RU2287067C2 - Система с гибридным циклом газификации угля с использованием рециркулирующей рабочей текучей среды и способ генерирования электроэнергии - Google Patents

Система с гибридным циклом газификации угля с использованием рециркулирующей рабочей текучей среды и способ генерирования электроэнергии Download PDF

Info

Publication number
RU2287067C2
RU2287067C2 RU2005111223/06A RU2005111223A RU2287067C2 RU 2287067 C2 RU2287067 C2 RU 2287067C2 RU 2005111223/06 A RU2005111223/06 A RU 2005111223/06A RU 2005111223 A RU2005111223 A RU 2005111223A RU 2287067 C2 RU2287067 C2 RU 2287067C2
Authority
RU
Russia
Prior art keywords
gas
syngas
generator
exhaust gas
combustion chamber
Prior art date
Application number
RU2005111223/06A
Other languages
English (en)
Other versions
RU2005111223A (ru
Inventor
Чжень ФАНЬ (US)
Чжень ФАНЬ
Original Assignee
Фостер Уилер Энерджи Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фостер Уилер Энерджи Корпорейшн filed Critical Фостер Уилер Энерджи Корпорейшн
Publication of RU2005111223A publication Critical patent/RU2005111223A/ru
Application granted granted Critical
Publication of RU2287067C2 publication Critical patent/RU2287067C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к энергетике. Система генерирования электроэнергии с использованием гибридного цикла газификации, в которой СО2 рециркулирует в газогенератор для использования в качестве газификационного реагента и рабочей текучей среды. Система генерирования электроэнергии включает источник свежего чистого кислорода, газогенератор, сепаратор частиц, расположенный с сообщением по потоку с газогенератором, камеру сгорания для сингаза, газовую турбину, расположенную с сообщением по потоку с выходом газовой турбины, и газокомпрессорную систему, которая выдает поток сжатого отходящего газа. Первую часть потока сжатого отходящего газа подают в газогенератор для регулирования температуры в газогенераторе для получения CO2 и пара для газификации и для уменьшения потребности в нем в свежем чистом кислороде. Изобретение позволяет повысить эффективность получения электроэнергии. 2 н. и 19 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к системе с гибридным циклом газификации с использованием рециркулирующей рабочей текучей среды и к способу работы такой системы для генерирования электрической энергии.
Описание предшествующего уровня техники
Связь между глобальным изменением климата и выделением парниковых газов, таких как диоксид углерода (СО2), документально подтверждена. Обычные электростанции на ископаемом топливе, такие как электростанции на угольной пыли, генерируют значительные количества СО2. Поэтому, очевидно, что существует постоянная тенденция к улучшению эффективности таких электростанций и к разработке усовершенствованных технологий для уменьшения выбросов ими СО2. Одно из основных решений, разработанных для достижения этих целей, основано на газификации угля в газификаторе для генерирования сингаза, который сгорает в камере сгорания, расположенной далее по ходу процесса. В недавно опубликованном исследовании M. De Lallo и др. "Оценка передовых циклов переработки ископаемого топлива, включающих извлечение СО2" ("Evaluation of Innovative Fossil Cycles Incorporating CO2 Removal"), которое было представлено на конференции Технологии газификации 2000 в Сан-Франциско, Калифорния, 8-11 октября 2000 года, описано несколько известных способов извлечения/секвестрации СО2 на электростанциях, работающих на угле. Исследование показало, что такие системы извлечения и/или секвестрации СО2, когда их применяют на выходном конце электростанции, работающей на угольной пыли, могут уменьшать эффективность электростанции на семь процентных точек при стоимости извлечения, достигающей 30 долларов США за тонну СО2. Для сравнения все суммы в долларах, указанные в исследовании, даны в долларах США 2003 года.
На обычных электростанциях с подачей кислорода и интегрированным комбинированным циклом газификации, например, угарный газ (СО) часто преобразуется водяным газом в водород (Н2) и СО2 перед газовой турбиной. Этот СО2 затем может быть извлечен и концентрирован посредством абсорбции и отгонки или при помощи мембран и затем сжат для секвестрации. Однако процесс такого типа является энергоемким, дорогим и снижает эффективность системы вследствие регенерации СО2 из растворителя и потерь энергии, связанных с преобразованием. (Поскольку низшая теплотворная способность (LHV) водорода меньше, чем у СО при расчете на моль, 15% низшей теплотворной способности теряется, когда СО преобразуется в Н2). Таким образом, требуется генерирование большего количества сингаза при газификации для компенсации потерь на преобразование. Оценено, что для электростанций с интегрированным комбинированным циклом газификации, в которых используются такие процессы, потеря эффективности составляет шесть процентных точек в комбинации со стоимостью извлечения СО2, составляющей 15 долларов США за тонну.
В патенте США №6269624 описан способ генерирования электроэнергии с комбинированным циклом при сгорании газообразного топлива с кислородом, в котором часть диоксида углерода, содержащегося в отходящих газах газовой турбины, рециркулируют в камеру сгорания газовой турбины. Диоксид углерода, накопленный в рециркулирующем газе, конденсируется после газового компрессора, соединенного с газовой турбиной.
В патенте США №5572861 описан способ с интегрированным комбинированным циклом газификации с использованием рециркулирующего диоксида углерода в качестве разбавляющей текучей среды последовательно с камерами сгорания газовой турбины. Диоксид углерода, выходящий из газовых турбин, сжимается в многоступенчатом компрессоре, включая промежуточное извлечение части диоксида углерода и направление его в узел конденсации. Согласно патенту сингаз производят посредством газификации угля в газогенераторе под давлением при помощи смеси кислорода и пара. В этом способе используется очень сложное оборудование, такое как высокотемпературный компрессор для сингаза.
В патенте Великобритании №1298434 описан способ, согласно которому уголь газифицируют посредством использования чистого кислорода, и полученный газ сгорает в топке котла с кислородом. Водяной пар конденсируется из топочного газа топки котла, и часть оставшегося диоксида углерода рециркулируют назад в газогенератор и в топку для регулирования их температур. Другая часть диоксида углерода сжимается в многоступенчатом компрессоре и охлаждается несколькими этапами для формирования сжиженного диоксида углерода. Однако тепловой коэффициент полезного действия такого цикла не очень высок, причем электроэнергия генерируется только низкоэффективной паровой турбиной на основе цикла Ренкина.
Краткое описание изобретения
Задачей настоящего изобретения является получение простой системы с гибридным циклом газификации с использованием рециркулирующей рабочей текучей среды и способа использования системы с гибридным циклом газификации для эффективного генерирования электрической энергии.
Другой задачей настоящего изобретения является получение простой системы с гибридным циклом газификации с использованием рециркулирующей рабочей текучей среды и системы с гибридным циклом газификации для исключения или уменьшения выбросов диоксида углерода в атмосферу.
Для достижения этой и других задач настоящего изобретения созданы новая система генерирования электроэнергии и способ, описанные в прилагаемой формуле изобретения.
Согласно одному варианту осуществления настоящее изобретение относится к системе генерирования электроэнергии, содержащей источник свежего чистого кислорода (О2); газогенератор, имеющий вход для твердого топлива и вход для свежего чистого кислорода, работающий под повышенным давлением Р1 для преобразования твердого топлива в сингаз, содержащий угарный газ (СО) и водород (Н2), и твердый остаток, содержащий полукокс; сепаратор частиц, расположенный с сообщением по потоку с газогенератором для отделения частиц полукокса от сингаза, выходящего из газогенератора; камеру сгорания для сингаза, имеющую вход для свежего чистого кислорода и вход для сингаза, выходящего из сепаратора частиц, для сжигания сингаза с получением отходящего газа, содержащего диоксид углерода (СО2), воду и избыточный кислород; газовую турбину, расположенную с сообщением по потоку с камерой сгорания для сингаза, для расширения отходящего газа для генерирования электроэнергии при помощи генератора, соединенного с газовой турбиной, и выпуска расширенного отходящего газа через выпускное отверстие газовой турбины; парогенератор, расположенный с сообщением по потоку с выходом газовой турбины, содержащий выходное отверстие для выпуска отработавшего отходящего газа; газокомпрессорную систему, имеющую вход, сообщающийся по потоку с выходом парогенератора, и выход для выпуска потока сжатого отходящего газа и средство для подачи первой части потока сжатого отходящего газа в газогенератор для регулирования температуры в газогенераторе для получения пара для газификации и для уменьшения потребности в свежем чистом кислороде.
