклогексен, 4-метилциклогексен, циклогептен, циклооктен и 4-метилциклооктен.
Примеры приемлемых олефинов формулы R1R2C=CR2R2 включают пропен, 2-метилпропен, 1-бутен, 2-бутен, 2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен, 2,3-диметил-1-бутен, 3,3-диметил-1-бутен, 2,3-диметил-2-бутен, 2-этил-1-бутен, 2-этил-3-метил-1-бутен, 2,3,3-триметил-1-бутен, 1-пентен, 2-пентен, 2-метил-1-пентен, 3-метил-1-пентен, 4-метил-1-пентен, 2,4-диметил-1-пентен, 1-гексен, 2-гексен, 3-гексен, 1,3-гексадиен, 1,4-гексадиен, 1,5-гексадиен, 2,4-гексадиен, 1-гептен, 2-гептен, 3-гептен, 1-октен, 2-октен, 3-октен и 4-октен.
В дополнение к алкилирующему агенту, жидкое углеводородное сырье может включать серусодержащие примеси. Такие серусодержащие примеси включают ароматические и неароматические соединения, в частности меркаптаны, тиофеновые и бензотиофеновые соединения. Конкретные примеры включают тиофен, 2-метилтиофен, 3-метилтиофен, 2,3-диметилтиофен, 2,5-диметилтиофен, 2-этилтиофен, 3-этилтиофен, бензотиофен, 2-метилбензотиофен, 2,3-диметилбензотиофен и 3-этилбензотиофен. Как более подробно изложено ниже, во время осуществления стадии алкилирования в сырье может быть алкилирована по меньшей мере часть серусодержащих материалов. В предпочтительном варианте алкилируют больше 30%, более предпочтительно больше 50%, а наиболее предпочтительно больше 90%, серусодержащих материалов.
Жидкое углеводородное сырье может также включать ароматические соединения, такие как толуол, о-, м-, п-ксилолы и триметилбензол. Эти материалы, как изложено ниже, также могут быть алкилированы на стадии алкилирования.
Жидкое углеводородное сырье может также включать диолефины. Однако концентрацию диолефинов в сырье можно понизить, например, селективной или обычной гидроочисткой.
Когда жидкое углеводородное сырье вводят в контакт с кислотным катализатором в условиях алкилирования, алкилируют по меньшей мере часть углеводородного сырья. Таким образом можно повысить концентрацию всех алкилированных материалов в сырье. Одновременно с этим можно понизить концентрацию в сырье всех алкилирующих агентов (например, олефинов). Когда в сырье содержатся олефины, они могут также олигомеризоваться или изомеризоваться с образованием более высокомолекулярных продуктов.
Примеры материалов, которые могут быть алкилированы на стадии алкилирования, включают серусодержащие примеси и ароматические соединения. Такие способные алкилироваться материалы алкилируют с получением более высокозамещенных и, следовательно, более высокомолекулярных продуктов. Так, например, тиофен может быть алкилирован с получением алкилированного тиофена, а меркаптаны могут быть алкилированы с получением более высших сульфидных материалов. Необходимо, разумеется, принять во внимание, что могут протекать реакции как моно-, так и полиалкилирования. Более подробно реакции алкилирования описаны в патентах US 5863419, 6025534 и 6048451, содержание которых включено в настоящее описание в качестве ссылок.
Поскольку алкилированным продуктам свойственны более высокие точки кипения, чем у их неалкилированных аналогов, часть жидкого углеводородного сырья на стадии алкилирования превращается в более высококипящие продукты. Эти более высококипящие продукты могут быть выделены, например, перегонкой в виде более высококипящей фракции. Температура выкипания этой более высококипящей фракции может составлять выше 170°С, предпочтительно выше 200°С, а более предпочтительно выше 220°С. Со стадии алкилирования также может быть выделена, например, перегонкой более низкокипящая фракция. Температура выкипания этой более низкокипящей фракции может составлять ниже 215°С, более предпочтительно ниже 180°С, например в пределах 100 и 175°С.
