RU2275396C1 - Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива - Google Patents

Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива Download PDF

Info

Publication number
RU2275396C1
RU2275396C1 RU2005106327A RU2005106327A RU2275396C1 RU 2275396 C1 RU2275396 C1 RU 2275396C1 RU 2005106327 A RU2005106327 A RU 2005106327A RU 2005106327 A RU2005106327 A RU 2005106327A RU 2275396 C1 RU2275396 C1 RU 2275396C1
Authority
RU
Russia
Prior art keywords
solvent
mixture
hydrogen
waste
alkylbenzenes
Prior art date
Application number
RU2005106327A
Other languages
English (en)
Inventor
Владимир Владимирович Платонов (RU)
Владимир Владимирович Платонов
Original Assignee
Общество с ограниченной ответственностью "НПК "Технохим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НПК "Технохим" filed Critical Общество с ограниченной ответственностью "НПК "Технохим"
Priority to RU2005106327A priority Critical patent/RU2275396C1/ru
Priority to PCT/RU2005/000175 priority patent/WO2006096087A1/ru
Application granted granted Critical
Publication of RU2275396C1 publication Critical patent/RU2275396C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/20Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Изобретение относится к химической переработке резиносодержащих, а также промышленных и бытовых органических отходов (полиэтилен, полистирол, полиизобутилен, капрон, лавсан, энант, найлон, поливинилхлорид, различные виды каучука, фенолформальдегидные наволачные смолы и т.д.) в компоненты моторного топлива и сырье для промышленности основного органического, нефтехимического и биохимического синтеза, производству анодной массы для электротермических и электрохимической предприятий, гидро-, тепло- и звукоизоляционных материалов, асфальтобетона для дорожного строительства. Способ переработки заключается в том, что осуществляют термокаталитическое ожижение отходов при повышенных температуре и давлении в углеводородном водорододонорном растворителе с последующим отделением жидких продуктов и их ректификацией с получением целевых продуктов. Процесс проводят в присутствии смеси водорододонорных углеводородов, в качестве одного из которых используют алкилбензолы, а в качестве второго - водорододонорный углеводород, имеющий меньшее время индукционного эффекта. Процесс проводят при температуре 200-320°С и давлении 1-3 МПа в присутствии катализатора, в качестве которого используют фталоцианины или диметилглиоксиматы, выбранные из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо и их смеси. Предпочтительно осуществление способа проводят в смеси алкилбензолов и тетралина, взятых в массовом соотношении 10:0,5-10:2,0 или в смеси алкилбензолов и фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, взятых в том же массовом соотношении. Целесообразно использовать массовое соотношение растворитель: катализатор, равное 1:0,01-1:0,05. Предпочтительно процесс проводить при массовом соотношении отходы: растворитель, равном 1:2-4. Технический результат от использования изобретения заключается в повышении водорододонорного потенциала растворителя за счет более эффективного использования водорода последнего, а также селективности процесса при ожижении сложных по химическому составу отходов, упрощении технологии, снижении температуры и давления, увеличении производительности процесса при одновременном повышении взрыво- и пожаробезопасности, экологической чистоты, увеличении выхода фракций с температурой кипения до 200°С, характеризующихся низким содержанием кислород-, азот- и сераорганических, а также непредельных соединений, повышении качество технического углерода, наполнителя в резиносодержащих отходах, пирогаза. 5 з.п. ф-лы, 1 табл.

