RU2298819C2 - Интегрально-оптический модуль для волоконно-оптического гироскопа - Google Patents

Интегрально-оптический модуль для волоконно-оптического гироскопа Download PDF

Info

Publication number
RU2298819C2
RU2298819C2 RU2005114116/28A RU2005114116A RU2298819C2 RU 2298819 C2 RU2298819 C2 RU 2298819C2 RU 2005114116/28 A RU2005114116/28 A RU 2005114116/28A RU 2005114116 A RU2005114116 A RU 2005114116A RU 2298819 C2 RU2298819 C2 RU 2298819C2
Authority
RU
Russia
Prior art keywords
housing
integrated optical
optical element
compound
optical module
Prior art date
Application number
RU2005114116/28A
Other languages
English (en)
Other versions
RU2005114116A (ru
Inventor
Владимир Григорьевич Пономарев (RU)
Владимир Григорьевич Пономарев
Виктор Евстафьевич Прилуцкий (RU)
Виктор Евстафьевич Прилуцкий
Юрий Николаевич Коркишко (RU)
Юрий Николаевич Коркишко
В чеслав Александрович Федоров (RU)
Вячеслав Александрович Федоров
Евгений Михайлович Падерин (RU)
Евгений Михайлович Падерин
Original Assignee
ООО НПК "Оптолинк"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО НПК "Оптолинк" filed Critical ООО НПК "Оптолинк"
Priority to RU2005114116/28A priority Critical patent/RU2298819C2/ru
Publication of RU2005114116A publication Critical patent/RU2005114116A/ru
Application granted granted Critical
Publication of RU2298819C2 publication Critical patent/RU2298819C2/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Интегрально-оптический модуль для волоконно-оптического гироскопа включает корпус в форме коробки с гермовыводами и отверстиями, в котором с помощью компаунда на подложке установлен интегрально-оптический элемент, состыкованный с волоконными световодами. Световоды выведены через отверстия в переходных втулках и корпусе. Зазоры между отверстиями в корпусе и втулками, а также между втулками и световодами заполнены соответственно компаундами с отверждением при нагреве и без нагрева. На участках световодов внутри корпуса образованы изгибы, компенсирующие температурные подвижки. Полость корпуса с интегрально-оптическим элементом заполнена инертным газом или вязкоупругим полимером и закрыта крышкой. Технический результат - повышение надежности функционирования и уменьшение габаритов. 2 н. и 5 з.п. ф-лы, 11 ил.

