RU2301784C2 - Способ керамической сварки - Google Patents

Способ керамической сварки Download PDF

Info

Publication number
RU2301784C2
RU2301784C2 RU2005116637/03A RU2005116637A RU2301784C2 RU 2301784 C2 RU2301784 C2 RU 2301784C2 RU 2005116637/03 A RU2005116637/03 A RU 2005116637/03A RU 2005116637 A RU2005116637 A RU 2005116637A RU 2301784 C2 RU2301784 C2 RU 2301784C2
Authority
RU
Russia
Prior art keywords
aluminum
particles
masonry
repairs
microns
Prior art date
Application number
RU2005116637/03A
Other languages
English (en)
Other versions
RU2005116637A (ru
Inventor
Вадим Валентинович Давыдов (RU)
Вадим Валентинович Давыдов
Владислав Михайлович Меркулов (RU)
Владислав Михайлович Меркулов
Юрий Михайлович Милехин (RU)
Юрий Михайлович Милехин
Original Assignee
Федеральное государственное унитарное предприятие "Федеральный центр двойных технологий "Союз" (ФГУП "ФЦДТ "Союз")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Федеральный центр двойных технологий "Союз" (ФГУП "ФЦДТ "Союз") filed Critical Федеральное государственное унитарное предприятие "Федеральный центр двойных технологий "Союз" (ФГУП "ФЦДТ "Союз")
Priority to RU2005116637/03A priority Critical patent/RU2301784C2/ru
Publication of RU2005116637A publication Critical patent/RU2005116637A/ru
Application granted granted Critical
Publication of RU2301784C2 publication Critical patent/RU2301784C2/ru

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Arc Welding In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

Изобретение относится к способам для горячего ремонта кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической, коксохимической и других отраслях промышленности. Техническим результатом изобретения является повышение качества и безопасности ремонта, снижение расхода металлических порошков и длительность ремонта. Указанный технический результат достигается тем, что на предварительно нагретую поверхность ремонтируемой кладки подают в струе кислорода экзотермическую смесь, включающую огнеупорные частицы в виде оксидов и горючие частицы, содержащие в том числе частицы алюминия сферической формы с удельной поверхностью 0,13-0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%. Подача компонентов может производится раздельно. В целях лучшего зажигания вначале производят подачу алюминия. Максимальный размер частиц алюминия составляет 100 мкм. 2 з.п. ф-лы.

