RU2298783C1 - Механизм крепления датчика к корпусу внутритрубного дефектоскопа - Google Patents
Механизм крепления датчика к корпусу внутритрубного дефектоскопа Download PDFInfo
- Publication number
- RU2298783C1 RU2298783C1 RU2005141813/28A RU2005141813A RU2298783C1 RU 2298783 C1 RU2298783 C1 RU 2298783C1 RU 2005141813/28 A RU2005141813/28 A RU 2005141813/28A RU 2005141813 A RU2005141813 A RU 2005141813A RU 2298783 C1 RU2298783 C1 RU 2298783C1
- Authority
- RU
- Russia
- Prior art keywords
- lever
- sensor
- detector
- flaw detector
- bracket
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9013—Arrangements for scanning
- G01N27/902—Arrangements for scanning by moving the sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов. Механизм содержит кронштейн, закрепленный на корпусе дефектоскопа в плоскости, проходящей через продольную ось корпуса, первый двуплечий рычаг, на конце первого плеча которого закреплен датчик, второй рычаг, один конец которого шарнирно прикреплен к концу второго плеча упомянутого первого рычага, а второй конец шарнирно прикреплен к корпусу. Механизм содержит также третий рычаг, один конец которого шарнирно прикреплен к шарнирной опоре первого рычага, а второй конец снабжен направляющим механизмом, выполненным с возможностью обеспечения перемещения датчика в вертикальной плоскости при изменении диаметра исследуемой трубы. Между третьим рычагом и кронштейном установлен пружинный механизм, работающий на сжатие и обеспечивающий прижатие датчика к внутренней стенке исследуемой трубы. Технический результат: обеспечение постоянного контакта датчика со стенкой трубы в местах закруглений и изменений диаметра трубы и практически постоянного расположения датчика в продольном направлении относительно корпуса дефектоскопа при значительных изменениях диаметров исследуемой трубы. 7 з.п. ф-лы, 6 ил.
Description
Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, точнее к устройству механизма крепления датчика внутритрубного дефектоскопа.
Как правило, датчики дефектоскопа устанавливаются концентрично по периметру корпуса дефектоскопа для того, чтобы в процессе контроля состояния трубы перекрыть всю ее поверхность. Однако труба не представляет собой идеальное тело. В процессе движения внутритрубный дефектоскоп проходит закругления, участки трубы различного диаметра или различной толщины стенок.
Механизм крепления датчика внутритрубного дефектоскопа в процессе его движения должен обеспечить плотное прилегание датчика к стенке трубы и постоянную его ориентацию в радиальном направлении относительно продольной оси корпуса дефектоскопа.
Известны различные системы датчиков внутритрубного дефектоскопа.
Система датчиков по патенту США 4330748, публикация 18 мая 1982 года, МПК: G01R 033/00; G01N 027/72; G01N 027/82, а также патенту США 4468619, публикация 28 августа 1984, МПК G01N 027/82, содержит датчики, установленные на основания - салазки, расположенные по периметру корпуса дефектоскопа. Основание представляет собой согнутую в виде параллелограмма гибкую пластину, закрепленную посередине к основанию на корпусе дефектоскопа. Одна ветвь пластины является опорой для датчиков, другая поддерживает опору от отгибания от стенки трубы в месте закрепления датчиков.
Данная система датчиков дефектоскопа благодаря своей жесткости в поперечном направлении обеспечивает постоянную ориентацию этих датчиков в радиальном направлении, однако плохо обеспечивает постоянное прилегание датчиков к поверхности трубы, так как из-за жесткости системы может отслеживать только малые изменения диаметра.
Система датчиков по патенту США 5864232, публикация 26 января 1999 года, МПК G01N 027/72, содержит датчики, установленные на держателях, каждый из которых закреплен на корпусе дефектоскопа с помощью пары рычагов. Рычаги разнесены в продольном направлении в плоскости, проходящей через ось симметрии дефектоскопа и способны поворачиваться в этой плоскости. Каждый указанный рычаг имеет ось вращения в месте крепления держателя к рычагу и в месте крепления рычага к корпусу.