Description

Известно устройство миниатюрного оптического модуля (патент US 5732173 от 24.03.1998, G 02 B 006/30), который содержит интегрально-оптический элемент (чип), состыкованный с волоконными световодами посредством механических зажимов в виде пластин с V-образными канавками и крышками, закрытых кожухом с подвижными боковинами, фиксируемыми клиновыми зажимами и упругими защелками.
Данное устройство позволяет оперативно осуществлять многократную сборку-разборку модуля. Однако его использование в волоконно-оптических гироскопах, например, в качестве интегрально-оптического модуля с функциями поляризатора, разветвителя, модулятора ограничено тем, что для гироскопов требуется высокая стабильность параметров при стыковке одномодовых волоконных световодов с сохранением состояния поляризации при диаметре световедущих сердцевин 0,004÷0,005 мм. В данном устройстве не предусмотрена взаимная ориентация и фиксация световодов при стыковке, что необходимо при использовании световодов с сохранением состояния поляризации. Кроме того, наличие большого количества деталей и механических зажимов предрасполагает к нестабильности данного устройства в условиях воздействия виброударных перегрузок и изменении температур.
Известно устройство интегрально-оптического модуля [патент US №5074630 от 24.12.1991 г.], который содержит корпус в виде металлической пластины, на поверхности которой посредством вязкоупругого полимерного компаунда установлена кристаллическая подложка, на ее внешней поверхности также на вязкоупругом полимерном компаунде зафиксирован интегрально-оптический элемент (чип) в виде кристаллической пластинки со скосами по торцам, выполненной, например, из материала LiNbO3 (ниобат лития), в пластинке вдоль ее оси сформированы оптические волноводы, состыкованные по торцам с волоконными световодами с помощью кристаллических державок и оптического клея, при этом на поверхности пластинки вдоль волноводов нанесены электроды. В данном устройстве имеется возможность совмещения плоскостей сохранения поляризации волноводов и стыкуемых световодов за счет разворота державок с последующей их фиксацией на оптическом клее.
Установка интегрально-оптического элемента и подложки на вязкоупругом полимерном компаунде повышает его стойкость к виброударным перегрузкам за счет демпфирования действия виброударных перегрузок прослойкой полимерного компаунда. Тем самым снижаются напряжения, возникающие в кристаллической пластинке из ниобата лития.
Однако в данном устройстве интегрально-оптический элемент не защищен от воздействия окружающей среды. Поэтому в условиях повышенной влажности, особенно при изменении температуры в зоне точки росы на поверхности пластинки, в том числе и между электродами интегрально-оптического элемента, выпадает влага. Учитывая то, что зазоры между электродами на пластинке интегрально-оптического элемента соответствуют ширине сформированного оптического волновода (0,005-0,01 мм), то выпадание влаги или посторонних частиц в зону между электродами изменяет сопротивление и диэлектрические свойства среды между ними и тем самым нарушает работу модуля как фазового модулятора светового потока.
Таким образом, надежность функционирования интегрально-оптического модуля данной конструкции снижается в условиях повышенной влажности и запыленности, а также при изменении температуры. Это обусловлено отсутствием герметичной изолирующей оболочки вокруг интегрально-оптического элемента.
Задача изобретения - повышение надежности функционирования интегрально-оптического модуля, а также снижение его габаритов применительно к его использованию в волоконно-оптическом гироскопе.
Это достигается устранением влияния на работу интегрально-оптического модуля внешней среды путем заключения интегрально-оптического элемента в герметичном объеме, заполненном инертной средой, образования при этом компенсаторов температурных подвижек в виде изгибов световодов между интегрально-оптическим элементом и стенками корпуса, а также за счет V-образного размещения выходных световодов.
Поставленная задача достигается тем, что в интегрально-оптическом модуле, содержащем корпус, в котором на вязкоупругом компаунде посредством промежуточной кристаллической подложки установлен интегрально-оптический элемент в виде пластинки со скосами по торцам, выполненной из материала LiNbO3 с сформированным в ней по продольной оси оптическими волноводами, состыкованными по торцам посредством кристаллических державок с волоконными световодами, а также снабженную поверхностными электродами вдоль волноводов, корпус выполнен в форме коробки с гермовыводами и отверстиями в торцевых стенках, пластинка интегрально-оптического элемента размещена на донной части коробки корпуса, а его волоконные световоды выведены через отверстия в переходных втулках, зафиксированных в соответствующих отверстиях на торцевых стенках корпуса, зазоры между отверстиями в корпусе и втулками, а также между втулками и световодами заполнены соответственно компаундами с отверждением при нагреве и без нагрева, при этом на участках световодов между торцами корпуса и интегрально-оптического элемента образованы изгибы волоконных световодов, компенсирующих температурные подвижки, гермовыводы электрически связаны с электродами на пластинке интегрально-оптического элемента, внутренняя полость заполнена инертной средой и закрыта крышкой.
При этом переходные втулки с волоконными световодами могут быть установлены V-образно к продольной оси оптических волноводов.
Торцевые скосы под волоконные световоды на пластинке интегрально-оптического элемента могут быть выполнены V-образно относительно оси оптических волноводов.
В качестве среды заполнения может быть использован инертный газ, например, гелий с точкой росы не выше нижнего предела рабочей температуры.
В качестве среды заполнения может быть использован вязкоупругий полимер, например компаунд СИЭЛ.
