RU2260862C1 - Способ формирования микроструктуры сердечника тепловыделяющего элемента - Google Patents

Способ формирования микроструктуры сердечника тепловыделяющего элемента Download PDF

Info

Publication number
RU2260862C1
RU2260862C1 RU2004101262/06A RU2004101262A RU2260862C1 RU 2260862 C1 RU2260862 C1 RU 2260862C1 RU 2004101262/06 A RU2004101262/06 A RU 2004101262/06A RU 2004101262 A RU2004101262 A RU 2004101262A RU 2260862 C1 RU2260862 C1 RU 2260862C1
Authority
RU
Russia
Prior art keywords
fuel
core
fuel element
uranium dioxide
shell
Prior art date
Application number
RU2004101262/06A
Other languages
English (en)
Other versions
RU2004101262A (ru
Inventor
А.С. Гонтарь (RU)
А.С. Гонтарь
А.А. Гриднев (RU)
А.А. Гриднев
В.С. Гутник (RU)
В.С. Гутник
М.В. Нелидов (RU)
М.В. Нелидов
Е.М. Ракитска (RU)
Е.М. Ракитская
А.А. Хасматулин (RU)
А.А. Хасматулин
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority to RU2004101262/06A priority Critical patent/RU2260862C1/ru
Publication of RU2004101262A publication Critical patent/RU2004101262A/ru
Application granted granted Critical
Publication of RU2260862C1 publication Critical patent/RU2260862C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Изобретение относится к области атомной техники. Сущность изобретения: способ формирования микроструктуры выполненного из диоксида урана сердечника тепловыделяющего элемента включает ядерный нагрев в составе штатного реактора тепловыделяющего элемента. При этом топливный сердечник тепловыделяющего элемента выполнен с термически стабилизированной пористостью 10-20% с преобладающим размером пор диоксида урана 20-60 мкм и размещен в оболочке с радиальным зазором не более разности термических расширений сердечника и оболочки. Нагрев оболочки тепловыделяющего элемента осуществляют в начальный период работы штатного реактора при температуре 1600-1850°С в тепловом потоке не менее 25 Вт/см2 в течение 50-300 часов. Преимущества изобретения заключаются в снижении сопротивления ползучести диоксида наряду с низкой скоростью распухания.

Description

Изобретение относится к области ядерной техники, в частности, к способам формирования оптимальной структуры диоксида урана при облучении тепловыделяющего элемента (ТВЭЛА) в составе штатного реактора и может быть использовано преимущественно в термоэмиссионных реакторах-преобразователях (ТРП) встроенного типа.
Основным ресурсоограничивающим фактором в конструкции вентилируемого ТВЭЛА является деформация оболочки под действием распухающего сердечника из диоксида урана. Для решения этой задачи используются оболочки из упрочненного сплава Mo-Nb, W-Nb, способные перераспределять объемные изменения диоксида во внутренний свободный объем ТВЭЛА, сохраняя за счет этого работоспособным межэлектродный зазор между оболочкой ТВЭЛА (эмиттером) и коллектором электрогенерирующего канала, в который встроен ТВЭЛ.
Поскольку использование упрочненных оболочек в полной мере не решает задачу обеспечения пространственной стабильности ТВЭЛА, разрабатываются способы формирования оптимальной микроструктуры сердечника для снижения скорости его распухания и снижения жесткости по отношению к оболочке.
Известно, что в вентилируемом ТВЭЛЕ ТРП таблетки из плотного диоксида урана (95-97% от теоретической плотности) размещают в оболочке с увеличенным радиальным зазором, который обеспечивает перегрев топлива в начальный период работы ТВЭЛА, радиальную переконденсацию диоксида урана на оболочку и прохождение фронта переконденсации на всю глубину сердечника.
[Патент РФ 2064692, G 21 C 3/20, 3/40. Вентилируемый тепловыделяющий элемент / Е.С.Глушков, А.С.Гонтарь, Ю.Г.Дегальцев и др. Заявл. 14.02.94 г.].
Таким образом эксплуатационные параметры в указанном твэле используются в качестве технологических для перестройки за счет переконденсации равноосной структуры диоксида урана в столбчатую, которая характеризуется уменьшенной в 2-2,5 раза скоростью распухания [Gontar A.S., Gutnik V.S. et al. Swelling of Uranium Dioxide and Deformation Behaviour of the Fuel Element at High Temperature Irradiation - Proceedings of the 28 th Intersociety Energy Conversion Engineering Conference, vol.1, Atlanta, 1993, pp.1549-1553].
Это техническое решение нашло успешное применение при разработке ТРП на основе одноэлементных ЭГК с ресурсом 3-5 лет [Дегальцев Ю.Г., Кузнецов В.Ф., Слабкий В.Д., Гонтарь А.С. Обобщение результатов послереакторных исследований одноэлементных ЭГК типа Е-16МО, прошедших ЯЭИ в опытных установках Я-81, 82 для верификации модели прогнозирования ресурса "OVERAT". Тезисы докладов пятой международной конференции «Ядерная энергетика в космосе», Подольск, 1999, с.52].
Недостатком перестроенной таким образом структуры диоксида урана является большая ширина (200-300 мкм) столбчатых зерен, что приводит к повышенному сопротивлению его ползучести и ограничивает поэтому возможности перераспределения распухания оболочки твэла.
Для твэла многоэлементного ЭГК с повышенной в 2 раза тепловой мощностью (скоростью выгорания) и увеличенным ресурсом до 10 лет необходимо дальнейшее повышение пространственной стабильности твэла, в том числе, путем формирования более оптимальной структуры диоксида урана.
Для решения этой задачи разработан модифицированный диоксид урана с преимущественно открытой термически стабилизированной пористостью 10-20% (при величине пор преимущественно 5-10 мкм). Наличие стабильной по отношению к спеканию открытой пористости обеспечивает повышенный выход газообразных продуктов деления и соответственно снижение газового распухания до уровня, характерного для диоксида со столбчатой структурой. Для сохранения пористости при эксплуатации такого диоксида необходимо также минимизировать его рабочую температуру для снижения скорости миграции пористости под действием температурного градиента в топливном сердечнике. Это достигается за счет выбора величины сборочного радиального зазора между сердечником и оболочкой не более разности термических расширений между сердечником и оболочкой.
Выбранный в модифицированном диоксиде диапазон размера пор (5-10 мкм) дополнительно способствует снижению скорости миграции их при заданной температуре [В.И.Бабин, А.С.Гонтарь, Ю.В.Николаев, Е.М.Ракитская, В.Л.Цыпленкова. Модифицированный диоксид урана. Доклад на отраслевой конференции «Ядерная энергетика в космосе. Материалы. Топливо», 21-24 сент. 1993 г., Подольск].
Сохранение пористости в сердечнике способствует сохранению исходной равноосной структуры диоксида урана. Таким образом описанный диоксид одновременно обладает указанной выше низкой скоростью распухания и высокой скоростью ползучести, в 8-10 раз превышающей скорость ползучести плотного диоксида с равноосной структурой [Николаев Ю.В. Разработки и исследования НПО «Луч» по материалам ЯЭУ прямого преобразования. - Доклад на отраслевой конференции «Ядерная энергетика в космосе. Материалы. Топливо», 21-24 сент. 1993 г., Подольск].