Description

Изобретение относится к химической переработке резиносодержащих, а также промышленных и бытовых органических отходов (полиэтилен, полистирол, полиизобутилен, капрон, лавсан, энант, найлон, поливинилхлорид, различные виды каучука, фенолформальдегидные наволачные смолы и т.д.) в компоненты моторного топлива и сырье для промышленности основного органического, нефтехимического и биохимического синтеза, производству анодной массы для электротермических и электрохимической предприятий, гидро-, тепло- и звукоизоляционных материалов, асфальтобетона для дорожного строительства.
Проблема химической переработки утильных шин (автомобильный, авиационный и т. д. транспорт), различных промышленных и бытовых органических отходов является весьма актуальной, что обусловлено постоянным ростом количества этих отходов и, в то же время, отсутствием эффективных способов их переработки с учетом специфики их химического состава, с получением широкого набора ценных продуктов, сырья для промышленности основного органического и нефтехимического синтеза.
С учетом сложного химического состава различных органических отходов и резиносодержащих материалов, наиболее перспективными являются методы их комплексной экологически чистой химической переработки с целью получения котельного топлива, компонентов высокооктановых моторных топлив, сырья для промышленности нефтехимического, органического и биохимического синтеза, производства гидро-, тепло- и звукоизоляционных материалов, асфальтобетона для дорожного строительства, углеграфитовых материалов, анодной массы для электротермических и электрохимических производств.
Решение этой проблемы позволит существенно расширить сырьевую базу углеводородного сырья, в котором, в связи со значительным сокращением запасов природной нефти, темпов ее разведки, добычи и последующей глубокой переработки, в последние годы ощущается острый дефицит; решить экологическую проблему комплексной и безвредной утилизации резиносодержащих и широкого ассортимента промышленных и бытовых органических отходов; значительно сократить расход углеводородного сырья, производимого на основе нефти, бурых и каменных углей, горючих сланцев, природных битумов.
Известен способ переработки резиносодержащих отходов - утильных автошин, включающий измельчение последних до 4-0.75 мм, смешение с нефтепродуктами, нагревание полученной массы в реакторе при 65-370°С в течение времени, достаточного для растворения материала, каталитический крекинг полученного раствора в реакторе при температуре не ниже 450°С и повышенном давлении, выгрузку продукта из реактора и последующую его дистилляцию с получением газообразных продуктов, бензиновой фракции, легких и тяжелых масел (US №4175211, 1976).
Этот способ характеризуется многостадийностью, сложностью технологии, связанной с необходимостью: измельчения утильных шин, что весьма затруднительно, особенно при наличии металлокорда; использования специфического катализатора и его периодичной регенерации; применения высоких температур и давления, вызывающих образование значительных количеств низкомолекулярных газообразных продуктов, а также высокомолекулярных асфальтеновых углеводородов за счет реакций конденсации.
Известен способ получения жидких продуктов из резиносодержащих отходов, включающий их нагревание при температуре выше 200°С в углеводородной жидкости продолжительностью, обеспечивающей превращение резины в тягучий маслоподобный продукт, и контактирование последнего с катализатором алкилирования (H2SO4, S2Cl2) после добавления к нему алифатического альдегида или кетона. Полученную смолу вводят в резиновые смеси при производстве шин (US №3895059, 1975).
Указанный способ также характеризуются многостадийностью, необходимостью использования серной кислоты, полухлористой серы, способных вызвать протекание реакций глубокой конденсации, уплотнения, что осложняет образование низкомолекулярных жидких продуктов. Кроме того, ограничены и специфичны области использования полученного продукта.
Известен способ переработки резиносодержащих отходов, включающий перемешивание при температуре 290-380°С раствора резиносодержащих отходов с концентрацией 10-80 мас.% в углеводородной среде и отгон низкокипящих фракций. В качестве углеводородной среды используют продукт деасфальтенизации пропаном нефтяного гудрона, содержащего 2,4-5,9 мас.% асфальтенов и температурой размягчения 34-45°С. Отгон низкокипящих фракций с температурой выкипания 230-310°С проводят постоянно в течение всего процесса перемешивания (SU №1613455, 1990).