В предлагаемом способе изготовления интегрально-оптического модуля, включающем установку подложки на вязкоупругом компаунде в корпус, фиксацию интегрально-оптического элемента с волоконными световодами на вязкоупругом компаунде на поверхности подложки, интегрально-оптический элемент вводят во внутреннюю полость корпуса через отверстие в его торцевой стенке, световоды пропускаются в отверстия в корпусе и переходных втулках, зазоры между переходными втулками и световодами заполняются компаундом с отверждением без нагрева, зазоры между переходными втулками и отверстиями в корпусе заполняются компаундом с отверждением при нагреве, между торцами переходных втулок и корпуса устанавливают зазор, равный величине температурных подвижек материалов интегрально-оптического элемента и корпуса, в этом положении полимеризуют компаунд с отверждением без нагрева, смещают втулки до упора в корпус и в этом положении полимеризуют компаунд с отверждением при нагреве, внутреннюю полость корпуса заполняют инертной средой и закрывают крышкой. При этом зазоры между торцами переходных втулок и корпуса могут устанавливаться посредством съемных дистанционных прокладок, по толщине равными величине температурных подвижек.
Устройство предлагаемого интегрально-оптического модуля поясняется чертежами.
На фиг.1 представлен общий вид интегрально-оптического модуля в разрезе.
На фиг.2 - вид на положение интегрально-оптического элемента в корпусе, со снятой крышкой.
На фиг.3, 4 показано положение интегрально-оптического модуля в катушке измерительного контура волоконно-оптического гироскопа с диаметрально-противоположным и V-образным положением переходных втулок соответственно.
На фиг.5 представлен интегрально-оптический модуль с V-образным положением переходных втулок и выходных световодов.
На фиг.6 представлен интегрально-оптический модуль с V-образными скосами на пластине интегрально-оптического элемента.
На фиг.7, 8, 9, 10, 11 показана последовательность операций предлагаемого способа изготовления интегрально-оптического модуля.
Интегрально-оптический модуль состоит из корпуса 1, выполненного в форме коробки, на одной из боковых стенок которой установлены гермовыводы 2, а на торцевых стенках выполнены проходные отверстия 3, 4, во внутреннем объеме корпуса на его донной части закреплена на эластичном вязкоупругом компаунде, например ВГО-1, кристаллическая подложка 5. В свою очередь на поверхности подложки 5 также на эластичном компаунде установлен интегрально-оптический элемент 6, который содержит пластинку 7, например, из LiNbO3, в виде косоугольного параллелепипеда с параллельными скосами 8, 9 по торцам, с сформированными вдоль ее продольной оси оптическими волноводами 10, которые на торцевых поверхностях пластинки состыкованы с волоконными световодами 11, 12, закрепленными в кристаллических державках 13, 14. На поверхности пластинки 7 вдоль оптических волноводов нанесены напылением металла в вакууме электроды 15. Волоконные световоды 11, 12 выведены из внутреннего объема корпуса 1 через отверстия 16, 17 в переходных втулках 18, 19. При этом зазоры между отверстиями 16, 17 во втулках 18, 19 и световодами 11, 12 заполнены компаундом 20, отверждающимся без нагрева при нормальной комнатной температуре 20°С, например компаундом ВК-9. Переходные втулки 18, 19 установлены в соответствующих отверстиях 3, 4 на торцевых стенках корпуса 1, а зазоры между ними заполнены компаундом 21 отверждающимся только при нагреве, например компаундом ВК-20 (температура отверждения 150°С). На участках между державками 13, 14 и торцевыми стенками корпуса 1 образованы изгибы 22, 23 световодов 11, 12. Гермовыводы 2 электрически связаны проводниками 24 с электродами 15 на пластинке 7. Внутренняя полость корпуса 1 заполнена инертной средой и загерметизирована крышкой 25, которая герметично приварена к корпусу, например, лазерной сваркой 26. Для крепления интегрально-оптического модуля на его корпусе 1 предусмотрены лапки 27 с отверстиями 28.
Использование представленного на фиг.1, 2 интегрально-оптического модуля в волоконно-оптических гироскопах, особенно в гироскопах с малыми габаритами, ограничено (см. фиг.3) габаритами интегрально-оптического модуля в совокупности с двумя минимально допустимыми радиусами изгиба В световодов 11, 12. В этом случае габариты интегрально-оптического модуля накладывают ограничения на минимальный диаметр Г катушки измерительного контура 29 гироскопа. Для гироскопов с малыми габаритами предлагается устройство интегрально-оптического модуля (см. фиг.4, 5, 6) с V-образной установкой переходных втулок 18, 19 по отношению к продольной оси корпуса 1. Такая установка обеспечивается соответствующим выполнением отверстий под переходные втулки на корпусе 1. В этом случае световоды 11, 12 выходят из корпуса 1 V-образно с углом раствора Д к его продольной оси и сопрягаются с диаметром Г катушки волоконного измерительного контура 29. Поэтому при установке такого интегрально-оптического модуля не требуется увеличения габаритов, обусловленных радиусами изгиба В световодов 11, 12. Это соответственно позволяет использовать интегрально-оптический модуль в гироскопах с меньшими габаритами. Кроме того, при V-образной установке переходных втулок на участках между интегрально-оптическим элементом 6 и стенками корпуса 1 выходные световоды 11, 12 автоматически образуют изгибы 22, 23, поэтому температурные подвижки вызывают изменение формы и радиусов этих изгибов. Так как пластинка 7 интегрально-оптического элемента 6 выполнена в форме косоугольного параллелепипеда, т.е. ее торцы 8, 9 параллельны друг другу, то световоды 11, 12 имеют различную форму изгиба 22, 23. Это затрудняет подбор оптимального положения интегрально-оптического элемента при его установке в корпус 1.
Этот недостаток устраняется в конструкции интегрально-оптического модуля, представленной на фиг.6. В этом случае для симметрирования изгибов 22, 23 световодов 11, 12 торцевые скосы 8, 9 на пластинке 7 выполнены не параллельно друг другу, а V-образно с общим углом раствора Е к продольной оси. В результате световоды 11, 12 приобретают одинаковые симметричные изгибы 22, 23, согласующиеся с V-образным положением переходных втулок 18, 19. Это снижает напряжения от изгиба в световодах, а также усилия от них на державки 13, 14.
