RU2295096C2 - Компрессионная установка для использования в целях охлаждения и нагревания - Google Patents

Компрессионная установка для использования в целях охлаждения и нагревания Download PDF

Info

Publication number
RU2295096C2
RU2295096C2 RU2004110046/06A RU2004110046A RU2295096C2 RU 2295096 C2 RU2295096 C2 RU 2295096C2 RU 2004110046/06 A RU2004110046/06 A RU 2004110046/06A RU 2004110046 A RU2004110046 A RU 2004110046A RU 2295096 C2 RU2295096 C2 RU 2295096C2
Authority
RU
Russia
Prior art keywords
installation
pressure
refrigerant
heat exchanger
charge
Prior art date
Application number
RU2004110046/06A
Other languages
English (en)
Other versions
RU2004110046A (ru
Inventor
Коре АФЛЕКТ (NO)
Коре АФЛЕКТ
Армин ХАФНЕР (NO)
Армин ХАФНЕР
Арне ЯКОБСЕН (NO)
Арне ЯКОБСЕН
Петтер НЕКСО (NO)
Петтер Нексо
Йостейн ПЕТТЕРСЕН (NO)
Йостейн ПЕТТЕРСЕН
Ховард РЕКСТАД (NO)
Ховард РЕКСТАД
Гейр СКЁУГЕН (NO)
Гейр СКЁУГЕН
Гхолам Реса САКЕРИ (DE)
Гхолам Реса САКЕРИ
Original Assignee
Синвент Ас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19912791&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2295096(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Синвент Ас filed Critical Синвент Ас
Publication of RU2004110046A publication Critical patent/RU2004110046A/ru
Application granted granted Critical
Publication of RU2295096C2 publication Critical patent/RU2295096C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Lubricants (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Изобретение относится к компрессионным холодильным установкам, работающим при сверхкритическом высоком давлении. Компрессионная холодильная установка содержит компрессор (1), теплоотдающий теплообменник (2), расширительное устройство (3) и тепловоспринимающий теплообменник (4), соединенные в замкнутом циркуляционном контуре, который может работать при сверхкритическом высоком давлении. Заряд хладагента и конструкция элементов установки рассчитаны на давление, действующее внутри установки при ее простое, величина которого ниже 1,26 критического давления хладагента, когда температура всей установки устанавливается на уровне 60°С. В качестве хладагента используют двуокись углерода или смесь хладагентов, содержащую двуокись углерода. Технический результат заключается в создании простой и эффективной установки. 9 з.п. ф-лы, 6 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к компрессионным холодильным установкам, содержащим компрессор, теплоотдающий теплообменник, расширительное устройство и тепловоспринимающий теплообменник, соединенные между собой в замкнутом контуре циркуляции, который может работать при сверхкритическом высоком уровне давления с использованием в качестве хладагента двуокиси углерода или смеси, содержащей двуокись углерода.
Уровень техники
В известных парокомпрессионных установках тепло отводится за счет конденсации хладагента при докритическом давлении, величина которого для заданной температуры определяется давлением насыщения. Хладагенты наиболее часто выбирают так, чтобы максимальная величина давления, реализуемого в установке, была заметно ниже величины критического давления хладагента, и обычно она не превышает заданного предельного давления, например, 25 бар.
В случае использования хладагента с низкой критической температурой, такого как СО2, давление в теплоотдающем теплообменнике, для обеспечения эффективной работы установки, должно быть сверхкритическим, если температура холодного источника тепла высока, например выше критической температуры хладагента. Цикл работы установки в этом случае будет с околокритическими параметрами, такой, например, как в опубликованной международной заявке WO 90/07683.
В заявках WO 94/14016 и WO 97/27437 описана простая схема для реализации такой установки на основе, содержащей компрессор, теплоотдающий теплообменник, расширительное устройство и тепловоспринимающий теплообменник, соединенные между собой с образованием замкнутого контура. Предпочтительным хладагентом в обоих случаях, с точки зрения обеспечения защиты окружающей среды, является СО2.
Основной недостаток установок, известных из WO 94/14016 и WO 97/27437, заключается в том, что во время длительного простоя (перерыва в работе) в условиях высоких температур окружающей среды в этих установках будут устанавливаться очень высокие давления. Как отмечено в заявке WO 97/27437, в этом случае при 60°С величина давления будет, как правило, выше 100 бар. Это обуславливает требования к проектированию всех элементов установки с расчетом на очень высокие давления, что приводит к увеличению веса и стоимости этих элементов конструкции. В особенности, этот недостаток присущ конструкции герметичных компрессоров, размеры корпуса которых диктуются размерами электродвигателя.
В заявке WO 94/14016 описано, как можно улучшить ситуацию за счет подключения на стороне низкого давления контура отдельного разгрузочного расширительного резервуара, осуществляемого (подключения) через клапан. Недостаток такого решения состоит в увеличении стоимости и сложности установки.
Еще один недостаток известных из WO 94/14016 и WO 97/27437 установок заключается в том, что технические характеристики заправки контура рабочим телом, составляющие для указанных установок от 0,55 до 0,7 кг/л и от 0,25 до 0,45 кг/л соответственно, отнесенные к величине внутреннего объема элементов установки, обуславливают слишком большую величину заряда, которая является оптимальной, например, для установок, работающих при более низких температурах подвода тепла и/или использующих компрессоры с герметичным уплотнением, имеющих большой занятый газовой фазой объем на стороне низкого давления установки.