Эта более низкокипящая фракция может включать углеводороды и в более низкой концентрации серусодержащие примеси и/или ароматические соединения. Концентрация олефинов в более низкокипящей фракции также может быть пониженной, так как олефины, которые первоначально присутствуют в жидком углеводородном сырье, могут принимать участие в реакции либо алкилирования, либо/и полимеризации с образованием более высококипящих компонентов. В предпочтительном варианте в качестве углеводородной топливной композиции выделяют именно эту более низкокипящую фракцию. В дальнейшем эту углеводородную топливную композицию превращают в водород для топливного элемента.
В предпочтительном варианте на стадии алкилирования понижают концентрацию в углеводородном сырье одного или нескольких серусодержащих компонентов, содержание ароматических продуктов и содержание олефинов. На стадии алкилирования может повыситься содержание парафинов в углеводородном сырье. Таким образом бензину каталитического крекинга может быть придана еще большая приемлемость для применения при получении водорода для топливного элемента.
В предпочтительном варианте углеводородная топливная композиция, выделенная со стадии алкилирования, характеризуется:
содержанием олефинов меньше 40 мас.%, предпочтительно меньше 30 мас.%, более предпочтительно меньше 20 мас.%, а наиболее предпочтительно меньше 10 мас.%;
содержанием ароматических продуктов меньше 35 мас.%, предпочтительно меньше 25 мас.%, а более предпочтительно меньше 5 мас.%;
конечной температурой кипения (КТК) ниже 215°С, более предпочтительно ниже 180°С, например в пределах 100 и 175°С; и
содержанием серы меньше 60 част./млн, предпочтительно меньше 10 част./млн, более предпочтительно меньше 5 част./млн, наиболее предпочтительно меньше 2 част./млн.
Углеводородная топливная композиция может также характеризоваться содержанием бензола меньше 5 мас.%, предпочтительно меньше 1 мас.%. Содержание диолефинов в композиции может также составлять меньше 5 мас.%, предпочтительно меньше 1 мас.%, более предпочтительно меньше 0,1 мас.%.
Как сказано выше, из смеси реакции алкилирования можно выделять более высококипящую фракцию. Эта более высококипящая фракция как правило содержит высококипящие компоненты, включающие ароматические соединения и серусодержащие примеси. На стадии алкилирования некоторые из этих высококипящих компонентов могут быть подвергнуты алкилированию, тогда как другие не могут быть подвергнуты алкилированию. Неалкилированные примеси включают мультизамещенные тиофены, бензотиофен и замещенный бензотиофен.
Более высококипящая фракция может быть дополнительно алкилирована введением этой фракции в условиях алкилирования в контакт с кислотным катализатором. Для содействия осуществлению второй стадии алкилирования в реакционную смесь можно добавлять необязательный дополнительный алкилирующий агент. В процессе алкилирования по меньшей мере часть более высококипящей фракции превращается в более высококипящие компоненты. Эти более высококипящие компоненты могут быть выделены, например, фракционной перегонкой. С этой второй стадии алкилирования может быть также выделена вторая более низкокипящая фракция.
Эта вторая более низкокипящая фракция обычно характеризуется пониженной концентрацией серусодержащих примесей и/или ароматических соединений. Вторая более низкокипящая фракция может быть выделена в виде углеводородной топливной композиции и превращена в водород для топливного элемента. Может оказаться возможным смешение второй более низкокипящей фракции с первой более низкокипящей фракцией с получением углеводородной топливной композиции, которая приемлема для превращения в водород.
Стадию алкилирования можно повторять с использованием второй и последующих более высококипящих фракции с получением третьей и последующих более высоко- и более низкокипящих фракций.
На стадии алкилирования в настоящем изобретении можно использовать любой подходящий кислотный катализатор. Приемлемые кислотные катализаторы подробно представлены в патентах США 5863419, 6025534, 6048451 и 6059962, которые включены в настоящее описание в качестве ссылок. Такие кислоты включают кислоты Бренстеда, в частности фосфорную кислоту, серную кислоту, борную кислоту, HF, фторсульфоновую кислоту, трифторметансульфоновую кислоту и дигидроксифторборную кислоту. Приемлемыми могут оказаться также кислоты Льюиса, такие как BF3, BCl3, AlCl3, AlBr3, FeCl2, FeCl3, ZnCl2, SbF5, SbCl5 и сочетания AlCl3 и HCl. Такой кислотный катализатор может быть нанесен или не нанесен на носитель. В предпочтительном варианте в качестве катализатора используют твердую фосфорную кислоту.
