RU2293311C1 - Газоанализатор - Google Patents

Газоанализатор Download PDF

Info

Publication number
RU2293311C1
RU2293311C1 RU2005129788/28A RU2005129788A RU2293311C1 RU 2293311 C1 RU2293311 C1 RU 2293311C1 RU 2005129788/28 A RU2005129788/28 A RU 2005129788/28A RU 2005129788 A RU2005129788 A RU 2005129788A RU 2293311 C1 RU2293311 C1 RU 2293311C1
Authority
RU
Russia
Prior art keywords
gas
detector
additional
gas line
main
Prior art date
Application number
RU2005129788/28A
Other languages
English (en)
Inventor
Виталий Львович Будович (RU)
Виталий Львович Будович
Original Assignee
ООО Бюро аналитического приборостроения ХРОМДЕТ-ЭКОЛОГИЯ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО Бюро аналитического приборостроения ХРОМДЕТ-ЭКОЛОГИЯ filed Critical ООО Бюро аналитического приборостроения ХРОМДЕТ-ЭКОЛОГИЯ
Priority to RU2005129788/28A priority Critical patent/RU2293311C1/ru
Application granted granted Critical
Publication of RU2293311C1 publication Critical patent/RU2293311C1/ru

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к устройствам для контроля примесей в газе с использованием фотоионизационного детектора. Устройство содержит фотоионизационный детектор, основную газовую линию, в который установлен детектор и побудитель расхода, установленный в основной газовой линии на выходе детектора, дополнительную газовую линию, подключенную параллельно детектору и соединенную с патрубками детектора для входа и выхода газа, причем в дополнительной газовой линии установлен адсорбер-поглотитель для поглощения сорбируемых веществ из анализируемого газа, а также приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями. Роль приспособления для циркуляции может выполнять дополнительный побудитель расхода, установленный в дополнительной газовой линии, или побудитель расхода, установленный в основной газовой линии и дополненный двумя управляемыми запорными клапанами, один из которых установлен в дополнительной газовой линии, а другой установлен в основной газовой линии на выходе побудителя расхода. Технический результат заключается в том, что в газоанализаторе обеспечивается периодическая очистка поверхности окна УФ-лампы фотоионизационного детектора от загрязнения без использования дополнительных источников чистых газов, что значительно упрощает эксплуатацию газоанализатора, устраняя необходимость периодической очистки лампы. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к устройствам для контроля содержания примесей веществ в газе с использованием преимущественно фотоионизационного детектора. Оно может найти применение для контроля содержания примесей вредных веществ в воздухе.
Известен газоанализатор для контроля содержания примесей вредных веществ в воздухе, содержащий фотоионизационный детектор с УФ-лампой, газовую линию, соединенную с источником анализируемого газа (воздуха), в которой установлен детектор, связанный с этой линией патрубками для входа и выхода газа, и побудитель расхода, установленный в газовой линии на выходе детектора (см. Instruction Manual Photoionization Detector VX-500, Industrial Scientific Corp.).
Недостатком известного газоанализатора является то, что в процессе работы фотоионизационного детектора часть веществ, содержащихся в анализируемом воздухе, сорбируется и откладывается на поверхности оптического окна, через которое в измерительную камеру детектора поступает УФ-излучение. Под воздействием излучения происходит образование полимерной пленки на окне. Это приводит к тому, что чувствительность детектора к контролируемым веществам постепенно уменьшается. С целью восстановления чувствительности работу детектора периодически приостанавливают, отключая от источника питания, детектор разбирают и очищают поверхность оптического окна с помощью мелкодисперсного порошка, например корунда. Такая процедура очистки требует периодической калибровки детектора и резко снижает время активной работы газоанализатора. Кроме того, после нескольких протирок происходит ухудшение пропускания окна, что приводит к необходимости частой замены УФ-ламп.
Известен газоанализатор на основе фотоионизационного детектора, в котором очистка поверхности окна УФ-лампы осуществляется путем прерывания потока анализируемого воздуха через камеру детектора, дозированной подачи в камеру порции кислорода от отдельного источника кислорода и восстановления подачи потока анализируемого воздуха через камеру детектора. Часть кислорода, введенного в камеру детектора в период очистки под действием УФ-излучения, поступающего в камеру детектора через оптическое окно, преобразуется в озон, который окисляет отложившиеся на внутренних поверхностях камеры детектора вещества, приводит к их деструкции, восстанавливая рабочие характеристики детектора (см. ЕРА 1262770 А2).
Недостатком такого газоанализатора является чрезмерная сложность конструкции, обусловленная наличием баллонного источника кислорода.
Задача изобретения состояла в разработке такого газоанализатора на основе фотоионизационного детектора, в котором периодическая очистка оптического окна УФ-лампы обеспечивалась бы без привлечения дополнительного источника кислорода.
Указанная задача решается тем, что предложен газоанализатор, содержащий фотоионизационный детектор с УФ-лампой, основную газовую линию, соединенную с источником анализируемого газа, в которой установлен детектор, связанный с этой линией патрубками для входа и выхода газа, побудитель расхода, установленный в основной газовой линии на выходе детектора, в который согласно изобретению введена дополнительная газовая линия, подключенная параллельно детектору и соединенная с патрубками детектора для входа и выхода газа, причем в дополнительной газовой линии установлен адсорбер-поглотитель для поглощения сорбируемых примесей веществ из анализируемого газа и газоанализатор снабжен приспособлением для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями.