Другим недостатком решений, известных из заявок WO 94/14016 и WO 97/27437, является то обстоятельство, что в случае применения установок с компрессорами, работающими с использованием смазочного масла, известные решения не учитывают сильную зависимость величины оптимального заряда от его растворимости в смазочном масле и от элементов конструкции установки.
Раскрытие изобретения
Основная задача данного изобретения заключается в создании простой, эффективной установки, которой не присущи вышеупомянутые недостатки.
Согласно изобретению компрессионная холодильная установка содержит компрессор, теплоотдающий теплообменник, расширительное устройство и тепловоспринимающий теплообменник, соединенные между собой в замкнутом циркуляционном контуре, который может работать при сверхкритическом высоком давлении, заряд хладагента и конструкция элементов установки рассчитаны на давление, действующее внутри установки при ее простое, величина которого ниже 1,26 критического давления хладагента, когда температура всей установки устанавливается на уровне 60°С, при этом в установке в качестве хладагента используют двуокись углерода или смесь хладагентов, содержащую двуокись углерода.
Предпочтительно, используют многоступенчатый компрессор или компрессор с регулируемой производительностью.
Целесообразно выполнение компрессора герметичным или полугерметичным.
Дополнительно, установка может содержать регенеративный теплообменник.
В установке, использующей в качестве хладагента CO2, заряд хладагента составляет от 18 до 250 грамм на литр общего внутреннего объема установки.
Установка может быть выполнена таким образом, что ее работа может быть обратимой.
Как отмечено выше, основой настоящего изобретения является обычная простейшая схема, включающая, по меньшей мере, компрессор, теплоотдающий теплообменник (теплоотдатчик), расширительное устройство и тепловоспринимающий теплообменник (теплоприемник). Учитывая тот факт, что указанные выше аналоги относятся к контурам холодильной установки, заправленным большим количеством заряда хладагента, заявители путем проведения экспериментов и моделирования рабочих процессов обнаружили, что за счет согласования (соответствующего выбора) внутреннего объема элементов конструкции установки, в которых на стороне низкого давления контура при нормальном функционировании находится паровая фаза хладагента/газ, для заданного внутреннего объема всей установки могут быть достигнуты оптимальные условия работы при низкой величине заряда хладагента. Поэтому для этих элементов конструкции установки может быть получено самое низкое проектное давление.
За счет такого решения исключается необходимость использования отдельной расширительной емкости для того, чтобы в условиях простоя установки при высоких температурах избежать воздействия избыточного давления, и все элементы или части элементов стороны низкого давления установки могут быть спроектированы с расчетом на низкое давление. Расчеты и эксперименты показывают, что в случае простоя установки при температуре 60°С максимальное давление легко можно поддерживать ниже 80 бар, используя в качестве рабочего тела СО2. Настоящее изобретение может быть использовано в целях значительного снижения веса и стоимости установки даже в случае обычной конструкции этой установки.
Краткое описание чертежей
Настоящее изобретение будет раскрыто далее на примерах и со ссылками на приложенные фигуры чертежей.
Фиг.1 - обычная схема парокомпрессионной установки.
Фиг.2 - пример изменения давления в зависимости от температуры в установке при ее простоях для случаев выполнения установки в соответствии с данным изобретением и согласно заявке WO 97/27437.
Фиг.3 иллюстрирует вклад объема различных элементов типичной установки, соответствующей данному изобретению, и их заряда хладагентом в общий заряд установки в случае ее заправки оптимальным количеством заряда, в сопоставлении с областями изменения отношения объема к заряду, соответствующими заявкам WO 94/14016 и WO 97/27437, показанными на диаграмме заштрихованными областями.
Фиг.4 иллюстрирует максимальную величину коэффициента полезного действия (КПД), которая обеспечивается оптимальным количеством заряда установки хладагентом, и характер снижения КПД при заполнении установки зарядом в количестве выше или ниже оптимального.
Фиг.5 - пример модифицированного цикла для улучшения работы установки.
Фиг.6 - пример обратимой установки, предназначенной для кондиционирования воздуха и работы в качестве теплонасосной установки.
Осуществление изобретения
На фиг.1 показана обычная парокомпрессионная установка с циркуляцией хладагента по замкнутому контуру, содержащая компрессор 1, теплоотдающий теплообменник 2, расширительное устройство 3 и тепловоспринимающий теплообменник 4.