Реакцию алкилирования можно проводить при повышенной температуре. Так, например, температура может превышать 50°С, предпочтительно превышать 100°С, а более предпочтительно превышать 125°С. В предпочтительном варианте реакцию алкилирования проводят при температуре от 100 до 350°С, предпочтительно от 125 до 250°С. Когда осуществляют многочисленные стадии алкилирования, на каждой последующей стадии алкилирования температура алкилирования может быть отличной от остальных.
Реакционное давление находится в интервале от 0,01 до 200 ат, предпочтительно от 1 до 100 ат. Другие подробности, касающиеся приемлемых условий алкилирования, описаны в US 5863419, US 6025534, US 6048451 и US 6059962.
В предпочтительном варианте способ настоящего изобретения далее включает стадию гидродесульфуризации. Такую реакцию гидродесульфуризации можно проводить перед, одновременно или после стадии алкилирования. В предпочтительном варианте углеводородную топливную композицию, выделенную в результате реакции алкилирования, гидродесульфурируют для дополнительного снижения концентрации серы. Можно применять обычные и/или селективные методы гидродесульфуризации. После гидродесульфуризации углеводородную топливную композицию можно превращать в водород.
В дополнение или в качестве альтернативы стадии гидродесульфуризации углеводородную топливную композицию целиком или какую-либо ее подфракцию можно пропускать через устройство для десульфуризации, такое как ловушка для серы. Такое устройство может представлять собой систему на жидкостной, жидкостно/жидкостной или твердой основе, которая может быть использована для удаления из углеводородной топливной композиции любых серусодержащих примесей, например, адсорбцией, абсорбцией или каким-либо иным путем. Ловушки для серы могут быть особенно эффективными при удалении из углеводородной топливной композиции сульфидных и меркаптановых примесей.
Углеводородная топливная композиция может характеризоваться октановым числом, определенным по моторному методу (МОЧ), по меньшей мере 80 и октановым числом, определенным исследованиями (ОЧИ), по меньшей мере 90. В предпочтительном варианте топливная композиция обладает МОЧ по меньшей мере 85 и ОЧИ по меньшей мере 95.
Углеводородная топливная композиция может характеризоваться упругостью пара по Рейду (УПР) до 100, предпочтительно от 35 до 100, более предпочтительно от 45 до 100, кПа.
Плотность углеводородной топливной композиции может составлять больше 0,4 г/см3, предпочтительно больше 0,5 г/см3, более предпочтительно больше 0,7 г/см3, а наиболее предпочтительно находится в пределах 0,7 и 0,8 г/см3
Способ настоящего изобретения далее может включать стадию введения в углеводородную топливную композицию одной или нескольких присадок перед превращением этой углеводородной топливной композиции в водород. Приемлемые присадки включают те присадки, которые используют в обычном бензине для двигателей внутреннего сгорания. К таким присадкам относятся моющие присадки, придающие стабильность присадки, антиоксиданты, дезактиваторы металлов и любые другие присадки, которые давали бы возможность использовать углеводородное топливо в качестве топлива для двигателей внутреннего сгорания. Углеводородную топливную композицию можно превращать в водород с применением любой приемлемой технологии. Так, например, можно воспользоваться частичным окислением и/или реформингом. Как правило углеводородную топливную композицию превращают в поток продуктов, включающих водород, моноксид углерода и/или диоксид углерода. Обычно образуются как моноксид углерода, так и диоксид углерода. Так, например, мольное соотношение между моноксидом углерода и диоксидом углерода в потоке продуктов составляет от 0,1:1 до 10:1.
В одном варианте выполнения изобретения углеводородную топливную композицию превращают в водород реакцией этой композиции с водяным паром в условиях реформинга с водяным паром с получением водорода, моноксида углерода и/или диоксида углерода. Реформинг с водяным паром можно проводить либо в отсутствии, либо в присутствии катализатора. Приемлемые для данной области техники катализаторы известны. Они включают катализаторы с переходными металлами, такими как родий, никель, кобальт, платина, палладий, рутений и иридий. Реформинг с водяным паром можно проводить при обычных температурах и давлениях.