В предпочтительном варианте выполнения газоанализатора приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями, выполнено в виде дополнительного побудителя расхода, установленного в дополнительной газовой линии таким образом, что создаваемый им поток газа, протекающего через детектор, имеет то же направление, что и поток газа, создаваемый побудителем расхода, установленным в основной газовой линии. Предусмотрен также вариант выполнения газоанализатора, в котором приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями, выполнено в виде дополнительного побудителя расхода, установленного в дополнительной газовой линии таким образом, что создаваемый им поток газа, протекающий через детектор, противоположен по направлению потоку, создаваемому побудителем расхода, установленным в основной газовой линии, причем в дополнительной газовой линии установлен запорный клапан.
В другом возможном варианте выполнения газоанализатора приспособление для циркуляции газа в контуре, образованном основным и дополнительным газовыми каналами, включает побудитель расхода газа, установленный в основной газовой линии, и два управляемых запорных клапана, один из которых установлен в дополнительной газовой линии, а другой установлен в основной газовой линии на выходе побудителя расхода, причем дополнительная газовая линия одним своим концом соединена с патрубком для выхода газа из детектора через побудитель расхода.
Благодаря отмеченным выше особенностям выполнения газоанализатора, очистка поверхности оптического окна УФ-лампы фотоионизационного детектора от загрязнений производится периодически потоком анализируемого газа, освобожденного от сорбируемых примесей в адсорбере-поглотителе.
Технический результат изобретения заключается в исключении необходимости использования дополнительного источника кислорода для осуществления очистки оптического окна УФ-лампы. Это упрощает конструкцию газоанализатора и увеличивает срок службы лампы.
Сущность изобретения поясняется чертежами.
На фиг.1 и 2 изображены принципиальные схемы двух возможных вариантов выполнения газоанализатора, в которых роль приспособления для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями, выполняет дополнительный побудитель расхода, установленный в дополнительной газовой линии.
На фиг.3 изображена принципиальная схема такого варианта выполнения газоанализатора, в котором роль приспособления для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями выполняет побудитель расхода, установленный в основной газовой линии.
Предпочтительный вариант выполнения газоанализатора, изображенный на фиг.1, содержит фотоионизационный детектор 1 с УФ-лампой (не показана), основную газовую линию 2, соединенную с источником анализируемого газа (окружающим воздухом), в которой установлен фотоионизационный детектор 1, связанный с этой линией 2 патрубками 3 и 4 для входа и выхода анализируемого газа. В основной газовой линии 2 установлен также побудитель 5 расхода, размещенный на выходе фотоионизационного детектора. В газоанализатор введена дополнительная газовая линия 6, подключенная параллельно основной газовой линии 2 и соединенная с детектором 1 патрубками 3 и 4 для входа и выхода газа. В дополнительной газовой линии 6 установлен адсорбер-поглотитель 7, представляющий собой трубку, заполненную частицами 8 адсорбента, например, активированного угля. Газоанализатор снабжен приспособлением для циркуляции газа в контуре, образованном основной газовой линией 2 и дополнительной газовой линией 6, которое выполнено в виде дополнительного побудителя 9 расхода, установленного в дополнительной газовой линии 6 таким образом, что создаваемый им поток газа, протекающего через детектор 1, имеет тоже направление, что и поток газа, создаваемый побудителем расхода 5, установленным в основной газовой линии 2. Газоанализатор снабжен микропроцессором 10, осуществляющим обработку результатов измерения и управление работой газоанализатора. Газоанализатор работает в двух сменяющих друг друга режимах: режиме измерения и режиме очистки. При работе в режиме измерения побудитель 5 расхода, установленный в основной газовой линии 2, включен, а побудитель 9 расхода, установленный в дополнительной газовой линии 6, выключен.
При этом режиме работы поток анализируемого газа поступает в фотоионизационный детектор 1 по основной газовой линии 2 через входной патрубок 3 и выходит из детектора 1 через выходной патрубок 4. Затем газ поступает на вход побудителя 5 расхода, с выхода которого он выбрасывается в атмосферу.
При этом фотоионизационный детектор 1 вырабатывает электрический сигнал, пропорциональный концентрации измеряемых веществ в анализируемом газе, который обрабатывается в микропроцессорном блоке 10 и регистрируется.
Периодически через установленное время газоанализатор переводится с помощью микропроцессорного блока 10 в режиме очистки, при котором отключается побудитель 5 расхода и включается побудитель 9 расхода. При работе в этом режиме прекращается отбор анализируемого газа. Газ, находящийся в объеме детектора 1 и прилегающих к нему участках основной газовой линии 2, начинает циркулировать в контуре, образованном основной газовой линией 2 и дополнительной газовой линией 6, проходя через адсорбер-поглотитель 7, где он освобождается от сорбирующихся примесей. Очищенный газ в процессе циркуляции проходит через внутренний объем камеры детектора 1 и освобождает поверхность оптического окна УФ-лампы от отложений, которые, десорбируясь, поступают в газовый поток и поглощаются в адсорбере-поглотителе 7. При этом детектор 1 работает и выдает сигнал, соответствующий чистому (освобожденному от сорбирующихся примесей) анализируемому газу (воздуху). Этот сигнал запоминается в микропроцессорном блоке 10 и в дальнейшем используется в качестве "нулевого" сигнала при работе газоанализатора в режиме "измерение".
