RU2782232C1 - Атомная электростанция с керамическим реактором на быстрых нейтронах - Google Patents

Атомная электростанция с керамическим реактором на быстрых нейтронах Download PDF

Info

Publication number
RU2782232C1
RU2782232C1 RU2022102560A RU2022102560A RU2782232C1 RU 2782232 C1 RU2782232 C1 RU 2782232C1 RU 2022102560 A RU2022102560 A RU 2022102560A RU 2022102560 A RU2022102560 A RU 2022102560A RU 2782232 C1 RU2782232 C1 RU 2782232C1
Authority
RU
Russia
Prior art keywords
lead
fuel
sic
circuit
water
Prior art date
Application number
RU2022102560A
Other languages
English (en)
Inventor
Игорь Леонидович Шкарупа
Анатолий Казимирович Хмельницкий
Original Assignee
Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина"
Filing date
Publication date
Application filed by Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" filed Critical Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина"
Application granted granted Critical
Publication of RU2782232C1 publication Critical patent/RU2782232C1/ru

Links

Images

Abstract

Изобретение относится к атомной электростанции. Электростанция включает керамический ядерный реактор на быстрых нейтронах с топливом из нитрида урана или его смеси с нитридом и оксидом плутония, корпус реактора, твэлы с чехлами, внутрикорпусные детали, генератор, теплообменники, циркуляционные насосы с трубопроводами первого, второго, имеющего горячую часть, и третьего контуров, высокотемпературную установку для получения водорода и кислорода по серно-йодному циклу и свинцово-водный теплообменник. Чехлы твэлов, внутрикорпусные детали, трубопроводы первого контура, горячая часть трубопроводов второго контура, теплообменники, а также установка для получения водорода и кислорода и свинцово-водный теплообменник изготовлены из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC. В качестве теплоносителей первого контура используется свинец или свинцово-висмутовый сплав с содержанием висмута от 48 до 63%, а второго контура - вода. Топливные элементы имеют форму правильных шестигранных призм с длиной стороны основания от 8 до 35 мм и высотой боковой грани от 8 до 100 мм. Техническим результатом является повышение безопасности АЭС в случае ее аварийного обесточивания при увеличении ресурса работы. 2 ил., 2 табл.