В случае использования, например, CO2 в качестве хладагента давление на стороне высокого давления (на стороне нагнетания) установки в некоторых случаях может быть сверхкритическим, но для получения оптимальной величины КПД такая установка должна быть способной работать при сверхкритическом давлении на стороне высокого давления при более высоких температурах холодного источника. Поэтому сторона высокого давления установки должна быть спроектирована с расчетом на соответствующее высокое рабочее давление, типичная величина которого для CO2 может составлять более чем 110 бар, если в качестве холодного источника используют воздух. Для стороны низкого давления установки, однако, изредка требуется, чтобы величина рабочих давлений составляла, например, более чем 60 бар, что соответствует температуре испарения приблизительно 22°С. Давление в период простоя установки, таким образом, зачастую будет определять величину давления, на которое рассчитывают сторону низкого давления, поскольку вся установка должна быть способной выдерживать температуры, которые при ее простое достигают 60°С и более. При нахождении установки в таких температурных условиях давление, как правило, может достигать величины, соответствующей максимальному рабочему давлению на стороне высокого давления. Важность предельного давления для конструкции элементов установки подтверждается некоторыми из действующих технических условий, стандартов и установившейся практикой эксплуатации. В большинстве случаев, как правило, минимальное давление разрыва (в элементе установки) в пять раз превышает величину максимального давления. Следовательно, элемент установки, который может быть подвержен воздействию давления в 120 бар, должен выдерживать давление 600 бар, в то время как элемент, подверженный воздействию давления в 70 бар, должен выдерживать давление только 350 бар. Такая разница давлений может привести к значительной разнице в стоимости изготовления, весе и размере. Это особенно важно для таких элементов установки как герметичные (полугерметичные) компрессоры, размеры корпуса которых достаточно велики, что диктуется размерами электродвигателя.
В соответствии с настоящим изобретением возможно создание установки, в которой за счет выбора заряда хладагента и объема различных элементов обеспечивается уменьшение максимального давления, действующего в установке при ее простое. Следовательно, необходимое расчетное давление для стороны низкого давления в установке может быть уменьшено простым путем, не отказываясь при этом от оптимального давления на стороне высокого давления установки в процессе работы установки. Это будет способствовать низкой стоимости при оптимальной величине КПД установки.
Поставленная в настоящем изобретении задача может быть решена путем соответствующего выбора внутреннего объема элементов установки, которые содержат пар хладагента/газ во время нормальной работы на стороне низкого давления, при этом для заданного внутреннего объема установки оптимальные условия работы могут быть обеспечены при малой величине заряда. Этот объем может быть, например, подобран путем увеличения размера трубопровода, что даже для более высоких расчетных допустимых значений давления является относительно недорогим решением, позволяющим уменьшить необходимое расчетное давление для корпуса герметичного компрессора.
На фиг.2 показано, как может изменяться давление в установке, соответствующей данному изобретению, в зависимости от температуры для случая простоя установки и установления в ней температурного равновесия (см. графическую зависимость, обозначенную позицией 10).
Из представленного графика видно, что даже при весьма высоких температурах окружающей среды давление в установке ниже критической величины давления хладагента. Для сравнения на фиг.2 показана также типичная зависимость 11 между теми же параметрами для установки, известной из WO 97/27437. Как видно, сравниваемые зависимости значительно отличаются одна от другой.
На фиг.3 показано, каким образом изменяется соотношение между аккумулированным зарядом и объемом для различных частей отдельно выбранной установки, заправленной хладагентом так, чтобы в расчетной точке получить оптимальную величину КПД установки в соответствии с данным изобретением. Как хорошо видно, для выбранной установки конечная величина заряда, отнесенного к внутреннему объему, в итоге составляет примерно до 0,14 кг/л (позиция 20), что значительно ниже предельных значений, указанных в международных заявках WO 94/14016 и WO 97/27437 и показанных на фиг.3 заштрихованными областями 21 и 22 соответственно.
Фиг.4 иллюстрирует, как упомянутый оптимальный заряд хладагента (позиция 30) обеспечивает максимальную эффективность, КПД, в установке в соответствии с изобретением. Величина КПД определяется в данном случае как отношение охлаждающей способности (холодопроизводительности) холодильной установки к подводимой к установке электрической энергии. Когда количество заряда больше или меньше оптимального, величина КПД резко снижается до значительно меньшей величины по сравнению с КПД, соответствующим оптимальному по величине заряду.
Фиг.2-4 основаны на детальных моделирующих экспериментах для установки, соответствующей данному изобретению, содержащей герметичный компрессор, регенеративный теплообменник, испаритель и газовый охладитель. Фиг.4 соответствует величинам, полученным для установки, функционирующей с отводом тепла при температуре окружающей среды +40°С и температуре испарения в интервале от -7°С до -2°С в зависимости от заряда хладагента и производительности холодильной установки. Рабочее высокое давление может изменяться от 70 до 120 бар в зависимости от величины заряда хладагента и температуры окружающей среды. Производительность составляла около 700 ватт.