Согласно другому варианту осуществления настоящее изобретение относится к способу генерирования электроэнергии, включающему следующие стадии: (а) подачу свежего чистого кислорода из источника кислорода; (b) подачу твердого топлива и свежего чистого кислорода в газогенератор и преобразование твердого топлива в сингаз, содержащий угарный газ (СО) и водород (Н2), и твердый остаток, содержащий полукокс; (с) подачу сингаза, выходящего из газогенератора, в сепаратор частиц и отделение частиц полукокса от сингаза в сепараторе частиц; (d) сжигание сингаза, выпускаемого из сепаратора частиц, со свежим чистым кислородом в камере сгорания для сингаза с получением отходящего газа, содержащего диоксид углерода (СО2), воду и избыточный кислород; (е) расширение отходящего газа в газовой турбине, расположенной с сообщением по потоку с камерой сгорания для сингаза, генерирование электроэнергии при помощи генератора, соединенного с газовой турбиной, и выпуск расширенного отходящего газа через выпускное отверстие газовой турбины; (f) подачу расширенного отходящего газа из газовой турбины в парогенератор и выпуск отработавшего отходящего газа из выпускного отверстия парогенератора; (g) подачу отработавшего отходящего газа из парогенератора в газокомпрессорную систему и (h) подачу первой части потока сжатого отходящего газа в газогенератор для регулирования температуры в газогенераторе для получения СО2 и пара для газификации и для уменьшения потребности в свежем чистом кислороде.
Используемый здесь термин "чистый кислород" следует толковать в широком смысле как включающий любой поток кислорода, генерируемого источником концентрированного кислорода, таким как криогенный воздушный сепаратор, некриогенный воздушный сепаратор, такой как разделительная мембрана или адсорбирующая система при колебании давления, резервуары для кислорода или подобные средства. Например, потоки кислорода, генерируемые криогенным воздушным сепаратором, в типичном случае имеют содержание кислорода, превышающее 95%, тогда как потоки, генерируемые некриогенным воздушным сепаратором, в типичном случае имеют концентрацию кислорода, составляющую от около 90% до около 95%. Однако потоки кислорода, имеющие концентрацию кислорода несколько меньше 90%, также относятся к термину "чистый кислород", поскольку они генерируются источником концентрированного кислорода. Термин "свежий" кислород означает кислород, который подают от источника свежего чистого кислорода в отличие от кислорода, рециркулирующего в системе.
Настоящее изобретение относится к усовершенствованному гибридному циклу газификации, в котором СО2 рециркулирует в газогенератор и используется в качестве реагента для газификации и в качестве рабочей текучей среды. Предпочтительно газогенератором является газогенератор с циркулирующим псевдоожиженным слоем под давлением (PCFB), работающий, в типичном случае, под давлением до около 55 атмосфер или даже выше для газификации твердого топлива, такого как уголь. Соответственно, газокомпрессорная система, которая подает сжатый газ, содержащий главным образом диоксид углерода, но также некоторое количество воды и кислорода, которые рециркулируют в газогенератор, повышает давление отходящего газа, предпочтительно, по меньшей мере, до уровня рабочего давления газогенератора.
Сингаз, выходящий из газогенератора, предпочтительно охлаждается в охладителе для сингаза до того, как полукокс и другие твердые частицы, увлеченные сингазом, отделяются сепаратором частиц. Предпочтительно сепаратор частиц представляет собой узел металлических свечевых фильтров. Если необходимо, сингаз можно очищать обычными средствами от других веществ, вредных для газовой турбины, до подачи сингаза в камеру сгорания.
Система генерирования электроэнергии, соответствующая настоящему изобретению, предпочтительно содержит средство для подачи второй части потока сжатого отходящего газа в камеру сгорания для сингаза, такое как канал, трубопровод и т.п. Поскольку отходящий газ содержит главным образом диоксид углерода, он может использоваться для регулирования температуры сгорания в камере сгорания для сингаза для контроля формирования окисей азота (NOx) из небольшого количества азота, который может присутствовать в сингазе. Обычно сжатый отходящий газ содержит некоторое количество воды, которая также способствует регулированию содержания окисей азота. Газ также содержит некоторое количество избыточного кислорода, которое снижает потребность в свежем чистом кислороде для камеры сгорания для сингаза.
Преимущественно газокомпрессорная система содержит компрессор газовой турбины, соединенный с валом газовой турбины, и поджимающий компрессор. Компрессор газовой турбины обычно сжимает отходящий газ до давления, которое пригодно для подачи газа в камеру сгорания для сингаза, и степень сжатия поджимающего компрессора подбирают таким образом, чтобы давление на его выходе соответствовало давлению в газогенераторе.
Предпочтительно компрессор газовой турбины является многоступенчатым компрессором, содержащим промежуточную систему охлаждения впрыском воды для уменьшения потребления мощности компрессором и для увеличения влажности потока сжатого отходящего газа. В представленном цикле генерирования электроэнергии впрыск воды способствует регулированию образования окисей азота в камере сгорания для сингаза и усиливает газификацию в газогенераторе.
Согласно предпочтительному варианту осуществления настоящего изобретения третью часть сжатого отходящего газа подают из выхода газокомпрессорной системы на стадию конденсации диоксида углерода. Если отходящий газ сжат, например, до около 55 атмосфер, то есть давления, соответствующего рабочему давлению газогенератора, диоксид углерода в отходящем газе может конденсироваться просто посредством охлаждения газа до относительно высокой температуры, например, до около 15°С. Таким образом, в представленном комбинированном цикле стадия конденсации диоксида углерода может не требовать отдельных компрессоров для извлечения СО2.
Для исключения формирования льда вода извлекается из отходящего газа на стадии конденсации диоксида углерода до окончательной конденсации диоксида углерода. Посредством извлечения диоксида углерода из отходящего газа создается вентиляционный поток, содержащий главным образом чистый кислород. Таким образом, стадия конденсации СО2 создает отдельные потоки конденсированного диоксида углерода и воды, и остальной поток содержит главным образом кислород. Полученный сжиженный СО2 может быть секвестрирован или использован для различных целей. Вентиляционный поток, содержащий главным образом чистый кислород, предпочтительно подают в воздухоразделительную установку, то есть в источник свежего чистого кислорода для повышения его эффективности. В некоторых вариантах осуществления может быть предпочтительно подавать вентиляционный поток непосредственно в камеру сгорания для сингаза для снижения потребности в ней в свежем чистом кислороде.
Согласно другому предпочтительному варианту осуществления настоящего изобретения система содержит котел, работающий на сжигании полукокса. В котле, работающем на сжигании полукокса, полукокс, накапливающийся как зольный остаток при работе газогенератора, а также накапливающийся как летучая зола в сепараторе частиц после газогенератора, может сгорать с чистым кислородом для производства пара. Котел, работающий на сжигании полукокса, обычно генерирует перегретый пар для генерирования электроэнергии при помощи паровой турбины. Котлом, работающим на сжигании полукокса, предпочтительно является котел с псевдоожиженным слоем с циркуляцией воздуха (ACFB). Таким образом, требуется снижение давления потоков с зольными остатками, подаваемых из газогенератора под давлением и сепаратора частиц, при помощи блока снижения давления до подачи в котел, работающий на сжигании полукокса.