Description

Изобретение относится к способам для горячего ремонта кладки промышленных печей методом керамической сварки (наплавки) и может быть использовано в металлургической, коксохимической и других отраслях промышленности.
Керамическая сварка как способ ремонта футеровки и формования наплавленного слоя огнеупорной массы достаточно широко известна и описана в ряде технических решений: GB 1330894 А, 19.09.73. WO 90/03848 А, 19.04.90. SU 726066 А, 05.04.80. SU 1774937 A3, 07.11.92. RU 2027690 С1, 27.01.95. RU 2051879 С1, 10.01.96. GB 2170191 A, 30.07.86. GB 2257136 А, 06.01.93. GB 2213812 А, 23.08.89. US 4792468 А, 20.12.88, RU 2140889, 24.11.95, RU 2027690, 25.06.90.
Сущность керамической сварки: на нагретую поверхность огнеупора подают в потоке кислорода экзотермическую смесь, содержащую огнеупорные и горючие частицы. Происходит высотемпературная экзотермическая реакция, расплавление огнеупорного наполнителя, размягчение поверхности ремонтируемой кладки до пластического состояния и их сплавление с образованием монолитного слоя.
Наиболее близким (патент RU 2051879, 02.07.92) к изобретению является способ керамической сварки, включающий одновременную подачу на поверхность огнеупора кислорода и экзотермической смеси, включающей огнеупорные частицы и горючие частицы, содержащие в том числе частицы алюминия.
Использование в качестве одной из топливных составляющих алюминия, как правило, как обусловлено энергетикой (т.е. технологическими причинами) процесса, так и соображениями преобразования алюминия в оксиды, шпинели и другие соединения как составляющими химической и минералогической структуры наплавленного слоя.
Однако используемые частицы алюминия, как правило, имеют чешуйчатую, пластинчатую и прочую неправильную форму. Использование мелкодисперсного алюминия при горении в составе керамической массы приводит к бурному воспламенению. Высокая температура сварки приводит к оплавлению футеровки, причем процесс идет неустойчиво. Для мелкодисперсных марок вообще характерна рваная чешуйчатая форма частиц. Для таких частиц процесс часто усугубляется агломерационными явлениями - в керамической массе находятся конгломераты алюминия.
Неправильная форма частиц приводит, как показали наши исследования, к плохой адсорбции частиц на поверхности огнеупора, в керамической массе велика доля свободных алюминиевых частиц, которые создают дополнительное сопротивление при движении по трубопроводам и как следствие снижается безопасность, особенно при перемешивании в бункере и коммуникациях.
При применении крупнодисперсного алюминия пришлось столкнуться с плохим инициированием реакции и нестабильным горением, из-за неполного оплавления частиц огнеупора пористость достигала 40% и более. Это объясняется тем, что крупные частицы не успевают сгореть полностью.
Изобретение направлено на создание эффективного способа керамической сварки, который бы позволил повысить качество ремонта и его безопасность, сократить расход металлических порошков и длительность ремонта.
Это достигается тем, что в предложенном способе керамической сварки, включающем одновременную подачу на поверхность огнеупора кислорода и экзотермической смеси, включающей огнеупорные частицы и горючие частицы, которые содержат частицы алюминия, причем последние имеют сферическую форму с удельной поверхностью 0,13-0,65 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%.
Процессы воспламенения и горения металлов имеют особенность - образование окисной пленки на поверхности, препятствующей непосредственному контакту металла с окружающей средой.
Поэтому в большинстве случаев протекание реакции зависит не только от температуры и концентрации окислителя в окружающей металл среде, но и от характеристик окисной пленки. В процессе горения могут происходить такие явления, как изменение структуры, плавление и испарение окисной пленки, конденсация продуктов сгорания, осаждение продуктов реакции на поверхность металла и т.д.
Установлено, что моменту воспламенения предшествуют превращения в окисной пленке, первоначально покрывающей частицу алюминия. К таким превращениям относится растрескивание пленки при нагреве частицы (коэффициент термического расширения Al2O3 примерно в три раза меньше коэффициента термического расширения алюминия). В этом случае трещины заполняются чистым металлом, получающим доступ к окислительной среде. Вероятность растрескивания окисных оболочек тем выше, чем выше скорость нагрева частиц. Вторым превращением, способствующим увеличению скорости окисления частиц алюминия, является плавление окисной пленки. Этот процесс резко снижает диффузионное сопротивление окисной пленки потоку газообразного окислителя и тем самым интенсифицирует процесс воспламенения частиц.
Собственно говоря, именно алюминий сферической формы в наибольшей степени соответствует этим условиям. Действительно, благодаря правильной форме соотношение площадь поверхности пленки к объему частицы минимально, что облегчает ее растрескивание и плавление.
Применение частиц сферической формы более безопасно. Сферические частицы алюминия, хорошо адсорбируются на огнеупоре, процесс горения идет ровно и хорошо контролируется.
Частицы сферической формы в меньшей степени склонны к конгломерации, и равномерно распределяясь в объеме смеси, способствуют ее лучшей текучести.