К недостаткам данного способа относятся, прежде всего, ограничения по содержанию в углеводородной среде асфальтенов. Это условие трудновыполнимо, так как добываемые в последние годы нефти и продукты их переработки характеризуются высоким содержанием асфальтенов, смолистых и сероорганических соединений, следовательно, требуется увеличение числа циклов извлечения перечисленных соединений. Кроме того, этот метод характеризуется недостаточно высоким выходом легких фракций. Суммарное количество легких фракций, выкипающих в температурном интервале до 230°С, составляет 12,4-37,8 мас.%.
Известен способ переработки резиносодержащих отходов, заключающийся в их термоожижении при 270-420°С, давлении 1-6 МПа в среде углеводородного растворителя, в составе которого используют отходы производства синтетического каучука, и в присутствии редкоземельного металла (РЗМ), или в присутствии интерметаллидов на основе РЗМ, или в присутствии гидрида титана, взятых в количестве 0,5-10,0 мас.% от реакционной смеси. Способ предусматривает термоожижение при массовом соотношении углеводородного растворителя и отходов 2:1-4:1. Способ характеризуется невысоким коэффициентом использования водорододонорного потенциала компонентов растворителя, что требует многократного использования его в процессе, постоянного отделения от жидких продуктов термоожижения исходного сырья, а также поддержания повышенного давления в реакционном аппарате (RU №2109770, 1998).
Существенным недостатком этого способа является также применение в качестве углеводородного растворителя отходов производства синтетического каучука, которые не всегда доступны в необходимом количестве. Кроме того, необходимы достаточно дефицитные РЗМ, интерметаллиды на их основе, гидриды кальция, титана.
Известен способ переработки резиносодержащих, а также органических промышленных и бытовых отходов в химическое сырье и компоненты моторного топлива, проводимый аналогично вышеописанному, в котором в качестве водорододонорного растворителя используют один или смесь алкилбензолов (толуола, ксилолов, этилбензолов, диэтил-, триметил- и тетраметилбензолов), являющихся основой "сырого бензола" - продукта высокотемпературного коксования каменных углей. Перечисленные углеводороды являются эффективными донорами водорода, имеются в больших количествах, их применение в данной технологии позволяет решить как техническую, экологическую, так и экономическую задачу (патент РФ №2110535, 1998).
Существенным недостатком этого способа является применение РЗМ, интерметаллидов на основе неодима, лантана, церия, алюминия, а также гидридов титана, кальция, относящиеся к достаточно дефицитным материалам, трудность их последующего извлечения из массы технического углерода и высокосмолистых тяжелых углеводородных остатков, высокое давление в реакционном аппарате вследствие низкой степени использования водорода из состава газовой фазы, образующейся в результате термолиза органических отходов, невозможность одновременной переработки различного по химическому составу сырья.
Известен способ переработки органических полимерных отходов, включающий термоожижение отходов при температуре выше 270°С при повышенном давлении по меньшей мере в одном растворителе - алкилбензоле, отделение жидкой фракции и ее дистилляцию, при этом при термоожижении отходов используют повышенное давление не менее 6,1 МПа, а после дистилляции жидкую фракцию с температурой кипения не менее 210°С вводят при термоожижении вновь перерабатываемых отходов в качестве дополнительного компонента к растворителю в массовом соотношении дополнительного компонента и растворителя не менее 1:1 (патент РФ №2167168, 2001 г.).
Существенным недостатком данного способа является его неэффективность при получении высокооктановой бензиновой фракции. Этот недостаток возникает вследствие удаления из реакционной смеси жидкой фракции с температурой кипения менее 200°С. Наиболее активными инициаторами продолжения цепи радикальных реакций являются низкомолекулярные алкилбензолы с температурой выкипания до 200°С. Вывод из реакционной смеси этой фракции и добавление высококипящей не будет ускорять процесс передачи водорода, и в целом ускорять процесс. Высококипящую фракцию добавляют для последующего термокрекинга с получением керосиновой и соляровой фракций, но никак не высокооктановой бензиновой фракции.
Наиболее близким по технической сущности к предлагаемому способу является способ, в котором отходы подвергают термокаталитическому сжижению при 220-360°С, давлении 1-3 МПа в углеводородном водорододонорном растворителе в присутствии инициатора - свободного иода и/или иодсодержащих соединений, взятых в количестве 0,01-0,50 мас.% от растворителя с получением целевых продуктов. Используются неорганические и органические йодсодержащие соединения, выбранные из группы, содержащей иодиды калия, титана, кобальта, никеля, этилиодид, третбутилиодид и другие, или их смеси. В качестве растворителя используют алкилбензол, смесь алкилбензолов, алкилбензолсодержащие углеводородные смеси. Предпочтительно способ проводят при массовом соотношении отходы: растворитель 1:2-4. Проведение способа позволяет упростить технологию процесса, повысить выход жидких продуктов лучшего качества, которые можно использовать в качестве компонентов моторного топлива и химического сырья (патент РФ №2156270, С1, 2000).