Система генерирования электроэнергии, соответствующая настоящему изобретению, предпочтительно содержит средство для подачи части отходящего газа, выходящего из газовой турбины, в котел, работающий на сжигании полукокса, причем такое средство для подачи может включать канал, трубопровод и т.п. Вследствие наличия СО2 и воды в отходящем газе отходящий газ, подаваемый в котел, работающий на сжигании полукокса, регулирует рабочую температуру котла, работающего на сжигании полукокса. С другой стороны, избыточный кислород в отходящем газе уменьшает потребность в свежем чистом кислороде в котле, работающем на сжигании полукокса. Котел, работающий на сжигании полукокса, производит топочные газы, которые можно очищать газоочистителями или обычными средствами при охлаждении охладителем до температуры около 65°С и с подачей при помощи вытяжного вентилятора в газокомпрессорную систему.
В некоторых вариантах осуществления может быть предпочтительно подавать часть отходящего газа, выходящего из газовой турбины, через парогенератор для регенерации тепла (HRSG) в газокомпрессорную систему. Распределение расширенного отходящего газа между парогенератором для регенерации тепла и котлом, работающим на сжигании полукокса, может меняться в зависимости от режима работы системы. Обычно расширенный отходящий газ подают только или в парогенератор для регенерации тепла или в котел, работающий на сжигании полукокса. Система может также содержать только средство для подачи расширенных отходящих газов из газовой турбины к котлу, работающему на сжигании полукокса, или средство для подачи расширенных отходящих газов из газовой турбины в парогенератор для регенерации тепла.
На чертеже изображена - схема технологического процесса, показывающая систему генерирования электроэнергии, основанную на гибридном цикле газификации угля в соответствии с изобретением.
Каждый из элементов, показанных в схеме, отдельно хорошо известен. Таким образом, детали этих элементов здесь не будут подробно описаны.
Описание предпочтительных вариантов осуществления изобретения
Система, например электростанция 10, с гибридным циклом, показанная на фиг.1, представляет собой предпочтительный вариант осуществления настоящего изобретения. Система включает газогенератор 12 для частичной газификации, предпочтительно являющийся газогенератором с циркулирующим под давлением псевдоожиженным слоем, охладитель 14 сингаза и сепаратор 16 частиц. Предпочтительно сепаратор 16 частиц представляет собой барьерный фильтр из пористого металла. Потоки твердого топлива, такого как уголь 18, и чистого кислорода 20 подают в газогенератор 12 для преобразования в нем в поток сингаза 22 и твердый остаток, содержащий полукокс. Предпочтительно газогенератор 12 работает под повышенным давлением, в типичном случае, под давлением, составляющим до около 55 атмосфер, но давление может быть меньше или даже больше 55 атмосфер.
Когда составляющие, подаваемые в газогенератор, вступают в реакцию, производится горячий сингаз. Обычно сингаз содержит угарный газ (СО) и водород (Н2). В газогенераторе с циркулирующим псевдоожиженным слоем сингаз несет часть твердых остатков псевдоожиженного слоя вертикально вверх через реактор и в циклон рециркуляции (не показан). Твердые частицы, захваченные из псевдоожиженного слоя и содержащиеся в сингазе, накапливаются в циклоне и возвращаются по каналу (не показан) назад в плотный слой в нижней части газогенератора. Эта цепь рециркуляции горячих твердых частиц действует как тепловой маховик и способствует эффективной химической реакции твердых частиц и газа. Если требуется, в газогенератор 12 с циркулирующим псевдоожиженным слоем может быть добавлен песок для поддержания запаса слоя и для ускорения процесса газификации.
Поток 20 чистого кислорода поступает из источника 24 кислорода, который предпочтительно является криогенной воздухоразделительной установкой (ASU), в которой поступающий поток 26 воздуха преобразуется в отдельные потоки азота (N2) 28 и кислорода (О2) 30. Предпочтительно воздухоразделительная установка 24 производит отдельные потоки кислорода 30 высокого давления и кислорода 32 с давлением, близким к давлению окружающей среды, для использования, соответственно, в процессах под повышенным давлением и под атмосферным давлением. В некоторых вариантах осуществления настоящего изобретения источник 24 кислорода может быть источником какого-либо другого типа, отличного от криогенного сепаратора, таким как сепаратор, основанный на адсорбции при колебаниях давления или мембранной сепарации. Источником кислорода также может быть просто комплект резервуаров с жидким кислородом, которые регулярно пополняются из внешнего источника.
Предпочтительно поток 34 из компрессора 36 (описан ниже) газовой турбины, содержащий СО2, О2 и пар, также впрыскивается в газогенератор 12 для подачи составляющих для реакций газификации и для регулирования температуры процесса. Можно смешивать поток 34 из компрессора 36 газовой турбины и поток 20 чистого кислорода перед подачей в газогенератор 12. Рабочая температура в газогенераторе 12 в типичном случае колеблется от около 900°С до около 1100°С в зависимости от типа топлива.
После выхода из циклона рециркуляции сингаз в типичном случае проходит через охладитель 14 сингаза огнетрубного типа в сепаратор 16 частиц, такой как барьерный (свечевой) фильтр из пористого металла, который очищает сингаз от частиц веществ. Если необходимо, сингаз можно дополнительно очищать в ходе стадии очистки холодного газа (не показана) с использованием газоочистителей или другого обычного оборудования для очистки сингаза. Надлежащий тип оборудования для очистки сингаза зависит от нескольких известных факторов, включающих тип и качество топлива, используемого в газогенераторе 12.
Поток 38 летучей золы, накопленной сепаратором 16 частиц, и/или поток 40 зольного остатка, извлеченного из газогенератора 12 с циркулирующим псевдоожиженным слоем, предпочтительно, поступает в устройство 42 снижения давления и направляется в котел 44, работающий на сжигании полукокса, где полукокс, содержащийся в золах, сгорает для образования пара для паровой турбины (не показана). Котел 44, работающий на сжигании полукокса, предпочтительно, является котлом с псевдоожиженным слоем с циркуляцией воздуха под атмосферным давлением, но он может быть также котлом какого-либо другого типа, таким как котел, работающий на сгорании суспензии.
Поток 46 очищенного сингаза подают в камеру 48 сгорания для газа для сжигания в ней для получения горячих газов, которые расширяются в газовой турбине 50 для генерирования электроэнергии генератором 52. В представленной системе предпочтительно перед газовой турбиной 50 не осуществляется преобразование водяным газом или извлечение СО2 из сингаза. Поэтому исключаются потери эффективности цикла и мощности газовой турбины, связанные с этими стадиями.
Сингаз сгорает в камере 48 сгорания с чистым кислородом 54, подаваемым из воздухоразделительной установки 24. Предпочтительно в камеру 48 сгорания поступает поток сжатого газа 56 из компрессора 36 газовой турбины. Сжатый газ 56 содержит СО2 и пар, что снижает температуру реакции сгорания и, таким образом, ограничивает количество производимых окисей азота (NOx). Сжатый газ 56 содержит также некоторое количество кислорода, которое уменьшает потребность в свежем чистом кислороде из воздухоразделительной установки 24. Кроме того, увеличенное количество газа в камере сгорания обеспечивает более эффективное расширение газа и, следовательно, более эффективное генерирование мощности в газовой турбине 50. В некоторых вариантах в камеру 48 сгорания для газа также может подаваться (не показано) поток, богатый О2, из установки 58 для конденсации СО2 (описано ниже).
Отходящий газ 60 из газовой турбины является смесью главным образом СО2, пара и кислорода, причем содержание кислорода в типичном случае составляет около 3 об.%. Согласно настоящему изобретению этот неиспользованный кислород может использоваться в газогенераторе 12, камере 48 сгорания для газа и котле 44, работающем на сжигании полукокса. Соответственно, поток отходящего газа 60 из газовой турбины 50 предпочтительно направляют в котел 44, работающий на сжигании полукокса.