Необходимо отметить, что поскольку внутренние объемы камеры детектора 1, адсорбера-поглотителя 7 и дополнительной газовой линии 6 чрезвычайно малы (в сумме всего 3-5 мл), то освобождение газа от примесей происходит в течение нескольких секунд при расходе 200-300 мл/мин. Для обеспечения полной очистки окна достаточно, чтобы режим очистки составлял 10-20 секунд. Остальное время газоанализатор работает в режиме измерения. При этом адсорбер-поглотитель 7 лишь в незначительной степени пополняется сорбирующимися примесями, чем обеспечивается значительный временной ресурс его работы при чередующихся режимах измерения и очистки. Это является дополнительным достоинством предлагаемого газоанализатора.
Описанный выше вариант выполнения газоанализатора может работать и в таком режиме, когда включены оба побудителя расходов 5 и 9. При этом режиме поступающий в детектор 1 анализируемый газ разбавляется в определенной степени потоком очищенного от примесей газа, что дает возможность расширения диапазона измерений концентрации измеряемых компонентов в сторону его повышения. Это является еще одним достоинством описанного выше варианта выполнения газоанализатора. Изображенный на фиг.2 вариант выполнения газоанализатора отличается от описанного выше (фиг.1) варианта тем, что побудитель 9 расхода своим входом соединен с адсорбером-поглотителем 7, а выходом соединен с выходом детектора 1, что обеспечивает протекание газового потока через детектор 1 в противоположном направлении. При этом в газоанализатор введен управляемый запорный клапан 11, установленный между побудителем 9 расхода и адсорбером-поглотителем 7.
Особенность работы этого варианта выполнения газоанализатора состоит в том, что в режиме измерения включен побудитель 5 расхода, а побудитель 9 расхода выключен и клапан 11 закрыт. Поток анализируемого газа под действием побудителя 5 расхода непрерывно пропускается по основной газовой линии 2 через детектор 1, который вырабатывает сигнал, пропорциональный концентрации измеряемых компонентов в газе. Этот сигнал обрабатывается и регистрируется с помощью микропроцессорного блока 10. Через заданный промежуток времени газоанализатор переводится в режим очистки, при котором побудитель 5 расхода выключен, побудитель 9 расхода включен и клапан 11 открыт. При этом режиме работы осуществляется циркуляция газа в контуре, образованном основной газовой линией 2 и дополнительной газовой линией 6, в процессе которой газ освобождается от сорбирующихся примесей и очищает поверхность оптического окна УФ-лампы. При этом, если анализируемым газом является воздух, то происходит дополнительная очистка под действием озона, генерируемого из кислорода воздуха под действием УФ-излучения. Вынос молекул десорбированных загрязняющих веществ из камеры детектора 1 в этом варианте выполнения газоанализатора производится циркулирующим потоком воздуха в обратном направлении: от выходного патрубка 4 к входному патрубку 3 детектора 1 и из него в адсорбер-поглотитель 7. Вырабатываемый при этом "нулевой" сигнал детектора 1 запоминается в микропроцессорном блоке 10 и используется в качестве сигнала сравнения при работе газоанализатора в режиме измерения.
Изображенный на фиг.3 вариант выполнения газоанализатора отличается от описанного выше (фиг.1) тем, что приспособление для циркуляции газа в контуре, образованном основной газовой линией 2 и дополнительной газовой линией 6 осуществляется с помощью одного побудителя 5 расхода, установленного в основной газовой линии 2 на выходе детектора 1. Для обеспечения циркуляции газоанализатор дополнен двумя управляемыми от микропроцессорного блока 10 запорными клапанами 12 и 13, один из которых (12) установлен в основной газовой линии 2 на выходе побудителя 5 расхода, а другой (13) установлен в дополнительной газовой линии 6. При этом дополнительная газовая линия 6 одним своим концом связана с выходом детектора 1 через побудитель 5 расхода.
При работе в режиме измерения клапан 12 открыт, клапан 13 закрыт и включен побудитель расхода 5. При этом анализируемый газ под действием побудителя 5 расхода протекает через камеру детектора 1, который вырабатывает сигнал, пропорциональный концентрации измеряемых веществ. При работе в режиме очистки побудитель 5 расхода не отключается, а продолжает работать, но запирается клапан 12 и открывается клапан 13. Под действием побудителя 5 расхода газ, содержащийся в камере детектора 1 и прилегающих к нему участках основной газовой линии 2, начинает циркулировать в контуре, образованном основной газовой линией 2 и дополнительной газовой линией 6, освобождаясь от сорбирующихся примесей в адсорбере-поглотителе 7 и очищая поверхность оптического окна УФ-лампы.
Таким образом, во всех возможных вариантах выполнения предлагаемого газоанализатора очистка загрязненной поверхности окна УФ-лампы обеспечивается очищенным от сорбирующихся в адсорбере-поглотителе 7 примесей анализируемый газом (воздухом) без использования каких-либо дополнительных источников чистых газов.
Это значительно упрощает конструкцию газоанализатора. Кроме того, благодаря тому, что при работе в режиме очистки от сорбирующихся примесей подвергается лишь небольшой объем газа (менее 5 мл), время очистки составляет лишь несколько секунд и, самое главное, это не приводит к существенному загрязнению адсорбера-поглотителя, что увеличивает временной ресурс его работы. Так, при измерениях содержания углеводородов в воздухе с концентрациями ~50 мг/м3 и общем объеме контура, образованного основной и дополнительной газовыми линиями, адсорбер-поглотитель объемом 30 мл может работать без замены несколько месяцев.