В другом варианте выполнения изобретения углеводородную топливную композицию превращают в водород реакцией композиции с кислородом в условиях частичного окисления с получением водорода, моноксида углерода и/или диоксида углерода. Реакцию частичного окисления можно проводить в присутствии или отсутствии катализатора частичного окисления. Приемлемые для данной области техники катализаторы частичного окисления известны хорошо. Они включают катализаторы с переходными металлами, такими как родий, никель, кобальт, платина, палладий, рутений и иридий. Частичное окисление можно осуществлять при обычных температурах и давлениях.
Когда углеводородную топливную композицию превращают в водород, обычно образуется также моноксид углерода. В одном варианте выполнения изобретения моноксид углерода удаляют из потока продуктов окислением. В результате такой реакции моноксид углерода превращается в диоксид углерода с высвобождением во время этого процесса тепла. Такое тепло можно использовать с целью направить процесс превращения углеводородной топливной композиции на получение водорода.
Кроме того, или по другому варианту моноксид углерода может быть удален конверсией оксида углерода. Во время конверсии оксида углерода моноксид углерода в присутствии катализатора взаимодействует с водой с образованием диоксида углерода и водорода. Приемлемые катализаторы конверсии оксида углерода включают оксид железа и полуторный оксид хрома. Водород, полученный в конверсии оксида углерода, можно объединять с водородом, полученным превращением углеводородной топливной композиции, и вводить в топливный элемент.
Водород, полученный в способе настоящего изобретения, может быть введен в топливный элемент, предпочтительно в топливный элемент для энергоснабжения транспортного средства, такого как легковой автомобиль, вагонетка, грузовой автомобиль, спортивное вспомогательное транспортное средство и автобус. Водород можно направлять в топливный элемент непосредственно или хранить перед введением в топливный элемент, например в установке для хранения. Когда перед введением в топливный элемент водород хранят, установку для хранения можно размещать на транспортном средстве с энергоснабжением от топливного элемента и/или в стационарном хранилище.
Когда топливный элемент используют для энергоснабжения транспортного средства, его можно применять для генерирования по существу всей энергии, необходимой для удовлетворения потребностей этого транспортного средства в энергии. Однако в некоторых случаях топливный элемент может оказаться неприемлемым для генерирования 100% энергии. Таким образом, могут потребоваться дополнительные источники энергии. Такие источники включают обычные электрохимические элементы, солнечные элементы и двигатели внутреннего сгорания. Когда применяют двигатель внутреннего сгорания, углеводородную топливную композицию можно вводить непосредственно в двигатель внутреннего сгорания и сжигать для генерирования энергии.
Необходимо отметить, что углеводородную топливную композицию, используемую в настоящем изобретении, можно также применять в качестве бензина для двигателя внутреннего сгорания. Далее изобретение проиллюстрировано со ссылкой на следующие эксперименты
Пример 1
Образец светлой бензинолигроиновой фракции каталитического крекинга алкилировали, разделяли на фракции перегонкой и с помощью каустической соды экстрагировали более низкокипящую фракцию с получением топлива, представленного в таблице 1, которое характеризовалось отсутствием диолефинов, низким содержанием серы, пониженным содержанием ароматических продуктов и олефинов.
Таблица 1
Сырье для алкилирования Продукт алкилирования Продукт алкилирования с tкип<100°С Продукт алкилирования с tкип<100°C, промытый каустической содой
Парафины, мас.% 33 37 59 59
Нафтены, мас.% 10 8 9 9
Олефины, мас.% 37 34 28 28
Циклоолефины, мас.% 6 3 1 1
Ароматические продукты, мас.% 13 12 2 2
Меркаптановая S, част./млн 74 21 15 <2
Тиофеновая S, част./млн 7 7 1 1
Всего S, част./млн 81 98 13 <3
ОЧИ 94 94 91
МОЧ 80 82 82
(ОЧИ+МОЧ)/2 87 88 87
УПР PRVR GRAB (кПа) 98 81 92
НТК 27,2 29,6 30,0 28,4
Т50 59,4 77,8 52,8 53,3
Т90 113,3 165,4 78,3 77,9
Т95 130,0 190,2 84,4 83,8
КТК 152,9 216,7 109,4 110,8
Пример 2
Образец другой светлой бензинолигроиновой фракции каталитического крекинга алкилировали, промывали кислотой и разделяли на фракции перегонкой с получением топлива, представленного в таблице 2, которое характеризовалось низким содержанием серы, пониженным содержанием ароматических продуктов и олефинов.