В котле 44, работающем на сжигании полукокса, полукокс, извлекаемый из газогенератора 12 и/или сепаратора 16 частиц, и при снижении давления в устройстве 42 для снижения давления сжигают с использованием потока чистого кислорода 62, производимого в воздухоразделительной установке 24, в качестве основного окислителя. Поток горячего отходящего газа 60 из газовой турбины 50 дает дополнительный кислород для сгорания полукокса. Благодаря высокому содержанию СО2 отходящий газ регулирует температуру котла 44, работающего на сжигании полукокса. Предпочтительно котел 44, работающий на сжигании полукокса, производит перегретый пар, который используется для приведения в действие паровой турбины (не показана) для генерирования мощности.
В предпочтительном варианте осуществления настоящего изобретения газогенератор 12 работает с преобразованием углерода, составляющего от около 60% до около 80% с битумным углем и близкого к 95% с полубитумным углем. Например, при подаче в качестве топлива угля Illinois #6 приблизительно 20-40% углерода угля будет оказываться в полукоксовом остатке, сжигаемом в котле 44, работающем на сжигании полукокса. Когда необходимо, в котел 44, работающий на сжигании полукокса, можно также подавать поток дополнительного твердого топлива, такого как уголь 64.
Предпочтительно в котел 44, работающий на сжигании полукокса, также подают известняк, аммиак и/или мочевину для регулирования производства диоксида серы (SO2) и NOx. Известняк обычно секвестирует SO2 посредством захвата его с получением сульфата кальция (CaSO4). Аммиак и/или мочевина, с другой стороны, химически восстанавливают NOx с получением газообразного азота (N2) и воды. Зольный остаток 66 предпочтительно извлекают из котла 44, работающего на сжигании полукокса, и удаляют из системы на мусорную свалку и т.п.
Отходящие газы из котла 44, работающего на сжигании полукокса, предпочтительно направляют через пылесборник 68, такой как пылеуловительная камера с рукавными фильтрами, и охладитель 70. Пылеуловительная камера 68 с рукавными фильтрами, которая содержит серию фильтров, извлекает большую часть летучей золы, содержащейся в отходящих газах. Отходящий газ охлаждается в охладителе 70 до низкой температуры, например, составляющей 30°С. В охладителе 70 часть воды может конденсироваться и извлекаться из отходящих газов. После охлаждения газ предпочтительно проходит через вытяжной вентилятор 72 перед подачей в компрессор 36 газовой турбины.
Отходящий газ 60 из газовой турбины 50 или его часть также может быть направлен в парогенератор 74 для регенерации тепла (HRSG), где производится перегретый пар для приведения в действие паровой турбины (не показана) посредством извлечения тепла из горячего отходящего газа. При необходимости часть очищенного сингаза 46 можно подавать (не показано) в парогенератор 74 для регенерации тепла и сжигать в нем для увеличения запаса энергии отходящего газа. Отходящий газ из парогенератора 74 для регенерации тепла наконец охлаждается в газоохладителе 76 до низкой температуры, например, составляющей около 30°С. На этой стадии охлаждения часть водяного пара, содержащегося в отходящем газе, удаляют из системы. Охлажденный отходящий газ затем подают в компрессор 36 газовой турбины.
Предпочтительно компрессор 36 газовой турбины является многоступенчатым компрессором с промежуточным охлаждением посредством впрыска 78 воды. Впрыск 78 воды уменьшает потребность в мощности для сжатия и увеличивает влажность сжатого отходящего газа. Когда сжатый отходящий газ подают в газогенератор 12 и в камеру 48 сгорания для газа, повышенное содержание пара в сжатом газе усиливает газификацию в газогенераторе 12 и способствует регулированию образования NOx в камере 48 сгорания для газа.
Сжатый отходящий газ, содержащий СО2, О2 и пар, предпочтительно, разделяют на три части. Большую часть газа нагнетают в камеру 48 сгорания для газа, и он расширяется в газовой турбине 50. Оставшаяся часть сжатого отходящего газа может быть дополнительно сжата последним компрессором 80 (поджимающим компрессором) перед разделением на часть, подаваемую в газогенератор 12, и часть, подаваемую в процесс 58 конденсации СО2.
Предпочтительно сжатый газ, подаваемый в процесс 58 конденсации СО2, сначала охлаждают в теплообменнике 82 посредством передачи тепла холодным потокам О2 30, 32, выпускаемым из воздухоразделительной установки 24. Сжатый газ дополнительно охлаждают в охладителе 84 сначала для извлечения воды из отходящего газа и затем для сжижения СО2, содержащегося в отходящем газе. Поскольку СО2 находится под высоким давлением, температура, требуемая для сжижения СО2, довольно высока, например, около 16°С при давлении 57 атм. Стадия 58 конденсации СО2 создает поток 86 конденсированного СО2, который предпочтительно подвергается дополнительному сжатию насосом 88 и направляется по трубопроводу 90 для СО2 для утилизации или дальнейшего использования.
После стадии конденсации СО2 оставшийся отходящий газ представляет собой поток холодного газа 92, содержащего главным образом кислород. Поток холодного газа 92 предпочтительно направляют в воздухоразделительную установку 24 для уменьшения нагрузки по производству О2 для экономии мощности и для снабжения хладагентом воздухоразделительной установки. В альтернативном варианте богатый О2 газ 92 может подаваться (не показано) в камеру 48 сгорания для газа, что, таким образом, дополнительно снижает потребность в ней в свежем чистом кислороде.
Диоксид серы (SO2), существующий в сжатом отходящем газе, поступающем, например, из котла 44, работающего на сжигании полукокса, может конденсироваться на этапе 58 конденсации СО2 совместно с СО2. Таким образом, особенно когда удаляют в отходы производимый сжиженный СО2, можно исключить отдельное оборудование для захвата серы из гибридного цикла газификации.
Описанная выше система обеспечивает эффективное и экономичное использование широкого диапазона относительно недорогих углей при одновременном снижении вредного влияния СО2 на внешнюю среду. Преимущества включают способность изолировать СО2 без необходимости в дорогостоящем энергоемком преобразовании, химической/физической абсорбции и/или отгонки. Например, ожидаемые затраты на извлечение СО2 с использованием установки, соответствующей настоящему изобретению, составляют менее 10 долларов США за тонну, в отличие от обычных установок, с использованием которых затраты могут колебаться от 30 долларов США за тонну для электростанции на угольной пыли до 15 долларов США за тонну для обычной электростанции с продувкой кислородом и интегрированной внутрицикловой газификацией.
Другие преимущества описанной выше системы (электростанции) включают (I) минимизацию общего потребления кислорода за счет рециркуляции избыточного кислорода, содержащегося в отходящих газах, (II) исключение потребности в большом количестве пара, необходимом на обычных электростанциях с интегрированной внутрицикловой газификацией для поддержания реакции преобразования водой, и (III) уменьшение потребности в мощности для извлекающего СО2 компрессора посредством обеспечения доступности СО2 при давлении на выходе газового компрессора или посредством устранения также необходимости в отдельном компрессоре для извлечения СО2, который в типичном случае используется на обычных электростанциях с интегрированной внутрицикловой газификацией.
Таким образом, система, соответствующая настоящему изобретению, будет обеспечивать систему для генерирования электроэнергии с более простыми, более надежными и менее дорогими средствами для устранения выбросов СО2 электростанции на угольном топливе и будет значительно уменьшать потери эффективности работы электростанции, связанные с обычными технологиями извлечения СО2 из отходящего газа и подготовки его к передаче в пункт изоляции от внешней среды.
Приведенные выше примеры являются типичными предпочтительными вариантами осуществления настоящего изобретения. Однако, как будет понятно специалистам в данной области техники, многие из описанных выше элементов настоящего изобретения, например, таких как подсистемы газогенератора и получения полукокса, могут иметь другие формы в зависимости от потребностей электростанции. Кроме того, хотя описанное выше устройство элементов представляет собой в данный момент предпочтительную конфигурацию, следует понимать, что различные элементы системы могут быть перегруппированы и/или использованы в других комбинациях друг с другом в зависимости от различных конструктивных соображений.