Claims (4)

1. Газоанализатор, содержащий детектор, преимущественно фотоионизационный детектор, основную газовую линию, соединенную с источником анализируемого газа, в которой установлен детектор, связанный с этой линией патрубками для входа и выхода газа, побудитель расхода, установленный в основной газовой линии на выходе детектора, отличающийся тем, что в него введена дополнительная газовая линия, подключенная параллельно детектору и соединенная с патрубками детектора для входа и выхода газа, причем в дополнительной газовой линии установлен адсорбер-поглотитель для поглощения сорбируемых веществ из анализируемого газа, и газоанализатор снабжен приспособлением для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями.
2. Газоанализатор по п.1, отличающийся тем, что приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями, выполнено в виде дополнительного побудителя расхода, установленного в дополнительной газовой линии таким образом, что создаваемый им поток газа, протекающего через детектор, имеет то же направление, что и поток газа, создаваемый побудителем расхода, установленным в основной газовой линии.
3. Газоанализатор по п.1, отличающийся тем, что приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями выполнено в виде дополнительного побудителя расхода, установленного в дополнительной газовой линии таким образом, что создаваемый им поток газа, протекающий через детектор, противоположен по направлению потоку, создаваемому побудителем расхода, установленным в основной газовой линии, причем в дополнительной газовой линии установлен запорный клапан.
4. Газоанализатор по п.1, отличающийся тем, что приспособление для циркуляции газа в контуре, образованном основной и дополнительной газовыми линиями, включает побудитель расхода газа, установленный в основной газовой линии, и два управляемых запорных клапана, один из которых установлен в дополнительной газовой линии, а другой установлен в основной газовой линии на выходе побудителя расхода, причем дополнительная газовая линия одним своим концом соединена с патрубком для выхода газа из детектора через побудитель расхода.
RU2005129788/28A 2005-09-28 2005-09-28 Газоанализатор RU2293311C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005129788/28A RU2293311C1 (ru) 2005-09-28 2005-09-28 Газоанализатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005129788/28A RU2293311C1 (ru) 2005-09-28 2005-09-28 Газоанализатор