Таким образом, интегрально-оптические модули с V-образным положением выходных световодов позволяют использовать их в волоконно-оптических гироскопах с меньшими габаритами, что расширяет их функциональное применение.
В качестве инертной среды для заполнения внутренней полости корпуса 1 с размещенным в ней интегрально-оптическим элементом 6 может быть использован газообразный гелий с точкой росы, не превышающей нижнего предела рабочей температуры интерально-оптического модуля (гироскопа). В этом случае во всем рабочем диапазоне температур интегрально-оптический модуль находится в среде, не проходящей точку росы. Это исключает выпадение влаги на поверхности пластинки 7 и тем самым повышает надежность функционирования интегрально-оптического модуля.
В случае заполнения внутренней полости корпуса вязкоупругим полимером, типа СИЕЛ 159-356Б, вокруг интегрально-оптического элемента 6 образуется вязкоупругая среда с повышенной теплопроводностью и демпфирующими свойствами. Это снижает динамические нагрузки на интегрально-оптическом элементе при действии виброударных перегрузок за счет демпфрирования возмущенных колебаний, особенно в зонах резонансных частот. Наличие среды с повышенной теплопроводностью обеспечивает более равномерное распределение тепловых потоков, т.е. снижает температурные градиенты. Это стабилизирует параметры интегрально-оптического модуля.
Способ изготовления интегрально-оптического модуля предлагаемой конструкции включает (см. фиг.7) установку в корпус 1 подложки 5 на вязкоупругом компаунде, например ВГО-1.
Затем в корпус 1 (см. фиг.8) через отверстие 3 в его боковой стенке вводится интегрально-оптический элемент 6 и фиксируется на поверхности подложки 5 на вязкоупругом компаунде, при этом световоды 11, 12 выводятся и центрируются в отверстиях 3, 4 корпуса 1. Введение интегрально-оптического элемента 6 через боковое отверстие 3 исключает изгибы световодов 11, 12, которые неизбежны при его установке во внутреннюю полость корпуса со стороны выемки. Кроме того, это позволяет уменьшить габариты интегрально-оптического модуля, т.к. установка со стороны выемки требует больших размеров выемки и корпуса, необходимых для прохождения изогнутых при установке участков световодов 11, 12.
Выходные световоды 11, 12 (см. фиг.9) пропускаются в отверстия в переходных втулках 18, 19 и втулки устанавливаются в отверстия 3, 4 на торцах корпуса 1. При этом между фланцами втулок 18,19 и торцами корпуса 1 выставляются зазоры Ж. Величина зазоров определяется из соотношения:
Ж>1/2[αкLкпLпдL′ддL"дв(L'в+L"в)]ΔT,
где: Lк, Lп,Lд,L'д,L"д,L'в,L"в - линейные размеры, соответственно, от стенки до стенки в корпусе 1, пластинки 7, державок 13, 14 и отрезков световодов 11, 12 на участках от державок 13, 14 до стенок корпуса 1;
αкпдв - коэффициенты температурного расширения материалов корпуса 1, пластинки 7, державок 13, 14 и световодов 11, 12;
ΔT - рабочий диапазон температур.
Зазоры между переходными втулками 18, 19 и световодами 11, 12 заполняются компаундом 20 с отверждением без нагрева, например компаундом ВК-9.
Зазоры между переходными втулками 18, 19 и отверстиями 3, 4 корпуса 1 заполняются компаундом 21 температурного отверждения, например компаундом ВК-20.
В положении, когда выставлены зазоры Ж при нормальной температуре (20°С), полимеризуют компаунд 20 (компаунд ВК-9).
После полимеризации компаунда 20 втулки 18, 19 (см. фиг.10) смещают до упора их фланцев в торцевые стенки корпуса 1. Поскольку световоды 11, 12 при этом жестко связаны компаундом 20 с соответствующими втулками 18, 19, то при осевом смещении втулок на участках световодов между державками 13, 14 и торцами втулок 18, 19 образуются изгибы 22, 23. В этом положении при повышенной температуре (для ВК-20 температура отверждения - 150°С) полимеризуют компаунд 21.
В результате зазоры между переходными втулками 18, 19 и отверстиями 3, 4 корпуса 1, а также между втулками и световодами 11, 12 оказываются заполненными герметизирующими компаундами, а на участках световодов 11, 12 между интегрально-оптическим элементом 6 и корпусом 1 образованы изгибы 22, 23, компенсирующие температурные подвижки.
Затем внутреннюю полость корпуса 1 заполнят инертной средой и герметизируют крышкой 25 (см. фиг.1) с помощью сварки 26, например, лазерной.
Для упрощения выставки зазоров В между фланцами переходных втулок 18, 19 и корпусом 1 можно использовать (см. фиг.11) съемные дистанционные прокладки 30, по толщине равные требуемому зазору Ж. На прокладках выполнен паз для возможности их установки и съема. В этом случае между фланцами втулок 18, 19 и корпусом 1 устанавливаются прокладки 30. Втулки смещаются до упора в прокладки. В этом положении полимеризуют компаунд 20 с отверждением без нагрева. Прокладки 30 удаляются и втулки смещаются до упора в корпусе 1 и полимеризуют компаунд 21.
В процессе эксплуатации интегрально-оптического модуля за счет того, что он заключен в герметичную оболочку, заполненную инертной средой, исключается воздействие на его работу окружающей среды. Использование в качестве среды заполнения вязкоупругого полимера повышает температурную стабильность параметров модуля. Наличие изгибов световодов обеспечивает компенсацию температурных подвижек, вызванных различными коэффициентами температурного расширения используемых материалов. В этом случае температурные подвижки приводят к изменению формы изгибов световодов без нарушения работы интегрально-оптического модуля.
Выполнение интегрально-оптического модуля с V-образным положением выходных световодов уменьшает габариты интегрально-оптического модуля и позволяет использовать его в волоконно-оптических гироскопах с малыми диаметрами катушек.
Таким образом, предлагаемое устройство интегрально-оптического модуля повышает надежность его функционирования, а также позволяет уменьшить его габариты применительно к использованию в волоконно-оптическом пироскопе.
Эффективность предложенных технических решений подтверждена их реализацией в интегрально-оптических модулях, изготавливаемых и используемых предприятием «Оптолинк» в волоконно-оптических гироскопах.