Claims (21)

1. Система генерирования электроэнергии, содержащая:
источник свежего чистого кислорода (O2),
газогенератор, имеющий вход для твердого топлива и вход для свежего чистого кислорода, работающий под повышенным давлением P1 для преобразования твердого топлива в сингаз, содержащий угарный газ (СО) и водород (H2), и твердый остаток, содержащий полукокс,
сепаратор частиц, расположенный с сообщением по потоку с газогенератором, для отделения частиц полукокса от сингаза, выходящего из газогенератора,
камеру сгорания для сингаза, имеющую вход для свежего чистого кислорода (О2) и вход для сингаза, выходящего из сепаратора частиц, для сжигания сингаза с получением отходящего газа, содержащего диоксид углерода (СО2), воду и избыточный кислород,
газовую турбину, расположенную с сообщением по потоку с камерой сгорания для сингаза, для расширения отходящего газа для генерирования электроэнергии при помощи генератора, соединенного с газовой турбиной, и выпуска расширенного отходящего газа через выпускное отверстие газовой турбины,
парогенератор, расположенный с сообщением по потоку с выходом газовой турбины, содержащий выходное отверстие для выпуска отработавшего отходящего газа, и
газокомпрессорную систему, имеющую вход, сообщающийся по потоку с выходом парогенератора, и выход для выпуска потока сжатого отходящего газа,
отличающаяся тем, что она содержит средство для подачи первой части потока сжатого отходящего газа в газогенератор для регулирования температуры в газогенераторе для получения СО2 и пара для газификации и для уменьшения потребности в свежем чистом кислороде.
2. Система по п.1, отличающаяся тем, что она содержит средство для подачи второй части потока сжатого отходящего газа в камеру сгорания для сингаза для регулирования температуры камеры сгорания для сингаза для уменьшения потребности в ней в свежем чистом кислороде.
3. Система по п.2, отличающаяся тем, что газокомпрессорная система содержит компрессор газовой турбины, соединенный с валом газовой турбины, и поджимающий компрессор, дополнительно сжимающий отходящий газ до давления, составляющего, по меньшей мере, давление P1 в газогенераторе, причем средство для подачи второй части потока сжатого отходящего газа в камеру сгорания для сингаза соединено с выходом компрессора газовой турбины.
4. Система по п.3, отличающаяся тем, что компрессор газовой турбины содержит промежуточную систему впрыска воды, которая уменьшает потребность в мощности газокомпрессорной системы и увлажняет поток сжатого отходящего газа, таким образом, обеспечивая регулирование производства NOx в камере сгорания для сингаза и усиление газификации в газогенераторе.
5. Система по п.1, отличающаяся тем, что она выполнена с возможностью конденсации диоксида углерода с сообщением по потоку с выходом газокомпрессорной системы для создания потока конденсированного СО2 и остаточного потока, содержащего главным образом O2.
6. Система по п.5, отличающаяся тем, что источник свежего чистого кислорода содержит криогенный воздушный сепаратор, при этом система содержит средство для подачи потока, содержащего главным образом О2, от конденсации диоксида углерода в криогенный воздушный сепаратор.
7. Система по п.1, отличающаяся тем, что она содержит котел, работающий на сжигание полукокса, имеющий вход для свежего чистого кислорода и вход для полукокса, выходящего из, по меньшей мере, или газогенератора, или сепаратора частиц, для сжигания полукокса для производства пара для генерирования мощности и топочного газа, подаваемого на вход газокомпрессорной системы.
8. Система по п.7, отличающаяся тем, что котел, работающий на сжигании полукокса, является котлом с циркулирующим псевдоожиженным слоем при атмосферном давлении.
9. Система по п.7, отличающаяся тем, что парогенератор содержит котел, работающий на сжигании полукокса.
10. Система по п.1, отличающаяся тем, что парогенератор содержит парогенератор для регенерации тепла.
11. Система по п.1, отличающаяся тем, что газогенератор является газогенератором с циркулирующим под давлением псевдоожиженным слоем.
12. Система по п.1, отличающаяся тем, что сепаратор частиц содержит, по меньшей мере, один металлический свечевой фильтр.
13. Способ генерирования электроэнергии, содержащий следующие стадии:
(a) подачу свежего чистого кислорода из источника кислорода,
(b) подачу твердого топлива и свежего чистого кислорода в газогенератор и преобразование твердого топлива в сингаз, содержащий угарный газ (СО) и водород (H2), и твердый остаток, содержащий полукокс,
(c) подачу сингаза, выходящего из газогенератора, в сепаратор частиц и отделение частиц полукокса от сингаза в сепараторе частиц,
(d) сжигание сингаза, выпускаемого из сепаратора частиц, со свежим чистым кислородом в камере сгорания для сингаза с получением отходящего газа, содержащего диоксид углерода (CO2), воду и избыточный кислород,
(e) расширение отходящего газа в газовой турбине, расположенной с сообщением по потоку с камерой сгорания для сингаза, генерирование электроэнергии при помощи генератора, соединенного с газовой турбиной, и выпуск расширенного отходящего газа через выпускное отверстие газовой турбины,
(f) подачу расширенного отходящего газа из газовой турбины в парогенератор и выпуск отработавшего отходящего газа из выпускного отверстия парогенератора,
(g) подачу отработавшего отходящего газа из парогенератора на вход газокомпрессорной системы и получение потока сжатого отходящего газа в газокомпрессорной системе, отличающийся тем, что дополнительно включает:
(h) подачу первой части потока сжатого отходящего газа в газогенератор для регулирования температуры в газогенераторе для получения СО2 и пара для газификации и для уменьшения потребности в нем в свежем чистом кислороде.
14. Способ по п.13, отличающийся тем, что дополнительно включает:
(i) подачу второй части потока сжатого отходящего газа в камеру сгорания для сингаза для регулирования температуры в камере сгорания для сингаза и для снижения потребности в ней в свежем чистом кислороде.
15. Способ по п.14, отличающийся тем, что на стадии (g) отработавший отходящий газ сначала сжимают в компрессоре газовой турбины, соединенном с валом газовой турбины, до давления Р2 и затем в поджимающем компрессоре до давления, составляющего, по меньшей мере, давление P1 в газогенераторе, и на стадии (i) сжатый отходящий газ подают из камеры сгорания газовой турбины под давлением Р2 в камеру сгорания для сингаза.
16. Способ по п.15, отличающийся тем, что дополнительно включает:
(j) впрыск воды в отходящий газ между ступенями компрессора газовой турбины для уменьшения потребности в мощности для сжатия и для увлажнения потока сжатого отходящего газа для обеспечения регулирования производства NOx в камере сгорания для сингаза и усиления газификации в газогенераторе.
17. Способ по п.13, отличающийся тем, что дополнительно включает:
(k) подачу третьей части потока сжатого отходящего газа на стадию конденсации диоксида углерода и получения потока конденсированного диоксида углерода и остаточного потока, содержащего главным образом кислород.
18. Способ по п.13, отличающийся тем, что источником кислорода является криогенный воздушный сепаратор, причем способ дополнительно включает:
(l) подачу потока, содержащего главным образом кислород, от операции конденсации диоксида углерода в источник кислорода.
19. Способ по п.13, отличающийся тем, что дополнительно включает:
(m) производство пара для генерирования мощности и топочного газа в котле, работающем на сжигании полукокса, при помощи сжигания полукокса, поступающего, по меньшей мере, или из газогенератора, или из сепаратора частиц, со свежим чистым кислородом, и подачу топочного газа на вход газокомпрессорной системы.
20. Способ по п.19, отличающийся тем, что на стадии (f) парогенератор содержит котел, работающий на сжигании полукокса.
21. Способ по п.13, отличающийся тем, что на стадии (f) парогенератор содержит парогенератор для регенерации тепла.
RU2005111223/06A 2002-09-17 2003-09-17 Система с гибридным циклом газификации угля с использованием рециркулирующей рабочей текучей среды и способ генерирования электроэнергии RU2287067C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41110202P 2002-09-17 2002-09-17
US60/411,102 2002-09-17