Существенным недостатком этого способа является применение достаточно дефицитных инициаторов, особенно органических иодсодержащих соединений, невысокая степень использования водорододонорного потенциала компонентов растворителя, трудность отделения инициаторов и продуктов их превращений с поверхности технического углерода, а также из жидких продуктов, ограничения по химическому составу перерабатываемого сырья, например, полихлорвинила, акрилонитрильного каучука, повышенная коррозионная активность реакционной смеси за счет присутствия иодсодержащих инициаторов, жесткие требования к хранению и работе с органическими иодсодержащими материалами.
Задачей изобретения является разработка способа, позволяющего отказаться от дефицитных иодсодержащих инициаторов и обеспечивающего повышение водорододонорного потенциала растворителя за счет более эффективного использования водорода последнего, а также селективности процесса при сжижении сложных по химическому составу отходов для обеспечения независимости от химического состава сырья, упростить технологию, обеспечить возможность в течение одного цикла обрабатывать смесь разнородного сырья, уменьшить энергоемкость процесса, снизить температуру и давление, увеличить производительность процесса при одновременном повышении взрыво- и пожаробезопасности, экологической чистоты, увеличить выход фракций с температурой кипения до 200°С, характеризующихся низким содержанием кислород-, азот- и сероорганических, а также непредельных соединений, повысить качество технического углерода, наполнителя в резиносодержащих отходах, пирогаза.
Поставленная задача решается за счет того, что при осуществлении способа осуществляют термокаталитическое сжижение отходов при повышенных температуре и давлении в углеводородном водорододонорном растворителе с последующим отделением жидких продуктов и их ректификацией с получением целевых продуктов, при этом процесс проводят в присутствии смеси водорододонорных углеводородов, в качестве одного из которых используют алкилбензолы, а в качестве второго - водорододонорный углеводород, имеющий меньшее время индукционного эффекта, при этом процесс проводят в присутствии катализатора, в качестве которого используют фталоцианины или диметилглиоксиматы, выбранные из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо и их смеси.
Предпочтительно процесс проводят при температуре от 200 до 320°С и давлении 1-3 МПа.
В качестве второго водорододонорного углеводорода можно использовать, в частности, тетрагидрохинолин, тетрагидрофенантрен, тетрагидроантрацен, октагидропирен, тетралин, фракции парафиново-нафтеновой нефти с пределом выкипания 230-280°С и др.
Однако тетрагидрохинолин, тетрагидрофенантрен, тетрагидроантрацен, октагидропирен в промышленном масштабе не производятся. Кроме того, часть из упомянутых соединений, такие как тетрагидрохинолин, тетрагидрофенантрен, тетрагидроантрацен, октагидропирен после отдачи водорода превращаются в полициклические ароматические углеводороды, которые, особенно производные пирена, проявляют канцерогенные свойства. Поэтому в предпочтительном варианте исполнения в качестве углеводородного растворителя, имеющего меньшее время индукционного эффекта, чем алкилбензолсодержащие углеводороды, используют тетралин. Тетралин промышленно производится путем каталитического гидрирования нафталина. В другом предпочтительном варианте исполнения используют фракции парафиново-нафтеновой нефти с пределом выкипания 230-280°С.
Предпочтительно осуществление способа проводят в смеси алкилбензолов и тетралина, взятых в массовом соотношении 10:0,5-10: 2,0.
Предпочтительно осуществление способа процесс проводят в смеси алкилбензолов и фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, взятых в массовом соотношении, равном 10:0,5-10:2,0.
Предпочтительно при использовании в качестве катализатора фталоцианинов, выбранных из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо и их смеси использовать массовое соотношение растворитель: катализатор, равном 1:0,01-1:0,05.
Предпочтительно при использовании в качестве катализатора диметилглиоксиматов, выбранных из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо или их смеси, использовать массовое соотношение растворитель: катализатор, равное 1:0,01-1:0,05.
Предпочтительно процесс проводить при массовом соотношении отходы: растворитель, равном 1:2-4.