Наши исследования и опыт применения показали, что в наибольшей степени влияет на достижение целей изобретение именно содержание определенной фракции в гранулометрическом составе (грансоставе) алюминия, а именно фракции 0-10 мкм. Собственно говоря, именно эта фракция, а точнее ее связь с удельной поверхностью является своеобразным регулятором процесса "работы" алюминия.
Обычно удельная поверхность и грансостав связаны друг с другом обратно пропорциональной зависимостью, и, как правило, их значения взаимосвязаны. Тем не менее, в ряде случаев, когда это обосновано техническими целями, необходимо создавать искусственную смесь алюминия, добиваясь соотношения, указанного в изобретении.
Крупные частицы нагреваются медленно, за время плавления на поверхности нарастает защитный слой окисла, препятствующий воспламенению. Особенно это относится к частицам алюминия размером более 100 мкм.
Кроме того, адсорбция частиц из-за их размера на поверхности огнеупора затруднена, а при наличии эффекта сегрегации наблюдается расслоение, тем более, что даже самая крупная частица алюминия значительно уступает в размерах частицам огнеупора среднего размера.
Малые частицы расплавляются быстро, еще до заметного окисления их поверхности, горят в диффузионном режиме и быстро нагреваются до плавления за счет конвекции. Количество окисла на поверхности невелико, испарение металла и диффузия его паров от поверхности происходят беспрепятственно. Давление пара металла высоко, поэтому скорость газофазного окисления велика.
Мелкие частицы, обладая великолепной воспламеняемостью и адсорбируемостью, проникают в поры частиц огнеупора и способствуют его эффективному расплавлению.
При использовании сферического алюминия с удельной поверхностью менее 0,13 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет менее 12%, процесс воспламенения идет недостаточно эффективно, особенно в начальной стадии процесса. При небольшой концентрации мелкие частицы, находясь в порах частиц огнеупора, фактически экранируются ими. При этом нужная для стабильного воспламенения минимальная температура печи испытывает тенденцию к повышению, что не является благоприятным фактором.
При использовании сферического алюминия с удельной поверхностью менее 0,13 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия более 65% процесс воспламенения идет слишком бурно, что небезопасно, а наличие крупных частиц, зачастую с опозданием вступающих в реакцию, приводит к нерациональному перерасходу алюминия.
При использовании сферического алюминия с удельной поверхностью более 0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет более 65%, процесс воспламенения идет очень бурно, что небезопасно и грозит "обратным ударом".
Использование сферического алюминия с удельной поверхностью более 0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет менее 12%, процесс нецелесообразен экономически, поскольку весьма трудно получить смесь именно с таким распределением, даже искусственно. Тем не менее, если задаться такой целью, получить значимого технического эффекта не удается.
Способ может быть реализован как с применением общепринятой схемы керамической сварки, когда порошковая смесь всех компонентов подается из одного общего бункера, так и с подачей компонентов из разных, отдельных бункеров для каждого компонента (компонентов) и смешением их непосредственно перед использованием. Таким образом, можно достичь лучшей воспламеняемости смеси при пониженной температуре печи, подавая сначала алюминий (воспламенение одиночных частиц происходит при температуре 660°С).
Ниже приводятся примеры осуществления изобретения с реализацией указанного назначения.
ПРИМЕР 1. Керамическая смесь, используемая для ремонта огнеупорной кладки промышленных печей с динасовой кладкой. 1. Плавленный кварц - 80%. Размер частиц от 50 мкм до 1,5 мм 2. Кремний металлический - 15% 3. Алюминий 5% с удельной поверхностью 0,40 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 32%. Температура кладки во время ремонта - 800°С. Расход кислорода - 200 л/кг массы.
ПРИМЕР 2. Керамическая смесь, используемая для ремонта огнеупорной кладки промышленных печей с магнезиальной футеровкой. 1. Магнезит - 90%, размер частиц от 50 мкм до 1,5 мм 2. Кремний металлический - 4%, средний размер частиц - 7 мкм. 3. Алюминий 6% с удельной поверхностью - 0,22 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 55%. Температура кладки во время ремонта - 800°С. Расход кислорода - 330 л/кг массы.
ПРИМЕР 3. Керамическая смесь, используемая для ремонта поверхностей тепловых агрегатов с шамотной футеровкой, подверженных интенсивной коррозии. 1. Смесь кварцита и глинозема - 86%, размер частиц не более 0,5 мм 2. Алюминий 6% с удельной поверхностью 0,50 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 20%. 3. Магний - 4%, средний размер частиц - 50 мкм 4. Кремний металлический - 4%, средний размер частиц 7 мкм. Температура кладки во время ремонта - 1000°С. Расход кислорода 330 л/кг массы.
ПРИМЕР 4. Керамическая смесь, используемая для ремонта огнеупорной кладки промышленных печей с динасовой кладкой. 1. Плавленный кварц - 80%. Размер частиц от 50 мкм до 1,5 мм. 2. Кремний металлический - 15%. 3. Алюминий 5% с удельной поверхностью 0,40 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 32%. Температура кладки во время ремонта - 700°С. Первоначально в течение 5 секунд подается алюминий из отдельного бункера с удельным расходом 50 г/сек, затем подача алюминия отключается и производится подача смеси из основного бункера. Расход кислорода - 220 л/кг массы.