Publications (2)

Publication Number Publication Date
RU2005111223A RU2005111223A (ru) 2005-10-10
RU2287067C2 true RU2287067C2 (ru) 2006-11-10

Family

ID=32030648

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005111223/06A RU2287067C2 (ru) 2002-09-17 2003-09-17 Система с гибридным циклом газификации угля с использованием рециркулирующей рабочей текучей среды и способ генерирования электроэнергии

Country Status (6)

Country Link
US (1) US6877322B2 (ru)
EP (1) EP1540144A1 (ru)
CN (1) CN1330855C (ru)
AU (1) AU2003260832A1 (ru)
RU (1) RU2287067C2 (ru)
WO (1) WO2004027220A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537327C2 (ru) * 2010-09-02 2015-01-10 Альстом Текнолоджи Лтд. Продувка магистрали рециркуляции отработавших газов газовой турбины

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855985B1 (fr) * 2003-06-10 2005-07-22 Inst Francais Du Petrole Procede de traitement de fumees avec recuperation d'energie
FR2855984B1 (fr) * 2003-06-10 2005-07-22 Inst Francais Du Petrole Procede de traitement de fumees
EP1928984A1 (en) * 2005-08-19 2008-06-11 Varipower Technology PTY Ltd Method for generating power
WO2007092084A2 (en) * 2005-12-21 2007-08-16 Callahan Richard A Integrated gasification combined cycle synthesis gas membrane process
US8075646B2 (en) * 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
US7686570B2 (en) * 2006-08-01 2010-03-30 Siemens Energy, Inc. Abradable coating system
US7927568B2 (en) 2006-10-26 2011-04-19 Foster Wheeler Energy Corporation Method of and apparatus for CO2 capture in oxy-combustion
CN101210513B (zh) * 2006-12-29 2010-09-15 财团法人工业技术研究院 气化与引擎排气回流提浓二氧化碳的循环系统
US8118895B1 (en) * 2007-03-30 2012-02-21 Bechtel Power Corporation Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
DE102007022168A1 (de) 2007-05-11 2008-11-13 Siemens Ag Verfahren zur Erzeugung motorischer Energie aus fossilen Brennstoffen mit Abführung von reinem Kohlendioxid
US20080302106A1 (en) * 2007-06-07 2008-12-11 Econo-Power International Corporation Integration of coal fired steam plants with integrated gasification combined cycle power plants
CN102083947A (zh) * 2007-06-13 2011-06-01 沃姆瑟能源解决方案公司 温和气化联合循环发电设备
AU2008281322A1 (en) * 2007-08-01 2009-02-05 Zerogen Pty Ltd Power generation process and system
EP2067937A2 (de) * 2007-08-27 2009-06-10 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Kraftwerksanlage mit integrierter Vergasung sowie Kraftwerksanlage
US9404418B2 (en) * 2007-09-28 2016-08-02 General Electric Company Low emission turbine system and method
US7861511B2 (en) * 2007-10-30 2011-01-04 General Electric Company System for recirculating the exhaust of a turbomachine
US8246700B1 (en) 2007-12-06 2012-08-21 Leonid Kutsin Method and system for recycling flue gas
US9410479B2 (en) * 2007-12-19 2016-08-09 General Electric Company Method for adjusting the operation of a turbomachine receiving a recirculated exhaust gas
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8528343B2 (en) * 2008-01-07 2013-09-10 General Electric Company Method and apparatus to facilitate substitute natural gas production
US20090173080A1 (en) * 2008-01-07 2009-07-09 Paul Steven Wallace Method and apparatus to facilitate substitute natural gas production
US20090173081A1 (en) * 2008-01-07 2009-07-09 Paul Steven Wallace Method and apparatus to facilitate substitute natural gas production
FI120515B (fi) * 2008-02-08 2009-11-13 Foster Wheeler Energia Oy Kiertoleijureaktori happipolttoon ja menetelmä sellaisen reaktorin käyttämiseksi
US8709113B2 (en) * 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US20090217575A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US8728423B2 (en) * 2008-04-07 2014-05-20 Mitsubishi Heavy Industries, Ltd. Method and apparatus for flue gas treatment
WO2010003096A1 (en) 2008-07-03 2010-01-07 Certain Teed Gypsum, Inc. System and method for using board plant flue gases in the production of syngas
US8580001B2 (en) * 2008-08-21 2013-11-12 General Electric Company Method and apparatus for assembling gasification reactor injection devices
WO2010078297A1 (en) 2008-12-30 2010-07-08 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
EP2370549A1 (en) 2008-12-30 2011-10-05 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US20100199558A1 (en) * 2009-02-10 2010-08-12 Steele Raymond Douglas System and method for operating power generation systems
KR101648054B1 (ko) 2009-02-26 2016-08-12 팔머 랩스, 엘엘씨 고온 및 고압에서 연료를 연소하는 장치 및 방법, 이에 관련된 시스템 및 장비
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8349046B2 (en) * 2009-04-30 2013-01-08 Enerjetik Llc Method of making syngas and apparatus therefor
DE102009038323A1 (de) * 2009-08-21 2011-02-24 Krones Ag Verfahren und Vorrichtung zur Verwertung von Biomasse
US9873840B2 (en) * 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US20120164032A1 (en) * 2009-09-18 2012-06-28 Wormser Energy Solutions, Inc. Systems, devices and methods for calcium looping
US8776531B2 (en) * 2009-11-06 2014-07-15 General Electric Company Gas engine drives for gasification plants
CN101705844A (zh) * 2009-12-10 2010-05-12 熊正毅 无二氧化碳排放的燃煤燃气轮机发电系统及方法
DE102009057893A1 (de) * 2009-12-11 2011-06-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Verbrennung kohlenstoffhaltiger Stoffe
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
FR2955854B1 (fr) * 2010-02-01 2014-08-08 Cotaver Procede et systeme de production d'hydrogene a partir de matiere premiere carbonee
FR2955866B1 (fr) 2010-02-01 2013-03-22 Cotaver Procede et systeme d'approvisionnement en energie thermique d'un systeme de traitement thermique et installation mettant en oeuvre un tel systeme
FR2955865B1 (fr) 2010-02-01 2012-03-16 Cotaver Procede de recyclage du dioxyde de carbone (co2)
FR2955918B1 (fr) 2010-02-01 2012-08-03 Cotaver Procede et systeme de production d'une source d'energie thermodynamique par la conversion de co2 sur des matieres premieres carbonees
CN102754266B (zh) 2010-02-23 2015-09-02 格雷特波因特能源公司 集成的加氢甲烷化燃料电池发电