Поскольку оптимальный заряд будет зависеть от таких факторов как условия работы, используемые конструктивные элементы установки и растворимость хладагента в смазке, то нормативы, определяющие величину заряда на единицу внутреннего объема установки, на практике не являются столь существенными и полезными. В соответствии с изобретением величина заряда хладагента взаимосвязана с достигнутым максимальным давлением в установке во время ее простоя при данной температуре, свидетельствующим о том, что установка находится при равновесной температуре, одинаковой для всей установки в целом. Согласно изобретению при установившейся в установке температуре на уровне, доходящем до 60°С, это давление должно быть ниже 1,26 критического давления для хладагента. Конечное установившееся давление при такой температуре или любой иной температуре, определяемой как максимальная температура при простое установки, является важным параметром для определения расчетного давления на стороне низкого давления, пока эта величина превышает максимальное рабочее давление на стороне низкого давления. Для чистой CO2 предельное давление при указанной выше температуре соответствует приблизительно 93 бар. Более низкое давление не является ограничением для данного изобретения, поскольку более низкие максимальные давления будут соответствовать задаче, решаемой данным изобретением, а именно задаче снижения проектного давления для случая простоя установки. Однако маловероятно, что давление в неработающей установке при такой температуре, 60°С, может быть ниже 0,14 критического давления, соответствующего для чистой CO2 примерно 10 бар. Отдельные вклады в повышение эффективности и улучшение условий функционирования установки могут быть внесены за счет применения различных типов используемых элементов конструкции, таких как компрессор с регулируемой производительностью, расширительные машины, различные средства дросселирования хладагента, регенеративные теплообменники, а также за счет дросселирования до промежуточного давления или других усовершенствований схемы установки. Однако в объеме охраны, предоставляемой пунктом 1 формулы изобретения, можно уменьшить расчетное давление отдельных частей установки и тем самым снизить стоимость установки до минимума. Кроме того, этот результат может быть достигнут за счет использования емкости, установленной на стороне низкого давления установки, если по некоторым причинам предпочтительно включить эту емкость в состав установки, причем не в виде отдельного резервуара, предназначенного выполнять функцию расширительной емкости, как это описано в заявке WO 94/14016, а в виде встроенного участка циркуляционного контура установки.
На фиг.5 показано одно из возможных выполнений установки для осуществления модифицированного цикла работы. Показанная в качестве примера установка содержит двухступенчатый компрессор 41, теплоотдающий теплообменник 42, расширительное устройство 43, тепловоспринимающий теплообменник 44, регенеративный теплообменник 45, другое расширительное устройство 46 и регенеративный переохладитель 47. Дросселирование до промежуточного давления осуществляют для переохлаждения хладагента высокого давления перед его дросселированием в переохладителе 47 и для уменьшения конечной температуры сжатия, которое производят путем инжекции газа промежуточного давления, осуществляемой в процессе сжатия или же между ступенями двухступенчатого компрессора 41. В соответствии с настоящим изобретением, кроме того, может быть уменьшено проектное давление для элементов установки, работающих при промежуточном давлении. Это касается, например, стороны с промежуточным давлением теплообменника 47 и частей компрессора 41, находящихся под действием промежуточного давления.
Установка, характеризующаяся тем, что она может работать как обратимая, например, такая как показана на фиг.6, также может извлечь пользу из предлагаемого изобретения. Примером является обратимая теплонасосная установка, содержащая компрессор 51, теплообменник 52, расширительное устройство 53, теплообменник 54, регенеративный теплообменник 55, расширительное устройство 56, четырехходовой клапан 57, обратный клапан 58 и еще один обратный клапан 59. В этой установке сторона всасывания компрессора всегда будет находиться при низком давлении, и, следовательно, можно извлечь выгоду от более низкого расчетного давления, как было отмечено выше. Теплообменник 52, который при работе в режиме охлаждения является испарителем/тепловоспринимающим теплообменником, расположенным на стороне низкого давления установки, в режиме нагрева будет находиться в той же установке на стороне высокого давления. Максимальное высокое давление в режиме нагрева, однако, зачастую может понижаться до 70-80 бар, и таким образом более низкое максимальное давление при простое установки, выполненной в соответствии с настоящим изобретением, будет поэтому для указанного элемента установки (52) также выгодным.
Предпочтительным хладагентом в соответствии с изобретением является двуокись углерода, но в данном изобретении, помимо того, может быть использована смесь двуокиси углерода с другими веществами, которая может обеспечивать такие же рабочие характеристики в случае функционирования установки по циклу с околокритическими параметрами при определенных условиях функционирования.
Необходимо подчеркнуть, что использование настоящего изобретения не ограничено приведенными примерами осуществления и поясняющими чертежами, на которые были даны ссылки при раскрытии изобретения, но в объеме признаков формулы данное изобретение применимо ко всем установкам, где может быть использована идея данного изобретения.