Держатель вместе с датчиками выполнен по схеме "параллелограмма", которая является устойчивой и благодаря своей жесткости в поперечном направлении обеспечивает постоянную ориентацию этих датчиков в радиальном направлении при прохождении прямолинейных участков трубопровода. Однако такая система не обеспечивает контакт датчиков при прохождении закруглений и в местах изменения диаметра трубы, так как основание датчиков практически может перемещаться только параллельно корпусу и не имеет возможности отслеживать изгибы трубы.
Патент России 2225977, публикация 20 марта 2004 года, МПК G01M 3/08, F17D 5/00, G01N 27/72 является наиболее близким аналогом. Датчики установлены в держателях, установленных по периметру вокруг оси симметрии дефектоскопа. Каждый держатель датчиков закреплен на корпусе дефектоскопа с помощью пары рычагов, способных поворачиваться в плоскости, проходящей через ось симметрии дефектоскопа. В каждом держателе датчиков все датчики находятся со стороны хвостовой части дефектоскопа по отношению к обеим осям вращения пары рычагов в этом держателе датчиков. Расстояние между указанными осями вращения в держателе датчиков составляет не более 0,2 длины рычага.
Данная конструкция крепления датчиков обеспечивает их прижатие во время движения по прямолинейным участкам трубопровода, в том числе и при изменении диаметра трубы, так как датчик благодаря рычажной системе и шарнирным соединениям может повторять изменения профиля стенок трубы. Но конструкция обладает сравнительно малой устойчивостью к боковым воздействиям, так как два рычага крепятся как у основания, так и у корпуса практически в одной точке. При прохождении закруглений или выступов в стенке трубы основание может сместиться в сторону от необходимой траектории движения, кроме того, датчики могут потерять контакт со стенкой.
Заявляемое изобретение решает задачу обеспечения постоянного контакта датчика со стенкой трубы как на прямолинейных участках, так и в закруглениях и в местах изменения диаметра трубы. При этом механизм крепления датчика обеспечивает практически постоянное расположение датчика в продольном направлении относительно корпуса дефектоскопа при значительных изменениях диаметров исследуемой трубы, что дает возможность точного определения координат дефектов.
Механизм крепления датчика к корпусу внутритрубного дефектоскопа по изобретению содержит кронштейн, закрепленный на корпусе дефектоскопа в плоскости, проходящей через продольную ось корпуса, первый двуплечий рычаг, на конце первого плеча которого закреплен датчик, второй рычаг, один конец которого шарнирно прикреплен к концу второго плеча упомянутого первого рычага, а второй конец шарнирно прикреплен к корпусу. Механизм содержит также третий рычаг, один конец которого шарнирно прикреплен к шарнирной опоре упомянутого первого рычага, а второй конец снабжен направляющим механизмом, выполненным с возможностью обеспечения перемещения упомянутого датчика в вертикальной плоскости при изменении диаметра исследуемой трубы. Между третьим рычагом и кронштейном установлен пружинный механизм, работающий на сжатие и обеспечивающий прижатие датчика к внутренней стенке исследуемой трубы.
Благодаря такой конструкции механизма при изменении внутреннего диаметра трубы обеспечивается перемещение датчика в вертикальном направлении практически без смещения датчика в продольном направлении относительно корпуса дефектоскопа, так как точка крепления датчика движется не по радиусу, как обычно в системах крепления датчиков, а вертикально. Кроме того, обеспечивается устойчивость датчика в поперечном направлении, так как точки опоры механизма к кронштейну, закрепленному на корпусе разнесены. При ударе первого рычага о значительное по размерам препятствие внутри трубы механизм крепления датчика к корпусу имеет такую конструкцию, что сложится, а энергия удара будет поглощена пружинным механизмом.
В частном случае выполнения направляющий механизм содержит два ползуна, установленных с возможностью скольжения в направляющих, выполненных в упомянутом кронштейне.