Claims (7)

1. Интегрально-оптический модуль, содержащий корпус, в котором на вязкоупругом компаунде посредством промежуточной подложки установлен интегрально-оптический элемент в виде пластинки со скосами по торцам, выполненной, например, из материала LiNbO3, с сформированными в ней по продольной оси оптическими волноводами, состыкованными по торцам с волоконными световодами в державках, а также снабженной поверхностными электродами вдоль волноводов, отличающийся тем, что корпус выполнен в форме коробки с гермовыводами и отверстиями в торцевых стенках, интегрально-оптический элемент размещен на донной части коробки корпуса, а его волоконные световоды выведены через отверстия в переходных втулках, зафиксированных в отверстиях на торцевых стенках корпуса, зазоры между отверстиями в корпусе и втулками, а также между втулками и световодами заполнены соответственно компаундами с отверждением при нагреве и без нагрева, при этом на участках световодов между торцами корпуса и интегрально-оптического элемента образованы изгибы, компенсирующие температурные подвижки, гермовыводы электрически связаны с электродами на пластинке интегрально-оптического элемента, внутренняя полость корпуса заполнена инертной средой и закрыта крышкой.
2. Интегрально-оптический модуль по п.1, отличающийся тем, что переходные втулки с волоконными световодами установлены V-образно к продольной оси корпуса.
3. Интегрально-оптический модуль по п.2, отличающийся тем, что торцевые скосы под волоконные световоды на пластинке интегрально-оптического элемента выполнены V-образно относительно оси оптических волноводов.
4. Интегрально-оптический модуль по п.1, отличающийся тем, что в качестве среды для заполнения использован инертный газ, например гелий, с температурой точки росы не выше нижнего предела рабочей температуры.
5. Интегрально-оптический модуль по п.1, отличающийся тем, что в качестве среды для заполнения использован вязкоупругий полимер, например компаунд СИЭЛ.
6. Способ изготовления интегрально-оптического модуля по п.1, включающий установку в корпусе промежуточной подложки и интегрально-оптического элемента на ней на вязкоупругом компаунде, отличающийся тем, что интегрально-оптический элемент вводится во внутреннюю полость корпуса через отверстие в его торцевой стенке, световоды пропускаются в отверстия в корпусе и переходных втулках, зазоры между переходными втулками и световодами заполняются компаундом с отверждением без нагрева, зазоры между переходными втулками и отверстиями в корпусе заполняются компаундом с отверждением при нагреве, между торцами переходных втулок и корпуса выставляют зазоры, равные величине температурных подвижек материалов интегрально-оптического элемента и корпуса, в этом положении полимеризуют компаунд с отверждением без нагрева, смещают втулки до упора в корпус и в этом положении полимеризуют компаунд с отверждением при нагреве, внутреннюю полость корпуса заполняют инертной средой и закрывают крышкой.
7. Способ изготовления интегрально-оптического модуля по п.6, отличающийся тем, что зазоры между торцами переходных втулок и корпуса устанавливаются посредством съемных дистанционных прокладок, по толщине равных величине температурных подвижек.
RU2005114116/28A 2005-05-11 2005-05-11 Интегрально-оптический модуль для волоконно-оптического гироскопа RU2298819C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005114116/28A RU2298819C2 (ru) 2005-05-11 2005-05-11 Интегрально-оптический модуль для волоконно-оптического гироскопа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005114116/28A RU2298819C2 (ru) 2005-05-11 2005-05-11 Интегрально-оптический модуль для волоконно-оптического гироскопа