В качестве источника алкилбензолов целесообразно использовать "сырой бензол" или отдельные его компоненты (толуол, ксилолы, сольвент фракция), получаемые при высокотемпературном коксовании каменных углей и являющихся отходом производства металлургического кокса. Количества "сырого бензола" достаточно большие, но рационального применения он пока не находит. В качестве дополнительных доноров водорода, значительно уменьшающих индукционный период реакций термолиза органического материала отходов, целесообразно применение тетралина или фракций с пределом выкипания 230-280°С парафиново-нафтеновой нефти. Тетралин - продукт каталитического гидрирования коксохимического нафталина, его количества значительны, но рационального применения пока не находит.
Технический результат от использования изобретения заключается в повышении водорододонорного потенциала растворителя за счет более эффективного использования водорода последнего, а также селективности процесса при ожижении сложных по химическому составу отходов, упрощении технологии, обеспечении независимости от химического состава сырья, снижении температуры и давления, увеличении производительности процесса при одновременном повышении взрыво- и пожаробезопасности, экологической чистоты, увеличении выхода фракций с температурой кипения до 200°С, характеризующихся низким содержанием кислород-, азот- и сероорганических, а также непредельных соединений, повышении качество технического углерода, наполнителя в резиносодержащих отходах, пирогаза.
Применение смеси алкилбензолов, тетралина или фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, обогащенной изоалканами, циклоалканами и гидроароматическими углеводородами, являющимися эффективными донорами водорода, позволят существенно уменьшить индукционный период процесса термолиза органического материала, отходов за счет более высокой водорододонорной активности тетралина и фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти; повысить коэффициент использования атомарного водорода или жидкой фазы для рекомбинации низкомолекулярных радикальных продуктов термолиза органического материала отходов, увеличить производительность реакционного аппарата, улучшить экономические показатели процесса в целом.
В тетралине и фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, выступающих в роли инициаторов реакции, энергия разрыва связи С-Н с образованием атомарного водорода имеет меньшее значение, чем энергия разрыва аналогичных связей в алкилбензолах. За счет этого возможно снижение температуры начала реакции и снижение давления, а также времени протекания реакции.
Использование в качестве катализатора фталоцианинов или диметилглиоксиматов позволяет отказаться от достаточно дефицитных свободного иода или иодсодержащих соединений, большинство из которых термически не устойчивые, и работа с отдельными из них требует особых условий, например, этилиодид, третбутилиодид, иодиды титана, никеля; понизить температуру процесса, повысить выход фракции, выкипающей до 200°С, уменьшить в ней содержание непредельных, серо-, азот- и кислородсодержащих компонентов, понизить давление в реакционном аппарате за счет более эффективной передачи молекулярного водорода из газовой фракции, а также атомарного водорода от компонентов водорододонорного растворителя с радикальным продуктом термолиза органического материала отходов; существенно упростить технологию вследствие отказа от термодинамически неустойчивых органических соединений иода, понизить себестоимость получаемой продукции, улучшить экономические показатели процесса в целом.
Применение тетралина в качестве инициатора, а фталоцианинов или диметилглиоксиматов в качестве катализаторов реакции термолиза органического материала отходов, повышения эффективности переноса водорода от водорододонорных компонентов растворителя и молекулярного водорода из газовой фазы делает процесс термокаталитического ожижения резиносодержащих, а также широкого спектра промышленных и бытовых органических отходов более селективным, работающим при низком давлении и более низкой температуре; отсутствует необходимость в отделении иода и его соединений из продуктов ожижения, так как их количества крайне незначительны, они весьма летучи и будут легко переходить в газообразные продукты. В то же время, марганец, железо, никель, ванадий, кобальт, молибден фталоцианинов или диметилглиоксиматов легко удаляется магнитной сепарацией.
Способ осуществляется следующим образом:
Во вращающийся автоклав (2 л) загружают резиносодержащие, другие промышленные и бытовые органические отходы (утильные шины, камеры, транспортерные ленты, прорезиненные вентиляционные шахтные рукава, полиэтилен, полистирол, полипропилен, полиизобутилен, синтетический каучук, полихлорвинил, капрон, найлон, энант, лавсан и другие). Затем добавляют водорододонорный углеводородный растворитель в массовом соотношении алкилбензолы: тетралин/или фракция с температурой выкипания 230-280°C парафиново-нафтеновой нефти, равном 10:0.5-10:2.0; катализатор фталоцианины/или диметилглиоксиматы в количестве 0.01 -0.05 (мас. % от растворителя).