Description

Изобретение относится к энергетике и может быть применяться для производства электроэнергии и тепла на основе использования в качестве энергоносителя ядерного топлива.
Наиболее эффективными в настоящее время являются реакторы на быстрых нейтронах.
Из существующего уровня техники известны АЭС с водо-водяными реакторами на тепловых нейтронах (Маргулова Т.Х. Электрические станции. 5 изд. М.: МЭИ, 1994, стр. 21). АЭС такого типа не могут вырабатывать пар с высокой температурой и давлением, близкими к параметрам, достигнутыми в традиционной энергетике на органическом топливе. Параметры таких АЭС обычно не превышают 330°С и 7,0 МПа. КПД у водо-водяных АЭС доходит до 35%.
Недостатками АЭС с водо-водяными реакторами на тепловых нейтронах (ВВЭР) являются: неблагоприятные последствия в случае запроектной аварии при вступлении в реакцию циркония с водой, т.к. в процессе реакции выделяется водород и огромное количество тепла; невозможность поднятия температуры топлива в виде таблетки, изготовленного из оксида урана в связи с малым коэффициентом её теплопроводности и в этом случае будет происходить перегрев центра таблетки до недопустимых температур; невозможность осуществления замкнутого топливного цикла - сжигание в реакторе только изотопа U235, а также низкий КПД АЭС.
Используемые в настоящее время оболочки твэлов из сплава циркония с ниобием имеют большой недостаток. При высокой температуре оболочки твелов взаимодействуют с водой с выделением тепла и водорода, что является недопустимым. (Википедия, сайт Росатома, Учебник для студентов «Реакторы на быстрых нейтронах» Г.Б. Усынин, Е.В. Кусманцев. Указана АЭС – 4- блок Белоярской АЭС).
Наиболее близким к заявленному техническому решению является изобретение по патенту РФ № 2755261, МПК G 21D 1/00, публ. 14.09.2021г.
Атомная электростанция с керамическим реактором на быстрых нейтронах, включающая  ядерный реактор с топливом, корпус реактора, твэлы с чехлами, теплообменники, насосы для обеспечения циркуляции жидкого теплоносителя через теплообменники с трубопроводами первого, второго и третьего контуров, генератор, отличающаяся тем, что корпус реактора, чехлы твэлов, внутрикорпусные детали, трубопроводы первого контура, горячая часть трубопроводов второго контура, литий – аргонный теплообменник изготовлены из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC, аргонно-водяной теплообменник изготовлен из металла; в качестве жидкого теплоносителя  в первом контуре используют литий (Li7),   во  втором контуре в качестве теплоносителя используют аргон, в качестве топлива используют нитрид урана или смесь нитрида урана с нитридом и оксидом плутония  в виде таблеток диаметром от 10 до 40 мм и высотой от 5 до 100 мм.
К недостаткам указанного технического решения относятся: использование лития в качестве теплоносителя первого контуров который, является пожароопасным металлом (металл очень агрессивный, при взаимодействии с водой выделяется водород, и происходит самовозгорание); невозможность увеличения температуры первого контура до высоких температур, так как температура кипения лития равна 1330°С, невозможность обеспечения в реакторе жёсткого нейтронного излучения. Высокая химическая агрессивность лития приводит к уменьшению ресурса работы АЭС. Использование аргона в качестве теплоносителя второго контура резко увеличивает габариты литий-аргонового теплообменника и затрудняет расхолаживание первого контура в случае аварийного обесточивания АЭС, а также приводит к необходимости разработки высокотемпературной газовой турбины большой мощности. В случае использования цилиндрических таблеток и, соответственно, цилиндрических твэлов невозможно создать каналы для теплоносителя в реакторе имеющие одинаковую толщину (для их равномерного прогрева), а также невозможно уменьшить соотношение топливо : теплоноситель меньше чем
Figure 00000001
,
где π – число π.
Всеми этими недостатками не обладает предложенная конструкция топлива в виде правильных шестигранных призм и шестигранных твэлов соответственно, в ней возможно создать каналы для теплоносителя имеющие одинаковую толщину и создать соотношение топливо : теплоноситель вплоть до величины 1 : 0.
Задачи, на решение которых направлено заявленное изобретение, заключаются в создании АЭС с «нулевым углеродным следом», повышении безопасности АЭС в случае аварийного обесточивания АЭС; в удешевлении капитальных и эксплуатационных затрат при строительстве и эксплуатации АЭС; в увеличении ресурса работы АЭС.
Указанные задачи решаются предлагаемым изобретением.
Атомная электростанция с керамическим реактором на быстрых нейтронах, включающая  ядерный реактор с топливом из нитрида урана или смеси нитрида урана с нитридом и оксидом плутония, корпус реактора, твэлы с чехлами, внутрикорпусные детали, генератор, теплообменники, насосы для обеспечения циркуляции жидкого теплоносителя через теплообменники с трубопроводами первого, второго, имеющего горячую часть, и третьего контуров, при этом корпус реактора, чехлы твэлов, внутрикорпусные детали, трубопроводы первого контура, горячая часть трубопроводов второго контура, теплообменники изготовлены из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC, отличающаяся тем, что в качестве теплоносителя первого контура используется свинец или свинцово-висмутовый сплав с содержанием висмута от 48 % до 63%, в качестве теплоносителя второго контура используется вода, топливные элементы имеют форму правильных шестигранных призм с длиной стороны основания от 8 до 35 мм и высотой боковой грани от 8 до 100 мм, при этом электростанция дополнительно содержит высокотемпературную установку для получения водорода и кислорода по серно-йодному циклу и свинцово-водный теплообменник, изготовленные из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC.