Claims (10)

1. Компрессионная холодильная установка, содержащая компрессор (1), теплоотдающий теплообменник (2), расширительное устройство (3) и тепловоспринимающий теплообменник (4), соединенные между собой в замкнутом циркуляционном контуре, который может работать при сверхкритическом высоком давлении, отличающаяся тем, что заряд хладагента и конструкция элементов установки рассчитаны на давление, действующее внутри установки при ее простое, величина которого ниже 1,26 критического давления хладагента, когда температура всей установки устанавливается на уровне 60°С, при этом в установке в качестве хладагента используют двуокись углерода или смесь хладагентов, содержащую двуокись углерода.
2. Установка по п.1, отличающаяся тем, что используют многоступенчатый компрессор или компрессор с регулируемой производительностью.
3. Установка по п.1, отличающаяся тем, что компрессор выполнен герметичным или полугерметичным.
4. Установка по п.2, отличающаяся тем, что компрессор выполнен герметичным или полугерметичным.
5. Установка по любому из пп.1-4, отличающаяся тем, что она, кроме того, содержит регенеративный теплообменник.
6. Установка по любому из пп.1-4, использующая в качестве хладагента CO2, отличающаяся тем, что заряд хладагента в установке составляет от 18 до 250 г на литр общего внутреннего объема установки.
7. Установка по п.5, использующая в качестве хладагента СО2, отличающаяся тем, что заряд хладагента в установке составляет от 18 до 250 г на литр общего внутреннего объема установки.
8. Установка по любому из пп.1-4 и 7, отличающаяся тем, что ее работа может быть обратимой.
9. Установка по п.5, отличающаяся тем, что ее работа может быть обратимой.
10. Установка по п.6, отличающаяся тем, что ее работа может быть обратимой.
RU2004110046/06A 2001-09-03 2002-07-26 Компрессионная установка для использования в целях охлаждения и нагревания RU2295096C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20014258A NO20014258D0 (no) 2001-09-03 2001-09-03 System for kjöle- og oppvarmingsformål
NO20014258 2001-09-03