Таблица 2
Сырье для алкилирования Продукт алкилирования Продукт алкилирования с tкип<160°С Продукт алкилирования с tкип<100°С
Парафины, мас.% 33,3 34,1 38,0 48,0
Нафтены, мас.% 11,1 12,3 13,0 11,8
Олефины, мас.% 37,3 34,2 32,9 34,4
Циклоолефины, мас.% 5,7 3,3 3.2 1,7
Ароматические продукты, мас.% 12,4 16,0 12,7 4,1
Меркаптановая S, част./млн 6 3 4 6
Тиофеновая S, част./млн 146 200 68 16
Сульфидная S, част./млн 58 7 10 6
Всего S, част./млн 210 210 82 27
ОЧИ 90,8 89,5 88,7
МОЧ 80 79,3 80,1
(ОЧИ+МОЧ)/2 85,4 84,4 84,4
УПР 61 63,6
Плотность 0,7152 0,7325 0,7177 0,6889
НТК 38,9 41,6 42,2 40,9
Т50 84,9 102,3 91,7 69,8
Т90 135,0 171,4 130,3 90,3
Т95 148,1 211,5 137,3 94,6
КТК 157,4 237,1 147,1 103,8
Пример 3
В автотермической реформинг-установке в качестве углеводородных топлив испытывали так, как изложено ниже, следующие образцы из таблицы 2 в примере 2.
Образец А: сырье для алкилирования
Образец Б: алкилированный продукт с tкип<160°С
Образец В: алкилированный продукт с tкип<100°С
Все эксперименты осуществляли в автотермической реформинг-установке (АТР), оборудование которой включало испаритель воды, испаритель топлива, кварцевый реактор и систему отбора проб газа. Первоначально в кварцевый реактор топливо, воду и воздух подавали в виде потока газообразных реагентов с соблюдением первого ряда условий: среднечасовая скорость подачи газа (ССПГ): 19000 ч-1, номинальное значение молярного соотношения между кислородом и углеродом (О/С):0,9 и номинальное значение молярного соотношения между водяным паром углеродом (S/C):0,5. После одного часа эксперимента при первом ряде условий производили быструю ступенчатую его замену вторым рядом условий с номинальным значением молярного соотношения между водяным паром и углеродом (S/C) 0,07, одновременно с тем сохраняя значение ССПГ 19000 ч-1 и номинальное значение молярного соотношения между кислородом и углеродом (О/С) 0,9. При втором ряде условий эксперимент проводили в течение еще одного часа. В качестве катализатора реформинга использовали кордиеритный монолит с покрытием из гамма-оксида алюминия, содержавший 2 мас.% платины и 1 мас.% родия, поставляемый на рынок фирмой Johnson Matthey. Цилиндрический катализатор обладал длиной 30 мм, диаметром 27 мм и наличием 900 каналов на квадратный дюйм (ККД).
Поток исходного топлива и поток исходных воздуха/воды закачивали в отдельные испарители при скоростях потоков, подобранных для достижения требуемых соотношений О/С и S/C и значения ССПГ в потоке газообразных реагентов. Поток испаренного топлива инжектировали в смесь воздуха и водяного пара, образующуюся в результате испарения потока исходных воздуха/воды, с получением потока газообразных реагентов. Быстрого испарения потока исходных топлива и воздуха/воды и тщательного смешения добивались созданием больших площадей поверхности для теплопереноса в испарителях и применением ряда смесительных трубок. Поток газообразных реагентов подавали непосредственно в кварцевый реактор. Он состоял из вертикально установленного питающего реактор патрубка 300-миллиметровой длины, который расширялся с образованием реакционной зоны диаметром 28 мм, в основании которой находился спеченный материал. Цилиндрический катализатор по его окружности обертывали подходящим уплотнительным материалом и помещали в реакционную зону таким образом, чтобы он касался спеченного материала. Температуру предварительного нагрева потока газообразных реагентов поддерживали на уровне 300°С нагреванием питающего реактор патрубка с помощью первой трубчатой печи, регулируемой посредством термопары, касающейся спеченного материала. Реакционная зона кварцевого реактора была заключена во вторую трубчатую печь. Температуру в ней задавали в соответствии с ожидаемой температурой на выходе из катализатора, основываясь на термохимических данных, а именно 839°С для S/C 0,5 и 880°С для S/C 0,07. С целью минимизации потерь за счет излучения от катализатора в реакционную зону над катализатором вставляли заглушку из кварцевой ваты.