Благодаря закреплению конца третьего рычага в направляющих кронштейна вся система является более устойчивой в поперечном направлении.
В частном случае выполнения пружинный механизм содержит втулку, шарнирно закрепленную на кронштейне, шток, жестко закрепленный на упомянутом третьем рычаге параллельно его оси и вставленный в полость упомянутой втулки и цилиндрическую пружину, надетую на втулку и упертую с одной стороны в кронштейн, с другой стороны - о рычаг.
В частности, второй конец упомянутого второго рычага может быть шарнирно прикреплен к корпусу посредством шарнирного крепления на упомянутом кронштейне.
Механизм выполнен с шарнирами, работающими в одной плоскости для того, чтобы избежать бокового смещения датчика.
На первом рычаге перед датчиком может быть установлен ролик, выполненный с возможностью вращения для обеспечения защиты датчика при прохождении выступов трубы.
Кроме этого, датчик может быть закреплен на рычаге с возможностью поворота для обеспечения более надежного прижима верхней плоскости датчика и точного отслеживания неровностей трубы.
На корпусе дефектоскопа устанавливается ряд механизмов крепления датчиков, расположенных в плоскостях, проходящих через ось симметрии корпуса дефектоскопа, для того, чтобы перекрыть всю образующую трубы измерительными датчиками.
На Фиг.1 приведена схема механизма крепления датчика, на Фиг.2 - пружинный механизм в сборе, на Фиг.3 - разобранный механизм, на Фиг.4 - показано устройство втулки, на Фиг.5 - кронштейн и на Фиг.6 - вид механизма спереди.
Механизм крепления датчика (Фиг.1) содержит кронштейн 2, закрепленный на корпусе 1, первый двуплечий рычаг 3, второй рычаг 4, третий рычаг 5. На конце первого плеча первого рычага 3 закреплен датчик 6. Второй рычаг 4 шарнирно прикреплен к кронштейну 2 и к первому рычагу 3.
Один конец третьего рычага 5 шарнирно прикреплен к шарнирной опоре 6 первого рычага 3. Направляющий механизм выполнен следующим образом. Второй конец третьего рычага снабжен двумя ползунами 7 и 8, установленными в направляющих 9 и 10, выполненных в кронштейне 2 (Фиг.5). Направляющие могут быть выполнены в виде прорезей или, выполнены в накладках, установленных на кронштейне. Направляющие 9 и 10 ориентированы таким образом, чтобы при выбранной длине всех рычагов точка крепления датчика 6 перемещалась в плоскости 21, перпендикулярной оси симметрии корпуса 1 дефектоскопа. Направляющие могут быть криволинейными и прямолинейными. В общем случае их форма и направление выбираются путем кинематических расчетов или подбором.
Направляющий механизм может быть выполнен иначе. На конце рычага может быть выполнен один ползун, а в кронштейне - одна направляющая. В этом случае проще обеспечить движение конца рычага, однако могут возникнуть нежелательные перекосы конца рычага, что приведет к смещению механизма в поперечном направлении.
Между третьим рычагом 5 и кронштейном 2 установлен пружинный механизм 11 (Фиг.2-Фиг.4). Пружинный механизм 11 обеспечивает прижатие датчика 6 к трубе 20 и содержит втулку 12, закрепленную на кронштейне 2 с помощью шарнира 13, шток 14, жестко закрепленный третьем рычаге 5 в плоскости, параллельной оси третьего рычага 5. Шток 14 вставлен в полость 15 втулки 12. На втулку 12 и шток 14 надета цилиндрическая пружина 16, которая упирается в упор 17 и в элементы шарнира 13, закрепленного на кронштейне 2.
Пружинный механизм также может быть выполнен в виде иного пружинного амортизатора.
Шарниры, крепящие первый рычаг 3 к второму рычагу 4 и второй рычаг 4 к кронштейну 2, могут быть выполнены различным образом, в том числе из гибких элементов, обеспечивающих перемещение рычагов в плоскости механизма и препятствующих смещению рычагов в перпендикулярной плоскости.