Publications (1)

Publication Number Publication Date
RU2293311C1 true RU2293311C1 (ru) 2007-02-10

Family

ID=37862634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005129788/28A RU2293311C1 (ru) 2005-09-28 2005-09-28 Газоанализатор

Country Status (1)

Country Link
RU (1) RU2293311C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090433A1 (en) * 2010-01-19 2011-07-28 R2Cd Holdings Pte Ltd An auto-cleaning and auto-zeroing system used with a photo-ionization detector
RU2540388C2 (ru) * 2012-11-01 2015-02-10 Общество с ограниченной ответственностью "Бюро аналитического приборостроения "Хромдет-Экология" Устройство для очистки фотоионизационных детекторов от загрязнений

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090433A1 (en) * 2010-01-19 2011-07-28 R2Cd Holdings Pte Ltd An auto-cleaning and auto-zeroing system used with a photo-ionization detector
US9645112B2 (en) 2010-01-19 2017-05-09 R2Cd Holdings Pte Ltd. Auto-cleaning and auto-zeroing system used with a photo-ionization detector
RU2540388C2 (ru) * 2012-11-01 2015-02-10 Общество с ограниченной ответственностью "Бюро аналитического приборостроения "Хромдет-Экология" Устройство для очистки фотоионизационных детекторов от загрязнений

Similar Documents

Publication Publication Date Title
JP6523797B2 (ja) Co2濃度計用ゼロガス精製器及びco2濃度計測システム
US9645112B2 (en) Auto-cleaning and auto-zeroing system used with a photo-ionization detector
CA2367818A1 (en) Method and apparatus for renewable mercury sorption
JP2007248114A (ja) ガス分析装置
RU2293311C1 (ru) Газоанализатор
JPH11295284A (ja) クロロベンゼン類の分析装置
DE69930443D1 (de) Verfahren zur Behandlung von verunreinigtem Fluid
JP3087729B2 (ja) 気体採取装置、該気体採取装置を用いた気体分析装置および気体分析方法
JP5126192B2 (ja) 流体浄化装置
RU2350941C1 (ru) Газоанализатор и способ его работы
KR20210012799A (ko) 저농도 대기 오염 물질 농축 키트
JP2010017713A5 (ru)
US6071481A (en) Zero grade air generating system
NO991576D0 (no) FremgangsmÕte og apparat for behandling av forurenset gass som inneholder skadelige stoffer
KR102173403B1 (ko) 미량의 오염물질 제거를 위한 흡착재의 성능 측정시스템 및 성능 측정방법
JP2004190892A (ja) 流体浄化装置
RU2315287C2 (ru) Способ анализа примесей веществ в газе и устройство для его осуществления
JPH08233706A (ja) 気体中の酸性・塩基性ガスの自動測定装置
JP2009150652A (ja) ガス濃縮セルおよびガス濃縮方法
JP2002139431A (ja) 気体中の微量有機物の分析装置
JP2004329499A (ja) 空気清浄装置及びこれを使用した空気清浄方法
JPH11290636A (ja) 空気清浄装置
JP3109473B2 (ja) クロロベンゼン類の分析装置および分析方法
KR950008143Y1 (ko) 농산물저장고용 유해가스제거기
JP3582399B2 (ja) 化学発光式窒素酸化物計

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150929