Publications (2)

Publication Number Publication Date
RU2005114116A RU2005114116A (ru) 2006-11-20
RU2298819C2 true RU2298819C2 (ru) 2007-05-10

Family

ID=37501698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005114116/28A RU2298819C2 (ru) 2005-05-11 2005-05-11 Интегрально-оптический модуль для волоконно-оптического гироскопа

Country Status (1)

Country Link
RU (1) RU2298819C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561355C2 (ru) * 2009-08-13 2015-08-27 Роберт Бош Гмбх Дозатор топлива для системы впрыскивания топлива
RU204196U1 (ru) * 2020-08-28 2021-05-14 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Герметично упакованная многофункциональная интегрально-оптическая схема

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561355C2 (ru) * 2009-08-13 2015-08-27 Роберт Бош Гмбх Дозатор топлива для системы впрыскивания топлива
RU204196U1 (ru) * 2020-08-28 2021-05-14 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Герметично упакованная многофункциональная интегрально-оптическая схема

Also Published As

Publication number Publication date
RU2005114116A (ru) 2006-11-20

Similar Documents

Publication Publication Date Title
JP2018156118A (ja) 一体型光学素子を有する密閉型光ファイバ位置合わせ組立体
US6334020B1 (en) Compact package structure for fiber optic devices
US10690872B2 (en) Optical fiber protection structure and optical combiner structure using the same
KR102474767B1 (ko) 섬유-엔드캡-고정구 정렬에서 정확도 향상을 위한 엔드캡, 조립체, 및 방법
CN202351450U (zh) 具有全玻璃外部壳体的校准器组件
RU2298819C2 (ru) Интегрально-оптический модуль для волоконно-оптического гироскопа
EP1237022A1 (en) Hermetic package with optical fiber feedthrough
US5444534A (en) Coil mounting arrangement for fiber optic gyroscope
US20040052481A1 (en) Optical component packaging device
JPH1172661A (ja) レーザ・モジュールの熱応力の低減
US20030179472A1 (en) Opto-mechanical platform
EP0607328B1 (en) Strain isolated integrated optic chip package
US7354203B2 (en) Packages for devices and components
JP2018180197A (ja) 光部品
US6702476B2 (en) Optical fiber device having attachment to optical device package
US20030077054A1 (en) Optical devices for communication
WO2016121880A1 (ja) 温度補償素子及び光センサシステム
JP2004045975A (ja) ファイバグレーティング型フィルタパッケージ
US20140023329A1 (en) Optical device, method of manufacturing optical device, and optical device assembly method
CN111919156B (zh) 用于保持光学装置对准的安装环
JP2013231895A (ja) 光モジュール
RU2807020C1 (ru) Чувствительный элемент волоконно-оптического гироскопа
CN112799175B (zh) 光纤干涉装置和量子通信设备
JP4518665B2 (ja) 光部品組立て体
JP2007199430A (ja) スプライスパッケージとその製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner