RU2271021C1 - Способ определения трассы и глубины прокладки подводного кабеля - Google Patents

Способ определения трассы и глубины прокладки подводного кабеля Download PDF

Info

Publication number
RU2271021C1
RU2271021C1 RU2004119350/09A RU2004119350A RU2271021C1 RU 2271021 C1 RU2271021 C1 RU 2271021C1 RU 2004119350/09 A RU2004119350/09 A RU 2004119350/09A RU 2004119350 A RU2004119350 A RU 2004119350A RU 2271021 C1 RU2271021 C1 RU 2271021C1
Authority
RU
Russia
Prior art keywords
cable
route
underwater
laying
depth
Prior art date
Application number
RU2004119350/09A
Other languages
English (en)
Inventor
Владимир Александрович Андреев (RU)
Владимир Александрович Андреев
Владимир Александрович Бурдин (RU)
Владимир Александрович Бурдин
Юрий Михайлович Сподобаев (RU)
Юрий Михайлович Сподобаев
Original Assignee
Общество с ограниченной ответственностью Научно-производственное предприятие "СвязьАвтоматикаМонтаж" (ООО НПП "САМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственное предприятие "СвязьАвтоматикаМонтаж" (ООО НПП "САМ") filed Critical Общество с ограниченной ответственностью Научно-производственное предприятие "СвязьАвтоматикаМонтаж" (ООО НПП "САМ")
Priority to RU2004119350/09A priority Critical patent/RU2271021C1/ru
Application granted granted Critical
Publication of RU2271021C1 publication Critical patent/RU2271021C1/ru

Links

Images

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для определения трассы и глубины прокладки подводного кабеля в дно водоема в процессе его эксплуатации, а также трассы и глубины прокладки труб и других протяженных подводных коммуникаций. Достигаемым техническим результатом является повышение точности и снижение стоимости определения трассы и глубины прокладки в дно водоема подводного кабеля. Сущность изобретения заключается в том, что согласно способу определения трассы и глубины прокладки в дно водоема подводного кабеля по кабелю передают низкочастотный электромагнитный сигнал, с помощью расположенного на поверхности водоема плавсредства перемещают настроенную на эту же частоту приемную антенну над подводным кабелем вблизи дна водоема, принимаемый приемной антенной сигнал передают к блоку обработки на плавсредстве и по распределению уровней электромагнитного поля над подводным кабелем определяют трассу и глубину прокладки подводного кабеля в дно водоема, при этом вблизи дна водоема над кабелем перемещают систему из приемных всенаправленных антенн, приемные антенны распределяют в пространстве по определенной схеме так, чтобы их взаимное расположение относительно друг друга при перемещении не изменялось, к системе антенн крепят преобразователь, который соединяют с каждой из приемных антенн и через кабель управления подключают к блоку обработки на плавсредстве, в преобразователе принимают сигналы от каждой из приемных антенн, оптимизируют их параметры и последовательно передают по кабелю управления к блоку обработки, в котором запоминают уровни электромагнитного поля, принимаемые каждой из приемных антенн системы, устанавливают на плавсредстве эхолот, с помощью которого определяют расположение системы приемных антенн относительно дна водоема, по данным о расположении каждой из приемных антенн системы и принимаемых ими уровнях электромагнитных сигналов определяют распределение уровней электромагнитного поля в пространстве над подводным кабелем, по которому определяют трассу прокладки по расположению максимальных значений уровней и глубину прокладки подводного кабеля в дно водоема путем сравнения максимальных значений с опорным. 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для определения трассы и глубины прокладки подводного кабеля в дно водоема в процессе его эксплуатации, а также трассы и глубины прокладки труб и других протяженных подводных коммуникаций.
Известен способ [1] определения трассы и глубины укладки в дно водоема протяженных подводных сооружений, заключающийся в том, что с помощью эхолота сканируют дно водоема, регистрируют полученные при ультразвуковом сканировании изображения и в результате их обработки определяют трассу и глубину укладки в дно водоема протяженного подводного сооружения. Данный способ не отличается высокой точностью определения уровня заглубления подводного кабеля в дно водоема. Его реализация требует применения сложных автоматизированных систем ультразвукового сканирования и обработки изображений, стоимость которых высока. И, кроме того, данный способ не позволяет локализовать подводный кабель, проложенный вблизи более габаритного подводного сооружения, например трубопровода.
Известен способ [2] локализации места прокладки подводного кабеля, заглубленного в дно водоема, заключающийся в том, что датчик металлоискателя размещают на ноже кабелеукладчика, который заглубляют в дно водоема и перемещают. При этом управляют кабелеукладчиком с плавсредства на поверхности водоема по кабелю, проложенному между ними. Информацию от датчика передают по этому кабелю к системе управления, и в случае выявления подводного кабеля кабелеукладчик останавливается. Данный способ не может практически применяться для поиска трассы подводного кабеля и глубины укладки его в дно водоема.
Известна подводная поисковая система [3], включающая линейные приемные антенны, перемещаемые под водой за плавсредством. Из-за большой протяженности приемных антенн разрешающая способность системы мала. Это, а также неопределенность ориентации линейных приемных антенн относительно исследуемого подводного протяженного объекта не позволяют обеспечить приемлемую точность поиска трассы прокладки и определения уровня заглубления кабеля в дно водоема.
Известен способ определения трассы прокладки подводного кабеля, заключающийся в том, что по кабелю передают низкочастотный электромагнитный сигнал, вблизи дна водоема размещают настроенную на эту же частоту приемную антенну, которую соединяют кабелем управления с блоком обработки на расположенном на поверхности водоема плавсредством. С помощью плавсредства перемещают приемную антенну над подводным кабелем, принимаемый приемной антенной сигнал передают к блоку обработки и по распределению уровней электромагнитного поля над подводным кабелем определяют трассу и глубину прокладки подводного кабеля в дно водоема. Недостаток данного способа - в необходимости строгого соблюдения определенной взаимной ориентации приемной антенны и исследуемого подводного кабеля. Нарушение этого условия ведет к значительным погрешностям, а его обеспечение требует использования дорогостоящих систем автоматизированной ориентации приемной антенны.
Сущностью предлагаемого изобретения является повышение точности и снижение стоимости определения трассы и глубины прокладки в дно водоема подводного кабеля.
Эта сущность достигается тем, что, согласно способу определения трассы и глубины прокладки в дно водоема подводного кабеля, по кабелю передают низкочастотный электромагнитный сигнал, с помощью расположенного на поверхности водоема плавсредства перемещают настроенную на эту же частоту приемную антенну над подводным кабелем вблизи дна водоема, принимаемый приемной антенной сигнал передают к блоку обработки на плавсредстве и по распределению уровней электромагнитного поля над подводным кабелем определяют трассу и глубину прокладки подводного кабеля в дно водоема, при этом вблизи дна водоема над кабелем перемещают систему из приемных всенаправленных антенн, приемные антенны распределяют в пространстве по определенной схеме так, чтобы их взаимное расположение относительно друг друга при перемещении не изменялось, к системе антенн крепят преобразователь, который соединяют с каждой из приемных антенн и через кабель управления подключают к блоку обработки на плавсредстве, в преобразователе принимают сигналы от каждой из приемных антенн, оптимизируют их параметры и последовательно передают по кабелю управления к блоку обработки, в котором запоминают уровни электромагнитного поля, принимаемые каждой из приемных антенн системы, устанавливают на плавсредстве эхолот, с помощью которого определяют расположение системы приемных антенн относительно дна водоема, по данным о расположении каждой из приемных антенн системы и принимаемых ими уровнях электромагнитных сигналов определяют распределение уровней электромагнитного поля в пространстве над подводным кабелем, по которому определяют трассу прокладки по расположению максимальных значений уровней и глубину прокладки подводного кабеля в дно водоема путем сравнения максимальных значений с опорным.
На фиг.1 представлена структурная схема устройства для реализации заявляемого способа, а фиг.2 иллюстрирует принцип построения системы приемных антенн.
Устройство содержит размещенный на плавсредстве 1 эхолот 2, преобразователь 3, который через кабель управления 4 подключен к блоку обработки 5 на плавсредстве 1, прикреплен к системе приемных антенн 6, каждая из которых имеет круговую диаграмму направленности, и соединен с каждой из приемных антенн, при этом приемные антенны 7 распределены в пространстве над подводным кабелем 8 вблизи дна водоема 9 по определенной схеме так, чтобы их взаимное расположение относительно друг друга при перемещении не изменялось.
Способ осуществляется следующим образом. При перемещении плавсредства 1 в районе прокладки подводного кабеля 8 с помощью эхолота 2 определяют расположение каждой из приемных антенн 7 системы приемных антенн 6 относительно дна водоема 9. Электромагнитные сигналы от приемных антенн 7 поступают в преобразователь, который оптимизирует их параметры и последовательно передает их по кабелю управления 4 к блоку обработки 5, который запоминает уровни электромагнитного поля, принимаемые каждой из приемных антенн 7 системы приемных антенн 6. По данным взаимного расположения приемных антенн 7, их расположения относительно дна водоема 9 и значениям уровней электромагнитных сигналов, принимаемым каждой из антенн, определяют распределение электромагнитного поля в некоторой плоскости пространства над подводным кабелем 8 вблизи дна водоема 9. По результатам обработки распределения электромагнитного поля над кабелем определяют трассу и глубину прокладки подводного кабеля в дно водоема.
При подключении эхолота к GPS могут быть определены координаты кабеля.
Предлагаемый способ обеспечивает сканирование электромагнитного поля над подводным кабелем не за счет управления ориентацией диаграммы направленности приемной антенны и ее перемещений последней поперек трассы прокладки кабеля, а за счет выполнения измерений уровней электромагнитного поля распределенной системой датчиков, расположенных в некотором пространстве над кабелем по определенной схеме. Это не требует строгого соблюдения определенной взаимной ориентации приемной антенны и кабеля, так как приемные антенны имеют круговую диаграмму направленности. В результате отпадает необходимость в дорогостоящей автоматизированной юстировке приемной антенны. Взаимное расположение приемных антенн известно с высокой точностью, погрешности оценок расположения приемных антенн относительно дна водоема также малы. Это обеспечивает снижение погрешностей измерений распределения уровней электромагнитного поля над подводным кабелем. Тем самым обеспечивается расширение области применения, повышение точности и снижение стоимости определения трассы и глубины прокладки в дно водоема подводного кабеля.
ЛИТЕРАТУРА
1. Schock S.G., Tellier A., Wulf J., Jason S., Ericksen M. Buried object scanning sonar. - IEEE Journal of oceanic engineering, vol.26, No 4, October, 2001. - p.p.677-689.
2. US 4283681.
3. WO 02/079806 A1.
4. US 3835371.

Claims (1)

  1. Способ определения трассы и глубины прокладки в дно водоема подводного кабеля, заключающийся в том, что по кабелю передают низкочастотный электромагнитный сигнал, с помощью расположенного на поверхности водоема плавсредства перемещают настроенную на эту же частоту приемную антенну над подводным кабелем вблизи дна водоема, принимаемый приемной антенной сигнал передают к блоку обработки на плавсредстве и по распределению уровней электромагнитного поля над подводным кабелем определяют трассу и глубину прокладки подводного кабеля в дно водоема, отличающийся тем, что при этом вблизи дна водоема над кабелем перемещают систему из приемных всенаправленных антенн, приемные антенны распределяют в пространстве по определенной схеме, так чтобы их взаимное расположение относительно друг друга при перемещении не изменялось, к системе антенн крепят преобразователь, который соединяют с каждой из приемных антенн и через кабель управления подключают к блоку обработки на плавсредстве, в преобразователе принимают сигналы от каждой из приемных антенн, оптимизируют их параметры и последовательно передают по кабелю управления к блоку обработки, в котором запоминают уровни электромагнитного поля, принимаемые каждой из приемных антенн системы, устанавливают на плавсредстве эхолот, с помощью которого определяют расположение системы приемных антенн относительно дна водоема, по данным о расположении каждой из приемных антенн системы и принимаемых ими уровнях электромагнитных сигналов определяют распределение уровней электромагнитного поля в пространстве над подводным кабелем, по которому определяют трассу прокладки по расположению максимальных значений уровней и глубину прокладки подводного кабеля в дно водоема путем сравнения максимальных значений с опорным.
RU2004119350/09A 2004-06-24 2004-06-24 Способ определения трассы и глубины прокладки подводного кабеля RU2271021C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004119350/09A RU2271021C1 (ru) 2004-06-24 2004-06-24 Способ определения трассы и глубины прокладки подводного кабеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004119350/09A RU2271021C1 (ru) 2004-06-24 2004-06-24 Способ определения трассы и глубины прокладки подводного кабеля

Publications (1)

Publication Number Publication Date
RU2271021C1 true RU2271021C1 (ru) 2006-02-27

Family

ID=36114423

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004119350/09A RU2271021C1 (ru) 2004-06-24 2004-06-24 Способ определения трассы и глубины прокладки подводного кабеля

Country Status (1)

Country Link
RU (1) RU2271021C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656281C1 (ru) * 2017-04-04 2018-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте
RU2692829C2 (ru) * 2017-12-08 2019-06-28 Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" Способ позиционирования подводного оборудования относительно обследуемого подводного трубопровода

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656281C1 (ru) * 2017-04-04 2018-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте
RU2692829C2 (ru) * 2017-12-08 2019-06-28 Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" Способ позиционирования подводного оборудования относительно обследуемого подводного трубопровода

Similar Documents

Publication Publication Date Title
US6501704B2 (en) Underwater object positioning system
US7139647B2 (en) Methods and systems for navigating under water
CN110703203A (zh) 基于多声学波浪滑翔机的水下脉冲声定位系统
US20160069988A1 (en) Platform-Independent Sonar Calibration Enabling System
EP3371623B1 (en) System for detecting subsurface objects and unmanned surface vessel
JPS60500383A (ja) 海洋地震探査用水中聴音器ケ−ブルにおける装置
CN102081170A (zh) 基于声学长基线和超短基线组合定位的海底电缆二次定位方法
US20040013471A1 (en) Subsea pipeline touchdown monitoring
RU2303275C2 (ru) Система определения координат подводных объектов
JP7390366B2 (ja) 平均音速プロファイルに基づく深度又は水深プロファイルの特定方法、かかる速度プロファイルの特定方法、及び関連するソナーシステム
RU2271021C1 (ru) Способ определения трассы и глубины прокладки подводного кабеля
WO2020096495A1 (ru) Способ позиционирования подводных объектов
RU2555479C2 (ru) Способ высокоточного координирования подводного комплекса в условиях подледного плавания
JP2755863B2 (ja) 水中航走体の位置検出装置及びその位置検出方法
KR101647753B1 (ko) 음파 탐지기 및 음파 탐지기의 움직임 보정 장치
JPH1020045A (ja) 海底埋設物探査装置
Zhou A precise underwater acoustic positioning method based on phase measurement
CN101937103B (zh) 用于辅助拖缆定位的包括定义及产生声学循环步骤的方法
CN113359182B (zh) 一种深海热液喷口快速搜寻定位装置、方法及系统
JP6922262B2 (ja) ソーナー画像処理装置、ソーナー画像処理方法およびソーナー画像処理プログラム
RU2736231C1 (ru) Способ определения распределения скорости звука
JPS6336174A (ja) 水中位置計測用ブイ
JPH10221447A (ja) 水底の物体の位置の計測方法
RU2792922C1 (ru) Способ позиционирования автономного подводного аппарата в глубоком море
RU2326343C2 (ru) Способ определения глубины прокладки подводного кабеля