US8486165B2 (en) * 2010-02-26 2013-07-16 General Electric Company Heat recovery in black water flash systems
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
RU2433282C2 (ru) * 2010-05-07 2011-11-10 Владимир Петрович Севастьянов Способ псевдодетонационной газификации угольной суспензии в комбинированном цикле "icsgcc"
KR101506381B1 (ko) 2010-05-28 2015-03-26 그레이트포인트 에너지, 인크. 액체 중질 탄화수소 공급원료의 가스상 생성물로의 전환
TWI583866B (zh) * 2010-08-31 2017-05-21 八河資本有限公司 使用二氧化碳循環工作液體高效率發電系統及方法
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
KR101543136B1 (ko) 2010-11-01 2015-08-07 그레이트포인트 에너지, 인크. 탄소질 공급원료의 히드로메탄화
TW201303143A (zh) * 2011-03-22 2013-01-16 Exxonmobil Upstream Res Co 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
ES2535513T3 (es) * 2011-09-07 2015-05-12 Alstom Technology Ltd Método para el funcionamiento de una central eléctrica
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
JP6104926B2 (ja) 2011-11-02 2017-03-29 8 リバーズ キャピタル,エルエルシー 発電システムおよび対応する方法
WO2013078185A1 (en) * 2011-11-22 2013-05-30 Enerjetik Llc Method of making carbon dioxide
BR112014019522B1 (pt) 2012-02-11 2020-04-07 8 Rivers Capital Llc processo para produção de energia, e sistema para oxidação parcial (pox) e sistema para produção de energia (pps) combinados
US9644840B2 (en) 2012-09-20 2017-05-09 General Electric Technology Gmbh Method and device for cleaning an industrial waste gas comprising CO2
EP2711066B1 (en) * 2012-09-20 2021-10-27 General Electric Technology GmbH Method for cleaning an industrial waste gas comprising co2 by incineration in an oxyfuel boiler
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
CN104704204B (zh) 2012-10-01 2017-03-08 格雷特波因特能源公司 用于从原始的低煤阶煤原料产生蒸汽的方法
CN104685039B (zh) 2012-10-01 2016-09-07 格雷特波因特能源公司 附聚的颗粒状低煤阶煤原料及其用途
CN104704089B (zh) 2012-10-01 2017-08-15 格雷特波因特能源公司 附聚的颗粒状低煤阶煤原料及其用途
AU2013248180B2 (en) * 2012-10-31 2015-11-05 Alstom Technology Ltd An oxy-fuel boiler system and its operation
US20140130509A1 (en) * 2012-11-13 2014-05-15 Raymond Francis Drnevich Combined gasification and power generation
WO2014151656A1 (en) * 2013-03-15 2014-09-25 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
JP6250332B2 (ja) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー ガスタービン設備
TWI657195B (zh) 2014-07-08 2019-04-21 美商八河資本有限公司 加熱再循環氣體流的方法、生成功率的方法及功率產出系統
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
CN111005779A (zh) 2014-09-09 2020-04-14 八河流资产有限责任公司 从发电系统和方法生产低压液态二氧化碳
MA40950A (fr) 2014-11-12 2017-09-19 8 Rivers Capital Llc Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
KR102602774B1 (ko) 2015-06-15 2023-11-15 8 리버스 캐피탈, 엘엘씨 동력 생산 플랜트의 기동을 위한 시스템 및 방법
WO2017023985A1 (en) 2015-08-06 2017-02-09 Wormser Energy Solutions, Inc. All-steam gasification with carbon capture
EP3359628B1 (en) 2015-10-06 2022-03-02 Wormser Energy Solutions, Inc. Method and apparatus for adiabatic calcium looping
CN109072104B (zh) 2016-02-18 2021-02-26 八河流资产有限责任公司 用于包括甲烷化处理的发电系统和方法
CN109072783B (zh) 2016-02-26 2021-08-03 八河流资产有限责任公司 用于控制发电设备的系统和方法
CN106150580A (zh) * 2016-07-13 2016-11-23 西安热工研究院有限公司 超临界二氧化碳循环与燃机结合的布局和启动运行方式
RU2691869C2 (ru) * 2016-08-09 2019-06-18 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Способ комбинированной выработки механической, тепловой энергии и получения твердого диоксида углерода
CA3036311A1 (en) 2016-09-13 2018-03-22 8 Rivers Capital, Llc System and method for power production using partial oxidation
JP2020506983A (ja) * 2017-01-15 2020-03-05 ウォームサー エナジー ソリューションズ,インコーポレーテッド 超臨界co2発電サイクルシステムのための全蒸気ガス化
US10940424B2 (en) * 2017-02-04 2021-03-09 Stanislav Sinatov Method for liquid air energy storage with fueled and zero carbon emitting power output augmentation
EP3655632A1 (en) * 2017-07-20 2020-05-27 8 Rivers Capital, LLC System and method for power production with solid fuel combustion and carbon capture
ES2960368T3 (es) 2017-08-28 2024-03-04 8 Rivers Capital Llc Optimización de calor de baja calidad de ciclos de energía recuperativa de CO2 supercrítico
CN107701309A (zh) * 2017-09-05 2018-02-16 陕西未来能源化工有限公司 一种煤化工驰放气燃气发电的系统及方法
CN107987889B (zh) * 2017-12-25 2021-04-23 孔令增 兰炭气化煤气锅炉节能、减排的方法
EP3759322B9 (en) 2018-03-02 2024-02-14 8 Rivers Capital, LLC Systems and methods for power production using a carbon dioxide working fluid
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN110307088A (zh) * 2019-07-31 2019-10-08 中国华能集团有限公司 一种提高igcc电站燃机冬季运行稳定性的装置和方法
US11549433B2 (en) 2019-10-22 2023-01-10 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods
CN110631050B (zh) * 2019-10-29 2023-06-02 中国华能集团有限公司 一种igcc电站燃气轮机合成气燃料的混合加热系统及方法
US11572518B2 (en) 2019-11-25 2023-02-07 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture
CN111463806B (zh) * 2020-04-23 2022-04-01 中国科学院武汉岩土力学研究所 一种电力储能调峰系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1298434A (en) 1971-05-21 1972-12-06 John Joseph Kelmar Non-polluting constant output electric power plant
DE2835852C2 (de) * 1978-08-16 1982-11-25 Kraftwerk Union AG, 4330 Mülheim Kombinierte Gas-Dampfkraftanlage mit einer Vergasungseinrichtung für den Brennstoff
US4815418A (en) * 1987-03-23 1989-03-28 Ube Industries, Inc. Two fluidized bed type boiler
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
FI941141A (fi) 1993-03-15 1994-09-16 Mitsubishi Heavy Ind Ltd Kivihiilen kaasuunnukseen perustuva energiankehitin
US5572861A (en) 1995-04-12 1996-11-12 Shao; Yulin S cycle electric power system
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
DK0953748T3 (da) * 1998-04-28 2004-06-07 Alstom Switzerland Ltd Kraftværksanlæg med en CO2-proces
TR200201283T2 (tr) * 1999-08-19 2002-09-23 Manufacturing And Technology Conversion International, Inc. Dolaylı olarak ısıtılan buhar yeniden yapılandırıcı sistemli gaz türbini.
US20040011057A1 (en) * 2002-07-16 2004-01-22 Siemens Westinghouse Power Corporation Ultra-low emission power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537327C2 (ru) * 2010-09-02 2015-01-10 Альстом Текнолоджи Лтд. Продувка магистрали рециркуляции отработавших газов газовой турбины