Из потока газообразных продуктов из катализатора на 10 мм выше верхней поверхности катализатора отбирали пробы и посредством газовой хроматографии (ГХ) на линии и вне линии определяли его состав. По массовым балансам, которые определяли с использованием данных ГХ, рассчитывали концентрацию воды в пробах потока газообразных продуктов, которую затем использовали для нормализации полученных результатов.
В конце каждого двухчасового эксперимента подачу потоков исходных топлива и воздуха/воды прекращали, начинали продувку кварцевого реактора азотом и уменьшали расход энергии в первой (для предварительного нагрева) и второй (реакционной зоны) печей. Перед выгрузкой из реакционной зоны катализатору давали остыть.
Углерод, аккумулированный на катализаторе после каждого эксперимента двухчасовой продолжительности, определяли путем окисления при программированной температуре (ОПТ). Катализатор нагревали от комнатной температуры до 850°С со скоростью 20°С/мин в потоке кислорода/гелия и с использованием масс-спектрометра определяли концентрацию выделявшегося за этот период диоксида углерода.
Результаты, полученные анализом проб в примере 2, представлены в таблице 3. Эти результаты показывают, что, если основываться на ряде параметров, а именно на получении водорода, проскоке неметановых углеводородов и углероде, аккумулированном на катализаторе (катализаторный углерод), по рабочим характеристикам в АТР алкилированные продукты превосходят углеводородное сырье. Более того, если основываться на тех же параметрах, то в АТР алкилированный продукт <100°С превосходит алкилированный продукт <160°С.
Таблица 3.
Результаты экспериментов в АТР
Материал Эксперимент № О/С (молярное) S/C (молярное) С Конверсия (% Cl) Получение Н2 (г/100 г сырья) ПНУВ* (мас. част./млн) Катализаторный углерод (мг)
Сырье для А1 0,88 0,49 100 18,2 Отсутствует
алкилирования А2 0,89 0,07 99 15,0 103 33,0
Алкилированный Б1 0,89 0,49 100 18,7 Отсутствует
продукт, tкип<160°С Б2 0,89 0,07 99 15,0 25 22,0
Алкилированный В1 0,89 0,50 101 19,3 Отсутствует
Продукт, tкип<100°С В2 0,90 0,07 100 15,8 16 15,9
*ПНУВ - проскок неметановых углеводородов на основе Cl

Claims (10)

1. Способ получения водорода для топливного элемента из углеводородной топливной композиции, включающий следующие стадии:
подготовку углеводородной топливной композиции, которую получают
i) введением жидкого углеводородного сырья, включающего алкилирующий агент, в контакт с кислотным катализатором в условиях, эффективных для алкилирования, по меньшей мере, части углеводородного сырья, где жидкое углеводородное сырье дополнительно включает ароматические соединения, которые алкилируют на стадии алкилирования, и
ii) выделение со стадии алкилирования низкокипящей фракции, включающей углеводороды и ароматические углеводороды с пониженной концентрацией, в качестве углеводородной топливной композиции,
превращение углеводородной топливной композиции в водород и необязательное введение полученного водорода в топливный элемент.
2. Способ по п.1, в котором жидкое углеводородное сырье выбирают из группы, включающей легкий лигроин, тяжелый лигроин, бензин, керосин, бензин легкого крекинга, бензин каталитического крекинга, бензин установки для коксования, легкий рецикловый газойль, бензино-лигроиновую фракцию из процесса каталитического крекинга и бензино-лигроиновую фракцию селективной гидроочистки.