Недостатком модифицированного диоксида урана является ограниченная по температуре область его применимости: диоксид сохраняет указанные преимущества при температуре оболочки твэла не выше 1500°С. При более высокой температуре в диоксиде формируется столбчатая структура зерен с шириной зерна, близкой к описанному выше аналогу.
Из предшествующего уровня техники авторами не выявлен ближайший аналог (прототип), в котором решалась бы поставленная задача по формированию оптимальной структуры выполненного из диоксида урана сердечника ТВЭЛА.
Задачей изобретения является формирование в топливном сердечнике из диоксида урана оптимальной столбчатой структуры с уменьшенной (<200 мкм) шириной зерна для снижения сопротивления ползучести наряду с характерной для столбчатой структуры низкой скоростью распухания в процессе эксплуатации реактора.
Указанная задача решается тем, что способ формирования микроструктуры выполненного из диоксида урана сердечника тепловыделяющего элемента включает ядерный нагрев в составе штатного реактора тепловыделяющего элемента, топливный сердечник которого выполнен с термически стабилизированной пористостью 10-20% и преобладающим размером пор диоксида урана 20-60 мкм. Топливный сердечник размещен в оболочке с радиальным зазором не более разности термических расширений сердечника и оболочки. Нагрев оболочки тепловыделяющего элемента осуществляют в начальный период работы штатного реактора при температуре 1600-1850°С в тепловом потоке не менее 25 Вт/см2 в течение 50-300 часов.
Согласно предлагаемому способу облучение ТВЭЛА проводится за температурным пределом применяемости топлива с термически стабилизированной пористостью. Выбранные параметры облучения приводят к формированию столбчатой структуры. При этом характерный размер столбчатого зерна определяется не состоянием и температурой оболочки, а величиной пористости и размером пор в исходном состоянии топлива. Стабильные к спеканию поры под действием температурного градиента вытягиваются в радиальные микроканалы, образуя объемную сетку, и определяют характерный размер столбчатого зерна между этими каналами.
При указанных значениях пористости и размера пор, как показали экспериментальные исследования авторов, средний поперечный размер (ширина) столбчатого зерна не превышает 100 мкм, а расчетная величина деформации оболочки ТВЭЛА снижается примерно на порядок по сравнению со случаем использования диоксида с шириной столбчатого зерна 200 мкм.
Экспериментальная проверка способа была осуществлена при моделировании процесса ядерного нагрева ТВЭЛА на его макетах с центральным нагревом.
В одной серии экспериментов макет ТВЭЛА представлял собой модуль многоэлементного ТВЭЛА, в осевой полости топливного сердечника которого размещался вольфрамовый нагреватель в виде стержня или трубки диаметром 6 мм. Макет ТВЭЛА укрепляли в вакуумной камере на токоподводах и нагревали в вакууме ~10-3 Па. Внутренний диаметр вольфрамовой оболочки макета ТВЭЛА составлял 17,3 мм, а наружный ~20 мм. Длина оболочки макета составляла 60-100 мм. В оболочке макета размещали таблетки диоксида урана с наружным диаметром 17,15 мм и внутренним ~8 мм. Пористость таблеток составляла 8-10% с преимущественным размером пор 8-15 мкм. Геометрия таблеток диоксида урана обеспечивала их контакт с оболочкой при нагреве до рабочей температуры. Макеты испытывали при максимальной температуре оболочки 1850°С и тепловом потоке ~10 Вт/см2 в течение 50 часов. После испытаний макеты разбирались, разрезались и таблетки подвергались металлографическому анализу. Было установлено, что топливные сердечники макетов перестроили свою исходную микроструктуру в микроструктуру со столбчатыми зернами со средним поперечным размером 250-350 мкм с порами внутри столбчатых зерен и слабо выраженной сеткой пограничных микроканалов.
В другой серии экспериментов макет с полыми таблетками диоксида урана при пористости ~20% с преобладающим размером пор 20-60 мкм нагревали до максимальной температуры оболочки 1850°С при тепловом потоке 25-30 Вт/см2 в течение 50 часов. Металлографический анализ макета показал, что микроструктура топливного сердечника макета представляла собой практически однородную упаковку столбчатых зерен с поперечным размером 90-110 мкм и ярко выраженной объемной сеткой протяженных радиальных пограничных микроканалов. Нагрев оболочки до температуры 1600°С, как показывают расчетно-экспериментальные данные, потребует временной выдержки при тепловом потоке ~25 Вт/см2 до 300 часов. Более длительная выдержка нецелесообразна из-за полностью сформировавшейся оптимальной столбчатой структуры.
Подобная сетка пограничных микроканалов образуется в топливном сердечнике ТВЭЛА при заметном выгорании ядерного топлива за счет появления в топливе радиационной пористости, которая и приводит к распуханию ТВЭЛА. В предлагаемом способе подобная сетка цилиндрических пор образуется из исходной пористости в начальный момент работы реактора.