Claims (3)

1. Способ керамической сварки, включающий подачу на поверхность огнеупора в потоке кислорода экзотермической смеси, включающей в качестве компонентов огнеупорные частицы в виде оксидов и горючие частицы, содержащие в том числе частицы алюминия, отличающийся тем, что используют частицы алюминия сферической формы с удельной поверхностью 0,13-0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%.
2. Способ по п.1, отличающийся тем, что подачу компонентов производят раздельно с предварительной подачей алюминия.
3. Способ по п.1 или 2, отличающийся тем, что максимальный размер частиц алюминия составляет 100 мкм.
RU2005116637/03A 2005-06-01 2005-06-01 Способ керамической сварки RU2301784C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005116637/03A RU2301784C2 (ru) 2005-06-01 2005-06-01 Способ керамической сварки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005116637/03A RU2301784C2 (ru) 2005-06-01 2005-06-01 Способ керамической сварки

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2006132260/03A Substitution RU2333181C2 (ru) 2006-09-08 2006-09-08 Экзотермическая смесь для керамической сварки

Publications (2)

Publication Number Publication Date
RU2005116637A RU2005116637A (ru) 2006-11-20
RU2301784C2 true RU2301784C2 (ru) 2007-06-27

Family

ID=37502097

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005116637/03A RU2301784C2 (ru) 2005-06-01 2005-06-01 Способ керамической сварки

Country Status (1)

Country Link
RU (1) RU2301784C2 (ru)

Also Published As

Publication number Publication date
RU2005116637A (ru) 2006-11-20

Similar Documents

Publication Publication Date Title
RU2544979C2 (ru) Способ получения гранулированного металла
EP0924304B1 (en) Method of producing reduced iron pellets
FR2649096A1 (fr) Procede de formation d'une masse refractaire poreuse et composition de matiere destinee a ce procede
CN108130502B (zh) 一种含高熵合金涂层的复合材料的制备方法及装置
JP2010501350A (ja) 金属を溶接するための炭素
RU2301784C2 (ru) Способ керамической сварки
RU2333181C2 (ru) Экзотермическая смесь для керамической сварки
BE1003523A4 (fr) Procede de soudure ceramique et melange destine a un tel procede.
WO2015131438A1 (zh) 一种热态熔渣在线改质装置
US7780436B2 (en) Flex-flame burner and combustion method
JP3174179B2 (ja) 溶射材
EP0495327B1 (fr) Procédé et composition pour la réparation par soudage sur site de produits réfractaires
JPH09286671A (ja) 窯炉の補修材料
JP3551604B2 (ja) 火炎溶射方法
US5380563A (en) Ceramic welding
JPH09132470A (ja) 溶射補修材
US1148782A (en) Process for the reduction of metals from their ores by carbon from solid fuel.
RU2086662C1 (ru) Способ ремонта огнеупорной кладки тепловых агрегатов методом керамической наплавки
RU2158403C1 (ru) Способ ремонта огнеупорной футеровки пода тепловых агрегатов методом керамической наплавки и термитно-огнеупорная масса для керамической наплавки
JPH0717994B2 (ja) 溶射補修材料及び補修方法
JPH0139993B2 (ru)
JP2001303142A (ja) 高温性状の優れた焼結鉱の製造方法
TW213894B (ru)
JPS6191070A (ja) 発熱性熱間補修材
JPS6046062B2 (ja) 溶射用耐火材料

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190602