3. Способ по п.1, в котором жидкое углеводородное сырье дополнительно включает серусодержащие примеси, по меньшей мере, часть которых алкилируют на стадии алкилирования.
4. Способ по п.3, в котором на стадии алкилирования алкилируют больше 30%, более предпочтительно больше 50%, а наиболее предпочтительно больше 90% серусодержащих материалов.
5. Способ по п.3, в котором низкокипящая фракция, выделенная со стадии алкилирования, включает в пониженной концентрации серусодержащие примеси.
6. Способ по п.5, в котором более низкокипящую фракцию выделяют перегонкой.
7. Способ по п.5 или 6, в котором более низкокипящая фракция характеризуется температурой выкипания ниже 215°С, более предпочтительно ниже 180°С, например, в пределах 100 и 175°С.
8. Способ по п.1, в котором углеводородная топливная композиция, выделенная на стадии алкилирования, характеризуется:
содержанием олефинов меньше 40 мас.%, предпочтительно меньше 30 мас.%, более предпочтительно меньше 20 мас.%, а наиболее предпочтительно меньше 10 мас.%;
содержанием ароматических продуктов меньше 35 мас.%, предпочтительно меньше 25 мас.%, а более предпочтительно меньше 5 мас.%;
конечной температурой кипения (КТК) ниже 215°С, более предпочтительно ниже 180°С, например в пределах 100 и 175°С; и
содержанием серы меньше 60 част./млн, предпочтительно меньше 10 част./млн, более предпочтительно меньше 5 част./млн, наиболее 20 предпочтительно меньше 2 част./млн.
9. Способ по п.1, в котором углеводородная топливная композиция характеризуется октановым числом, определенным по моторному методу (МОЧ), по меньшей мере, 80 и октановым числом, определенным исследованиями (ОЧИ), по меньшей мере, 90, предпочтительно МОЧ, по меньшей мере, 85 и ОЧИ, по меньшей мере, 95.
10. Способ по п.1, который дополнительно включает стадию введения в углеводородную топливную композицию одной или нескольких присадок перед превращением этой углеводородной топливной композиции в водород.
RU2004111010/15A 2001-09-11 2002-08-28 Получение водорода RU2311339C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0121871.8A GB0121871D0 (en) 2001-09-11 2001-09-11 Hydrogen production
GB0121871.8 2001-09-11

Publications (2)

Publication Number Publication Date
RU2004111010A RU2004111010A (ru) 2005-10-10
RU2311339C2 true RU2311339C2 (ru) 2007-11-27

Family

ID=9921832

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004111010/15A RU2311339C2 (ru) 2001-09-11 2002-08-28 Получение водорода

Country Status (10)

Country Link
US (1) US7294420B2 (ru)
EP (1) EP1425243A1 (ru)
JP (1) JP2005502983A (ru)
AU (1) AU2002321554B2 (ru)
GB (1) GB0121871D0 (ru)
MY (1) MY140937A (ru)
RU (1) RU2311339C2 (ru)
TW (1) TWI293944B (ru)
UA (1) UA77694C2 (ru)
WO (1) WO2003022735A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030162060A1 (en) * 2000-12-21 2003-08-28 Graham Butler Dual use hydrocarbon fuel composition
WO2004035468A1 (en) * 2002-10-14 2004-04-29 Shell Internationale Research Maatschappij B.V. A process for the catalytic conversion of a gasoline composition
CA2672626A1 (en) * 2006-12-21 2008-07-03 The Lubrizol Corporation Lubricant for hydrogen-fueled engines
US8003073B2 (en) * 2007-04-16 2011-08-23 Air Products And Chemicals, Inc. Autothermal hydrogen storage and delivery systems
US8211583B2 (en) * 2008-05-08 2012-07-03 Bloom Energy Corporation Derivation of control parameters of fuel cell systems for flexible fuel operation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965252A (en) * 1973-01-20 1976-06-22 Ashland Oil, Inc. Hydrogen production