Процесс термокаталитического сжижения отходов осуществляют при температуре 200-320°С и давлении 1-3 МПа; массовом соотношении отходы: растворитель 1-.2-4.
Фталоцианины или диметилглиоксиматы, содержащие металлы с переменной степенью окисления, легко отщепляют атомарный водород от компонентов водорододонорного углеводородного растворителя, особенно тетралина, а также циклогексанов и гидроароматических углеводородов фракции нефти и переносит его к радикальным продуктам, образующимся при термолизе органического материала отходов. Перенос водорода также интенсифицируется нафталиновыми структурами, образующимися при дегидрировании тетралина. Этим объясняется высокая скорость процесса ожижения отходов, низкие значения температуры и давления, высокая степень использования водорода компонентов растворителя и газовой фазы, глубокий термолиз соединений отходов, низкое содержание кислород-, азот- и серосодержащих, а также непредельных соединений в образующихся жидких продуктах, высокий выход последних; повышение селективности реакций изомеризации, циклизации, гидрирования и дегидрирования, гидродеалкилирования, гидрирования полиамидных, дисульфидных, полиэфирных связей, гетероциклов с последующим их разрушением, ответственных за образование значительных количеств циклоалканов, изоалканов, гидроароматических и ароматических углеводородов, характеризующихся высокими октановыми числами; уменьшение содержания в жидких продуктах кислород-, азот- и сероорганических, а также непредельных соединений.
Жидкие продукты отделяют от твердых веществ (металлокорд, технический углерод и другое), после чего подвергают ректификации с получением целевых продуктов - фракций с пределом выкипания до 200°С, 200-280°С и выше 280°С.
Примеры осуществления предлагаемого способа приведены в таблице. Примеры с №1 по №5 включительно относятся к ближайшему аналогу изобретения и приведены для подтверждения преимуществ заявленного способа.
Описание примера, иллюстрирующего заявленное изобретение (№9 в таблице). Во вращающийся автоклав (2 л) загружают 150 г отходов (утильная резина, автошина, полиэтилен, полистирол, полиизобутилен, синтетический каучук, полихлорвинил и другие), 450 г водорододонорного растворителя, содержащего 400 г толуола и 20 г тетралина/или фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, 4,5 г фталоцианинов/или диметилглиоксиматов никеля, кобальта, марганца, железа. Процесс проводят при температуре 300°С, давлении 2.5 МПа в течение 30 минут. Выход жидких продуктов составляет 95 мас.% от органического материала отходов, содержание фракции, выкипающей в температурном интервале до 200°С, составляет 83,2 мас.% от жидких продуктов, до 320°С - 95,5 мас.%. Полученные фракции можно использовать в качестве высокооктановых компонентов моторного топлива и химического сырья для производств основного органического, биохимического и нефтехимического синтеза. Технический углерод может быть рекомендован в качестве наполнителя в резинотехнические изделия, производства анодной массы для электротермических и электрохимических производств.
Из таблицы следует, что использование смеси углеводородов доноров водорода (алкилбензолов, тетралина или фракции с температурой выкипания 230-280°С парафиново-нафтеновой нефти), катализаторов - фталоцианинов/или диметилглиоксиматов позволяет повысить выход жидких продуктов и содержание в их составе фракции с пределом выкипания до 200°С, обогащенной изоалканами, циклоалканами, гидроароматическими и ароматическими углеводородами, понизить температуру, давление, уменьшить время процесса.
№ п/п Массовое соотношение резиносодержащих, органических промышленных и бытовых отходов: растворителя Содержание йода и/или йодсодержащих соединений, мас.%, от растворителя (ближайший аналог) Температура процесса °С Время процесса, мин Массовое соотношение алкилбензолы: тетралин Массовое соотношение алкилбензолов: фракция 280-320°С парафиново-нафтеновой нефти Массовое соотношение растворитель: катализатор Выход жидких продуктов мас.% от органической массы отходов Выход фракции с пределом выкипания 200°С, мас.% от жидких продуктов
1 1:2,5 0,05 270 60 - - - 85,0 73,0
2 1:2,5 0,05 270 30 - - - 72,0 65,1
3 1:3,0 0,05 360 30 - - - 90,0 95,0
4 1:3,0 0,05 270 30 - - - 76,0 69,8
5 1:4,0 0,05 360 60 - - 95,0 90,0
6 1:2,5 - 270 60 10:0,5 - 10:0,01 88,0 77,0
7 1:2,5 - 300 60 10:0,5 - 10:0,01 92,0 85,0
8 1:2,5 - 300 30 10:0,5 - 10:0,01 90,0 82,5
9 1:3,0 - 300 30 10:0,5 - 10:0,01 95,0 83,0
10 1:2,5 - 200 60 10:2,0 - 10:0,10 93,5 88,5
11 1:2,5 - 270 60 10:2,0 - 10:0,05 95,5 97,5
12 1:2,5 - 270 60 10:2,0 - 10:0,05 95,5 92,5
13 1:3,0 - 270 60 10:2,0 - 10:0,05 95,5 92,5
14 1:2,5 - 250 60 - 10:0,5 10:0,01 89,5 80,5
15 1:2,5 - 300 60 - 10:0,5 10:0,01 95,5 93,2