Claims (1)

  1. Способ формирования микроструктуры выполненного из диоксида урана сердечника тепловыделяющего элемента, включающий ядерный нагрев в составе штатного реактора тепловыделяющего элемента, топливный сердечник которого выполнен с термически стабилизированной пористостью 10-20% и преобладающим размером пор диоксида урана 20-60 мкм, топливный сердечник размещен в оболочке с радиальным зазором не более разности термических расширений сердечника и оболочки, а нагрев оболочки тепловыделяющего элемента осуществляют в начальный период работы штатного реактора при температуре 1600-1850°С в тепловом потоке не менее 25 Вт/см2 в течение 50-300 ч.
RU2004101262/06A 2004-01-20 2004-01-20 Способ формирования микроструктуры сердечника тепловыделяющего элемента RU2260862C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004101262/06A RU2260862C1 (ru) 2004-01-20 2004-01-20 Способ формирования микроструктуры сердечника тепловыделяющего элемента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004101262/06A RU2260862C1 (ru) 2004-01-20 2004-01-20 Способ формирования микроструктуры сердечника тепловыделяющего элемента

Publications (2)

Publication Number Publication Date
RU2004101262A RU2004101262A (ru) 2005-08-10
RU2260862C1 true RU2260862C1 (ru) 2005-09-20

Family

ID=35844283

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004101262/06A RU2260862C1 (ru) 2004-01-20 2004-01-20 Способ формирования микроструктуры сердечника тепловыделяющего элемента

Country Status (1)

Country Link
RU (1) RU2260862C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2577272C1 (ru) * 2014-12-26 2016-03-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения таблетированного диоксида урана
RU2713878C1 (ru) * 2019-08-02 2020-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки
RU2755261C1 (ru) * 2021-03-10 2021-09-14 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах
RU2782232C1 (ru) * 2022-02-03 2022-10-25 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2577272C1 (ru) * 2014-12-26 2016-03-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения таблетированного диоксида урана
RU2713878C1 (ru) * 2019-08-02 2020-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки
RU2755261C1 (ru) * 2021-03-10 2021-09-14 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах
RU2782232C1 (ru) * 2022-02-03 2022-10-25 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах

Also Published As

Publication number Publication date
RU2004101262A (ru) 2005-08-10

Similar Documents

Publication Publication Date Title
JP5964753B2 (ja) 核燃料棒と、そのような核燃料棒用のペレットの製造方法
US5047225A (en) Low density carbonized composite foams
US4992254A (en) Low density carbonized composite foams
KR20090018581A (ko) 원자로용 제어봉
KR102509247B1 (ko) 다중 스미어 밀도 연료를 갖는 연료 요소
KR20090013034A (ko) 원자로 제어봉
CN110853777A (zh) 一种增强气冷快堆温度负反馈的燃料组件结构及堆芯结构
RU2260862C1 (ru) Способ формирования микроструктуры сердечника тепловыделяющего элемента
KR20100115754A (ko) 원자로 노심 내의 연료봉 파워 분포 모델링 방법
KR20210116677A (ko) 가연성 흡수제를 갖거나 갖지 않는 sps/fast 우라늄 연료를 사용한 소결
Yuan et al. Thermomechanical performance of high-power-density annular fuel
JP2017533406A (ja) 核動力炉のための核燃料ペレットを製作する方法
Robey et al. Hohlraum-driven mid-Z (SiO 2) double-shell implosions on the omega laser facility and their scaling to NIF
Ade et al. Transformational Challenge Reactor Design Characteristics
RU2634848C1 (ru) Термоэмиссионный тепловыделяющий элемент
US3926721A (en) Method of operating a water-cooled nuclear reactor
Viswanathan et al. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup
JP2017526918A (ja) 核動力炉のための核燃料ペレットを製作する方法
Belyaeva et al. Particulars of uranium-plutonium nitride fuel swelling during low-temperature irradiation in fast reactor to burnup 5.5% ha
JPH09166682A (ja) 高速中性子原子炉の制御棒のための吸収ニードル
RU2781552C1 (ru) Ампульное облучательное устройство для реакторных исследований
JPS5819594A (ja) 原子炉用制御棒要素
RU2597875C1 (ru) Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя
RU2468453C1 (ru) Стержень управления и защиты ядерного реактора
JPH09119994A (ja) 燃料棒及びその製造方法並びに燃料集合体

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150121

BF4A Cancelling a publication of earlier date [patents]

Free format text: PUBLICATION IN JOURNAL SHOULD BE CANCELLED