US4205196A (en) * 1979-04-05 1980-05-27 Phillips Petroleum Company Acid-type hydrocarbon alkylation with acid recycle streams at spaced points of a vertically-disposed elongated reactor
US4929800A (en) * 1986-10-22 1990-05-29 University Of Florida Hydrocarbon conversion and polymerization catalyst and method of making and using same
US5707923A (en) * 1995-05-01 1998-01-13 Stratco, Inc. Method of and apparatus for controlling an alkylation process
US5863419A (en) 1997-01-14 1999-01-26 Amoco Corporation Sulfur removal by catalytic distillation
US6048451A (en) 1997-01-14 2000-04-11 Bp Amoco Corporation Sulfur removal process
AR017317A1 (es) * 1997-10-14 2001-09-05 Shell Int Research Proceso de oxidacion parcial catalitica, un metodo y disposicion para generar energia electrica por medio de dicho proceso, y medio de transporteprovisto con dicha disposicion
US5938800A (en) * 1997-11-13 1999-08-17 Mcdermott Technology, Inc. Compact multi-fuel steam reformer
EP1060791B1 (en) * 1998-03-04 2004-06-23 Japan Energy Corporation Solid acid catalyst, method for preparing the same and reaction using the same
US6025534A (en) 1998-04-07 2000-02-15 Bp Amoco Corporation Olefin polymerization process
US6348278B1 (en) * 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
US6059962A (en) 1998-09-09 2000-05-09 Bp Amoco Corporation Multiple stage sulfur removal process
JP2001262163A (ja) * 2000-03-23 2001-09-26 Idemitsu Kosan Co Ltd 内燃機関用及び燃料電池用兼用燃料油
US20030162060A1 (en) 2000-12-21 2003-08-28 Graham Butler Dual use hydrocarbon fuel composition

Also Published As

Publication number Publication date
US7294420B2 (en) 2007-11-13
US20040213735A1 (en) 2004-10-28
EP1425243A1 (en) 2004-06-09
RU2004111010A (ru) 2005-10-10
JP2005502983A (ja) 2005-01-27
GB0121871D0 (en) 2001-10-31
MY140937A (en) 2010-02-12
UA77694C2 (en) 2007-01-15
WO2003022735A1 (en) 2003-03-20
TWI293944B (en) 2008-03-01
AU2002321554B2 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US5744668A (en) Process of producing gasoline, diesel and carbon black with waste rubbers and/or waste plastics
JP4808293B2 (ja) 触媒蒸留による硫黄の除去
KR101197975B1 (ko) 수소화 방법 및 석유 화학 프로세스
JP4113590B2 (ja) 硫黄除去法
CN103827262A (zh) 用于流化催化裂化方法的富氢原料
WO2007113959A1 (ja) 予混合圧縮自己着火式エンジン用燃料
US4097362A (en) Method for enhancing distillate liquid yield from an ethylene cracking process
RU2311339C2 (ru) Получение водорода
JP2004532309A (ja) 燃料の処理方法
JPH0462772B2 (ru)
AU2002321554A1 (en) Production of hydrogen
JPH07207286A (ja) ガソリンエンジン用燃料油
US2546180A (en) Method of making motor fuel
US20240076566A1 (en) Method of adsorptive desulfurization of pyrolyzed end-of-life tires
JP2003520889A5 (ru)
US4594143A (en) Process for reacting light olefins and jet fuel
JPH07207285A (ja) ガソリンエンジン用燃料油
JP2005523370A (ja) 精製方法
Kinugasa et al. Removal of basic compounds and dealkylation of alkyl polycyclic aromatic hydrocarbons in vacuum gas oil
CN102947251B (zh) 通过使用稀乙烯烷基化降低汽油苯含量的方法和装置
Jr et al. Hydrogenation of Catalytically Cracked Naphthas for Production of Aviation Gasolines.
KR20030012189A (ko) 폐합성수지를 원료로 하는 촉매 하행식 크래킹반응기 및 이를 이용한 휘발유·경유의 제조방법
RU2598074C1 (ru) Способ каталитической конверсии углеводородного сырья
JP5623611B2 (ja) ガソリン組成物
US20080045761A1 (en) Method and apparatus for steam dealkylation in a plant for the catalytic reforming of hydrocarbons

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20131224

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140829