Also Published As

Publication number Publication date
CN1701162A (zh) 2005-11-23
AU2003260832A1 (en) 2004-04-08
CN1330855C (zh) 2007-08-08
US20040123601A1 (en) 2004-07-01
RU2005111223A (ru) 2005-10-10
EP1540144A1 (en) 2005-06-15
US6877322B2 (en) 2005-04-12
WO2004027220A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
RU2287067C2 (ru) Система с гибридным циклом газификации угля с использованием рециркулирующей рабочей текучей среды и способ генерирования электроэнергии
US20040011057A1 (en) Ultra-low emission power plant
US6282901B1 (en) Integrated air separation process
CN102015072B (zh) 发电方法
US7882692B2 (en) Zero emissions closed rankine cycle power system
US6745573B2 (en) Integrated air separation and power generation process
US5265410A (en) Power generation system
US5724805A (en) Power plant with carbon dioxide capture and zero pollutant emissions
US20080010967A1 (en) Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method
US20030131582A1 (en) Coal and syngas fueled power generation systems featuring zero atmospheric emissions
US7810310B2 (en) Integrated coal gasification combined cycle plant
JPH0472045B2 (ru)
KR101693865B1 (ko) 탄소 포획 냉각 시스템 및 방법
JPS61283728A (ja) 電気エネルギ−及びスチ−ム発生方法
US20100024432A1 (en) Method for improved efficiency for IGCC
KR101586105B1 (ko) 이산화탄소를 제거하는 화력 발전소
US20100205968A1 (en) Method for operating a combustion system and combustion system
US8191349B2 (en) System and method for low emissions combustion
WO2008014481A1 (en) High efficiency integrated gasification combined cycle power plant
Shao et al. Power plants with CO2 capture using integrated air separation and flue gas recycling
Schiebahn et al. Integration of H2‐Selective Membrane Reactors in the Integrated Gasification Combined Cycle for CO2 Separation
Rao et al. Gas turbine based high-efficiency ‘Vision 21’natural gas and coal central plants
JP5412205B2 (ja) ガスタービンプラント及びこれを備えたガス化燃料発電設備
KR970063877A (ko) 고신뢰도 고효율 석탄가스화 복합발전 시스템 및 전력 발생방법
CN113623074B (zh) 一种采用燃气轮机排烟的制氧的igcc系统及其工作方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120918