Publications (2)

Publication Number Publication Date
RU2004110046A RU2004110046A (ru) 2005-05-20
RU2295096C2 true RU2295096C2 (ru) 2007-03-10

Family

ID=19912791

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004110046/06A RU2295096C2 (ru) 2001-09-03 2002-07-26 Компрессионная установка для использования в целях охлаждения и нагревания

Country Status (17)

Country Link
US (1) US7131291B2 (ru)
EP (1) EP1427972B1 (ru)
JP (1) JP2005502022A (ru)
KR (1) KR20040047804A (ru)
CN (1) CN1252431C (ru)
AR (1) AR036413A1 (ru)
AT (1) ATE370373T1 (ru)
BR (1) BR0212276B1 (ru)
CA (1) CA2459276A1 (ru)
DE (1) DE60221860T2 (ru)
MX (1) MXPA04001995A (ru)
NO (1) NO20014258D0 (ru)
PL (1) PL367898A1 (ru)
RU (1) RU2295096C2 (ru)
TW (1) TW565678B (ru)
WO (1) WO2003021164A1 (ru)
ZA (1) ZA200401723B (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489367B1 (en) * 2002-03-28 2011-08-24 Panasonic Corporation Refrigerating cycle device
JP2005226913A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 遷臨界冷媒サイクル装置
JP2005226918A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 太陽電池駆動冷媒サイクル装置、給湯器、温蔵庫、冷却貯蔵庫、飲料供給装置及び空気調和機
EP1816416B1 (en) * 2004-11-25 2019-06-19 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JP2006183950A (ja) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
JP4652449B2 (ja) * 2005-07-28 2011-03-16 パナソニック株式会社 冷凍装置
CN100554820C (zh) * 2006-03-27 2009-10-28 三菱电机株式会社 冷冻空调装置
DE102007035110A1 (de) * 2007-07-20 2009-01-22 Visteon Global Technologies Inc., Van Buren Klimaanlage für Kraftfahrzeuge und Verfahren zu ihrem Betrieb
AU2008281322A1 (en) * 2007-08-01 2009-02-05 Zerogen Pty Ltd Power generation process and system
WO2009055009A2 (en) 2007-10-24 2009-04-30 Emerson Climate Technologies, Inc. Scroll compressor for carbon dioxide refrigerant
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
US8312734B2 (en) * 2008-09-26 2012-11-20 Lewis Donald C Cascading air-source heat pump
US10088202B2 (en) 2009-10-23 2018-10-02 Carrier Corporation Refrigerant vapor compression system operation
US9582787B2 (en) 2013-04-23 2017-02-28 Paypal, Inc. Recovery of declined transactions
DE102014214656A1 (de) * 2014-07-25 2016-01-28 Konvekta Ag Kompressionskälteanlage und Verfahren zum Betrieb einer Kompressionskälteanlage
DE102018127108B4 (de) * 2018-10-30 2021-04-22 Hanon Systems Vorrichtungen für ein Klimatisierungssystem eines Kraftfahrzeugs sowie ein Verfahren zum Betreiben der Vorrichtungen
CN111907301A (zh) 2019-05-07 2020-11-10 开利公司 组合式换热器、热交换系统及其优化方法
CN110500801A (zh) * 2019-08-28 2019-11-26 西安陕鼓动力股份有限公司 工业制冷系统设计方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
BR9107318A (pt) * 1991-09-16 1995-11-07 Sinvent As Processo de modulação da pressão do lado alto num dispositivo de compressão de vapor transcrítica,e dispositivo de ciclo de compressão de vapor
NO915127D0 (no) * 1991-12-27 1991-12-27 Sinvent As Kompresjonsanordning med variabelt volum
NO175830C (no) 1992-12-11 1994-12-14 Sinvent As Kompresjonskjölesystem
DE4432272C2 (de) * 1994-09-09 1997-05-15 Daimler Benz Ag Verfahren zum Betreiben einer Kälteerzeugungsanlage für das Klimatisieren von Fahrzeugen und eine Kälteerzeugungsanlage zur Durchführung desselben
DE59604923D1 (de) 1996-01-26 2000-05-11 Konvekta Ag Kompressionskälteanlage
JPH10238872A (ja) * 1997-02-24 1998-09-08 Zexel Corp 炭酸ガス冷凍サイクル
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JP4196450B2 (ja) * 1997-11-06 2008-12-17 株式会社デンソー 超臨界冷凍サイクル
FR2779215B1 (fr) * 1998-05-28 2000-08-04 Valeo Climatisation Circuit de climatisation utilisant un fluide refrigerant a l'etat supercritique, notamment pour vehicule
DE19832480A1 (de) 1998-07-20 2000-01-27 Behr Gmbh & Co Mit CO¶2¶ betreibbare Klimaanlage für ein Fahrzeug
JP2000055488A (ja) 1998-08-05 2000-02-25 Sanden Corp 冷凍装置
JP2000346472A (ja) * 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd 超臨界蒸気圧縮サイクル
MY125381A (en) * 2000-03-10 2006-07-31 Sanyo Electric Co Refrigerating device utilizing carbon dioxide as a refrigerant.
US6428284B1 (en) * 2000-03-16 2002-08-06 Mobile Climate Control Inc. Rotary vane compressor with economizer port for capacity control
FR2815397B1 (fr) * 2000-10-12 2004-06-25 Valeo Climatisation Dispositif de climatisation de vehicule utilisant un cycle supercritique
JP2002130849A (ja) * 2000-10-30 2002-05-09 Calsonic Kansei Corp 冷房サイクルおよびその制御方法
US6871511B2 (en) 2001-02-21 2005-03-29 Matsushita Electric Industrial Co., Ltd. Refrigeration-cycle equipment
US6698234B2 (en) * 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system