Датчик 6 прикрепляется к рычагу 3 с помощью гибкого элемента 18, который обеспечивает более надежный прижим и отслеживание неровностей трубы 20 верхней плоскостью датчика 6. Перед датчиком установлен ролик 19, предохраняющий датчик 6 от ударов о элементы, торчащие из трубы 20.
При движении дефектоскопа в трубе датчик 6 посредством механизма прижимается к внутренней стенке трубы 20 благодаря пружинному механизму 11. При изменении диаметра трубы 20 датчик 6 перемещается, при этом изменяется положение рычагов 3, 4 и 5. При смещении третьего рычага 5 ползуны 7 и 8 перемешаются по направляющим 9 и 10 соответственно. При этом сохраняется положение датчика 6 относительно корпуса 1 дефектоскопа в продольном сечении, то есть его точка крепления перемещается в плоскости 21. Механизм позволяет отслеживать неровности трубы, изменения его диаметра, при этом сохраняет положение датчика 6 также и в плоскости, параллельной оси симметрии корпуса 1 дефектоскопа. Так же работают все механизмы крепления датчиков 6, установленные по образующей корпуса 1 (Фиг.6).
Claims (8)
1. Механизм крепления датчика к корпусу внутритрубного дефектоскопа, характеризующийся тем, что содержит кронштейн, закрепленный на корпусе дефектоскопа в плоскости, проходящей через продольную ось корпуса, первый двуплечий рычаг, на конце первого плеча которого закреплен датчик, второй рычаг, один конец которого шарнирно прикреплен к концу второго плеча упомянутого первого рычага, а второй конец шарнирно прикреплен к корпусу, третий рычаг, один конец которого шарнирно прикреплен к шарнирной опоре упомянутого первого рычага, а второй конец снабжен направляющим механизмом, выполненным с возможностью обеспечения перемещения упомянутого датчика в вертикальной плоскости при изменении диаметра исследуемой трубы, а между третьим рычагом и кронштейном установлен пружинный механизм, работающий на сжатие и обеспечивающий прижатие датчика к внутренней стенке исследуемой трубы.
2. Механизм по п.1, характеризующийся тем, что направляющий механизм содержит два ползуна, установленных с возможностью скольжения в направляющих, выполненных в упомянутом кронштейне.
3. Механизм по п.1, характеризующийся тем, что упомянутый пружинный механизм содержит втулку, шарнирно закрепленную на кронштейне, шток, жестко закрепленный на упомянутом третьем рычаге параллельно его оси и вставленный в полость упомянутой втулки, и цилиндрическую пружину, надетую на втулку и упертую с одной стороны в кронштейн, с другой стороны в рычаг.
4. Механизм по п.1, характеризующийся тем, что второй конец упомянутого второго рычага шарнирно прикреплен к корпусу посредством шарнирного крепления на упомянутом кронштейне.
5. Механизм по п.1, характеризующийся тем, что упомянутый механизм выполнен с шарнирами, работающими в одной плоскости.
6. Механизм по п.1, характеризующийся тем, что на упомянутом первом рычаге перед датчиком с возможностью вращения установлен ролик.
7. Механизм по п.1, характеризующийся тем, что датчик закреплен на рычаге с возможностью поворота.