Claims (6)

1. Способ переработки резиносодержащих, а также промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива, включающий термокаталитическое ожижение отходов при повышенной температуре и давлении 1-3 МПа в углеводородном водорододонорном растворителе с последующим отделением жидких продуктов и их ректификацией с получением целевых продуктов, отличающийся тем, что процесс проводят в присутствии смеси водорододонорных углеводородов, в качестве одного из которых используют алкилбензолы, а в качестве второго - водорододонорный углеводород, имеющий меньшее время индукционного эффекта, при этом процесс проводят при температуре 200-320°С в присутствии катализатора, в качестве которого используют фталоцианины или диметилглиоксиматы, выбранные из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо и их смеси.
2. Способ по п.1, отличающийся тем, что процесс проводят в смеси алкилбензолов и тетралина, взятых в массовом соотношении 10:0,5-10:2,0.
3. Способ по п.1, отличающийся тем, что процесс проводят в смеси алкилбензолов и фракции с пределом выкипания 230-280°С парафиново-нафтеновой нефти, взятых в массовом соотношении, равном 10:0,5-10:2,0.
4. Способ по п.1, отличающийся тем, что при использовании в качестве катализатора фталоцианинов, выбранных из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо и их смеси, используют массовое соотношение растворитель: катализатор, равное 1:0,01-1:0,05.
5. Способ по п.1, отличающийся тем, что при использовании в качестве катализатора диметилглиоксиматов, выбранных из группы, содержащей медь, никель, кобальт, молибден, титан, марганец, железо или их смеси, используют массовое соотношение растворитель: катализатор, равное 1:0,01-1:0,05.
6. Способ по любому из пп.1-5, отличающийся тем, что процесс проводят при массовом соотношении отходы: растворитель, равном 1:2-4.
RU2005106327A 2005-03-09 2005-03-09 Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива RU2275396C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2005106327A RU2275396C1 (ru) 2005-03-09 2005-03-09 Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива
PCT/RU2005/000175 WO2006096087A1 (fr) 2005-03-09 2005-04-06 Procede de recyclage de dechets contenant du caoutchouc et d'autres dechets organiques industriels et domestiques en matiere premiere chimique et en composants de combustible pour moteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005106327A RU2275396C1 (ru) 2005-03-09 2005-03-09 Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива

Publications (1)

Publication Number Publication Date
RU2275396C1 true RU2275396C1 (ru) 2006-04-27

Family

ID=36655545

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005106327A RU2275396C1 (ru) 2005-03-09 2005-03-09 Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива

Country Status (2)

Country Link
RU (1) RU2275396C1 (ru)
WO (1) WO2006096087A1 (ru)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175211A (en) * 1977-03-14 1979-11-20 Mobil Oil Corporation Method for treatment of rubber and plastic wastes
JPS58125790A (ja) * 1982-01-22 1983-07-26 Shigeo Maekawa 有機質ごみによる燃料製造法
US4584421A (en) * 1983-03-25 1986-04-22 Agency Of Industrial Science And Technology Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps
RU2156270C1 (ru) * 2000-03-21 2000-09-20 Общество с ограниченной ответственностью "Научно-экологические программы" Способ переработки резиносодержащих и органических промышленных и бытовых отходов

Also Published As

Publication number Publication date
WO2006096087A1 (fr) 2006-09-14

Similar Documents

Publication Publication Date Title
CN110139915B (zh) 废塑料通过热解向如苯和二甲苯的高价值产物的转化
JP2024138201A (ja) ポリマーの触媒熱分解によるオレフィン及び芳香族化合物の生成
Olah et al. Hydrocarbon chemistry
Quek et al. Liquefaction of waste tires by pyrolysis for oil and chemicals—A review
Hita et al. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires
US4251500A (en) Process for hydrocracking a waste rubber
Buekens et al. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes
Martínez et al. Waste tyre pyrolysis–A review
RU2272826C1 (ru) Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива
US4983278A (en) Pyrolysis methods with product oil recycling
RU2275397C1 (ru) Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива
Baraniec-Mazurek et al. Liquid fuel from waste polyolefins part I: Thermal and pressure degradation of waste polyolefins in tetralin as H-donor model system
AU2004233181B2 (en) Method for recycling rubber-containing wastes
CN112717912B (zh) 一种利用有机废弃物生产btx芳烃的催化剂及其制备方法和用途、生产btx芳烃的方法
CA2925049A1 (en) Natural gas decarbonization process for production of zero-emission benzene and hydrogen from natural gas
RU2275396C1 (ru) Способ переработки резиносодержащих и других промышленных и бытовых органических отходов в химическое сырье и компоненты моторного топлива
RU2156270C1 (ru) Способ переработки резиносодержащих и органических промышленных и бытовых отходов
RU2110535C1 (ru) Способ переработки органических промышленных и бытовых полимерных отходов
RU2167168C1 (ru) Способ переработки органических полимерных отходов
US1931550A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
CN106588540B (zh) 由催化裂化轻柴油生产苯和二甲苯的方法
EP2937403B1 (en) Method for processing industrial and domestic organic wastes, in particular plastic and/or rubber-containing wastes, to produce petroleum products for use as motor oil components and chemical raw materials
US2028348A (en) Process for hydrogenating distillable carbonaceous materials
RU2645338C1 (ru) Способ термического крекинга органических полимерных отходов
US2006996A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080310