Also Published As

Publication number Publication date
CA2459276A1 (en) 2003-03-13
PL367898A1 (en) 2005-03-07
DE60221860T2 (de) 2008-04-30
EP1427972B1 (en) 2007-08-15
US7131291B2 (en) 2006-11-07
ZA200401723B (en) 2004-11-24
RU2004110046A (ru) 2005-05-20
NO20014258D0 (no) 2001-09-03
WO2003021164A1 (en) 2003-03-13
ATE370373T1 (de) 2007-09-15
TW565678B (en) 2003-12-11
BR0212276B1 (pt) 2011-01-11
US20040255609A1 (en) 2004-12-23
AR036413A1 (es) 2004-09-08
CN1252431C (zh) 2006-04-19
BR0212276A (pt) 2004-10-19
JP2005502022A (ja) 2005-01-20
KR20040047804A (ko) 2004-06-05
DE60221860D1 (de) 2007-09-27
MXPA04001995A (es) 2005-02-17
CN1564925A (zh) 2005-01-12
EP1427972A1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
RU2295096C2 (ru) Компрессионная установка для использования в целях охлаждения и нагревания
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4069733B2 (ja) 空気調和機
US8297065B2 (en) Thermally activated high efficiency heat pump
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP5323023B2 (ja) 冷凍装置
JP5851771B2 (ja) 超臨界サイクルおよびそれを用いたヒートポンプ給湯機
US5626025A (en) Liquid pressure amplification with bypass
JP2007285681A (ja) 冷凍装置
KR101220583B1 (ko) 냉동장치
KR101220741B1 (ko) 냉동장치
KR20110074711A (ko) 냉동장치
CN108397942A (zh) 一种制冷系统的运行方法
KR101220663B1 (ko) 냉동장치
US6647742B1 (en) Expander driven motor for auxiliary machinery
KR101332478B1 (ko) 냉동장치
US5457964A (en) Superheat suppression by liquid injection in centrifugal compressor refrigeration systems
KR101429363B1 (ko) 유랭식 2단 압축기 및 히트 펌프
JP2007147228A (ja) 冷凍装置
KR200300275Y1 (ko) 냉동시스템
KR100441085B1 (ko) 펌프다운을 위한 용기가 구비된 공기 조화기
KR200326239Y1 (ko) 냉동시스템
KR0137578Y1 (ko) 히트펌프의 기액분리장치
JP2005326131A (ja) 液冷媒加圧装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080727