8. Механизм по п.1, характеризующийся тем, что на корпусе дефектоскопа установлен ряд механизмов крепления датчиков, расположенных в плоскостях, проходящих через ось симметрии корпуса дефектоскопа.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005141813/28A RU2298783C1 (ru) | 2005-12-21 | 2005-12-21 | Механизм крепления датчика к корпусу внутритрубного дефектоскопа |
PCT/RU2006/000688 WO2007075127A1 (fr) | 2005-12-21 | 2006-12-19 | Mecanisme de fixation d'un capteur au boitier d'un detecteur de defauts intratubulaire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005141813/28A RU2298783C1 (ru) | 2005-12-21 | 2005-12-21 | Механизм крепления датчика к корпусу внутритрубного дефектоскопа |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2298783C1 true RU2298783C1 (ru) | 2007-05-10 |
Family
ID=38107954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005141813/28A RU2298783C1 (ru) | 2005-12-21 | 2005-12-21 | Механизм крепления датчика к корпусу внутритрубного дефектоскопа |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2298783C1 (ru) |
WO (1) | WO2007075127A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777452C1 (ru) * | 2021-11-16 | 2022-08-04 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Способ проворачивания внутритрубного дефектоскопа в лотке и устройство для его осуществления |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117129491B (zh) * | 2023-09-20 | 2024-03-29 | 广东天信电力工程检测有限公司 | 一种基于x射线的gis设备缺陷检测方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2086051B (en) * | 1980-10-17 | 1984-07-25 | British Gas Corp | Pipeline inspection vehicle |
RU2204113C1 (ru) * | 2002-03-28 | 2003-05-10 | ЗАО "Нефтегазкомплектсервис" | Носитель датчиков для внутритрубного инспекционного снаряда (варианты) |
RU2225977C1 (ru) * | 2003-05-27 | 2004-03-20 | ЗАО "Нефтегазкомплектсервис" | Внутритрубный дефектоскоп |
-
2005
- 2005-12-21 RU RU2005141813/28A patent/RU2298783C1/ru not_active IP Right Cessation
-
2006
- 2006-12-19 WO PCT/RU2006/000688 patent/WO2007075127A1/ru not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777452C1 (ru) * | 2021-11-16 | 2022-08-04 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Способ проворачивания внутритрубного дефектоскопа в лотке и устройство для его осуществления |
Also Published As
Publication number | Publication date |
---|---|
WO2007075127A1 (fr) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1278096C (zh) | 用于检查管道形变的设备 | |
CN108318509B (zh) | 用于射线检测的双向对焦方法及对焦装置 | |
RU2460069C2 (ru) | Устройство для контроля прямолинейных полостей вихревыми токами | |
RU2298783C1 (ru) | Механизм крепления датчика к корпусу внутритрубного дефектоскопа | |
CN206876503U (zh) | 一种三点、四点弯曲试验机用对中调整夹具 | |
WO2018056820A2 (en) | Probe holder system | |
JP2023552339A (ja) | プローブの受動的正常化のためのシステム及び方法 | |
JP2015190893A (ja) | 管路内径検査装置 | |
RU2298784C1 (ru) | Механизм крепления датчика к корпусу внутритрубного дефектоскопа | |
CN209623642U (zh) | 圆度快速测定仪 | |
JP4918894B2 (ja) | 配管用厚さ測定装置 | |
CN116297816B (zh) | 一种迷你漏磁内检测器 | |
RU2293312C1 (ru) | Устройство системы датчиков внутритрубного дефектоскопа (варианты) | |
CN209700694U (zh) | 槽轨轨道检测仪 | |
CN110470249A (zh) | 长距离直管管道连接偏移的检测方法 | |
CN217678494U (zh) | 一种路面弯沉检测装置 | |
RU49221U1 (ru) | Внутритрубный профилемер (варианты) | |
CN211576140U (zh) | 一种受电弓磨耗趋势分析仪 | |
CN209028091U (zh) | 一种断路器测速装置 | |
RU224858U1 (ru) | Устройство блока датчиков внутритрубного дефектоскопа | |
RU2325634C2 (ru) | Устройство системы датчиков внутритрубного дефектоскопа | |
RU196982U1 (ru) | Устройство крепления приёмника электромагнитной системы управления внутритрубного рентгеновского дефектоскопа, типа кроулер | |
RU2009117235A (ru) | Подвижная группа станка, содержащая движущийся суппорт, шпиндельный узел и шпиндель, выполненная с возможностью обнаружения тепловой деформации шпиндельного узла | |
CN212031263U (zh) | 一种用于无损检测的探头夹具 | |
RU113006U1 (ru) | Узел крепления датчиков внутритрубного дефектоскопа |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161222 |