Предлагаемый в АЭС ядерный реактор на быстрых нейтронах с теплоносителем первого контура из свинца или свинцово-висмутового сплава (КРБНС) имеет ряд преимуществ по сравнению с атомными реакторами на быстрых нейтронах с литиевым теплоносителем.
В целях повышения энергетической безопасности мира в ядерной энергетике должны использоваться технологии нового поколения и замкнутый топливный цикл в реакторах на быстрых нейтронах с расширенным воспроизводством. Это обеспечит неограниченность ресурса ядерного топлива за счет перехода от использования изотопа U235 к использованию естественного урана, тория и плутония.
КРБНС в процессе работы будет вырабатывать не только энергию и тепло, но и водород и кислород.
КРБНС также можно использовать для уничтожения долгоживущих высокоактивных отходов и наработки материалов для воспроизводства топлива.
Наиболее оптимальное направление развития атомной энергетики - создание КРБНС. При переходе от керамического реактора на быстрых нейтронах с литиевым теплоносителем (КРБН) к КРБНС можно добиться улучшенных технико-экономических показателей, а также улучшения экологии на планете.
Именно в 21 веке проблема «углеродного следа» стала ведущей проблемой мировой повестке человечества. По итогам 2019 года концентрация СО2 в атмосфере Земли составила 419 ppm, а суммарная концентрация парниковых газов в эквиваленте СО2 составила 508 ppm. Углеродный след человечества составляет 55 млрд. тонн СО2 - эквивалента в год.
Парниковые газы – основная причина глобального потепления климата. Деятельность человека уже привела к повышению температуры земли на 1,1°С по сравнению с XIX веком. В результате погода стала изменчивой, участились засухи, наводнения, пожары и т.д. Согласно Парижскому соглашению 2015 года, человечество должно сдержать рост температуры планеты на 1,5°С до конца XXI века, иначе нам грозят кардинальные и необратимые изменения условий жизни. КРБНС позволяет создать энергетику с нулевым «углеродным следом».
Высокотемпературный потенциал свинцового теплоносителя или свинцово-висмутового теплоносителя позволит выработать водород и кислород путем разложения воды в высокотемпературной установке для получения водорода и кислорода по серно-йодному циклу.
Серно-йодный цикл позволяет вырабатывать водород для «чистой» водородной экономики. Он не требует углеводородов, как современные методы паровой конверсии, и не оставляет «углеродный след», в отличие от выработки водорода из угля, природного газа и более эффективный по сравнению с методом прямого электролиза воды. Долю выработки водорода или электроэнергии в общем балансе АЭС с КРБНС можно корректировать в зависимости от потребности энергосети.
В КРБНС топливо или смесь нитрида урана с нитридом и оксидом плутония используется в виде правильных шестигранных призм. Это позволяет уменьшить долю теплоносителя в активной зоне путем уменьшения зазора между твэлами. В случае использования твэлов в виде цилиндрических таблеток доля теплоносителя не может быть уменьшена до определенных значений.
Замедляющая способность свинца или свинцово-висмутового сплава в первом контуре АЭС намного меньше замедляющей способности лития, следовательно, в предлагаемой конструкции активной зоны АЭС скорости нейтронов в ней будет больше, более жёсткий спектр нейтронов позволит расщеплять изотоп U 238.
В КРБНС по сравнению с КРБН температура чехла твэла будет увеличена с 1250°С до 1300°С, а температура теплоносителя на выходе из реактора будет увеличена с 1200°С до 1250°С. Температура кипения свинца – 1737 С и это позволяет поднять температуру чехла твэла до 1300°С, что обеспечивает запас до вскипания свинца 437 °С. У КРБН запас до вскипания лития 80 °С.
Высокотемпературный потенциал свинцового теплоносителя позволит выработать водород и кислород путем разложения воды в специальных аппаратах, например, используя серно-йодный цикл.
Реакции, при которых выделяется водород, следующие:
1. 2 H2SO4 + нагрев до 830 °C → 2 SO2 + 2 H2O + O2.
Воду, SO2 и остаточную не разложившуюся серную кислоту необходимо отделить от кислорода путем конденсации.
2. 2 HI + нагрев до 450 °C → I+ H2.
Йод и любая сопутствующая вода или SO2 отделяются путем конденсации, а водород остается в виде газа.
3. I2 + SO2 + 2H2O + нагрев до 120 °C → 2 HI + H2SO4 — Реакция Бунзена.
Затем HI отделяют от  H2SO4 дистилляцией или гравитационным разделением жидкость/жидкость.
То есть получается, что йодоводородная и серная кислоты разлагаются и синтезируются по замкнутому циклу и в процессе этих трёх реакция итоговой получается реакция: 2 H2 O → 2 H2 + O2
Соединения серы и йода восстанавливаются в высокотемпературной установке для получения водорода и кислорода по серно-йодному циклу и повторно используются, поэтому процесс рассматривается как цикл. Этот процесс S–I представляет собой химический тепловой двигатель. Теплота необходимая для этих реакций забирается у свинцового высокотемпературного теплоносителя.
В деструкторе серной кислоты 8 происходит деструкция серной кислоты и образование оксида серы, воды и кислорода (реакция 1), в деструкторе йодоводорода 9 происходит разложение на йод, воду и водород (реакция 2), в бунзеровском реакторе 10 происходит синтез серной и йодоводородной кислот (реакция 3), указанные на фигуре. В процессе работы установки происходит непрерывное удаление водорода и кислорода и добавление воды.
Процесс поддается масштабированию, возможно получение водорода и кислорода в больших объёмах.
Преимущества высокотемпературной установки для получения водорода и кислорода по серно-йодному циклу:
- все вещества (жидкости, газы) повторно используются, поэтому хорошо подходят для непрерывной работы;
- высокий коэффициент использования тепла;
- полностью закрытая система без побочных продуктов (кроме водорода и кислорода);
- технически более отработанный процесс, чем конкурирующие термохимические процессы.
Для данного процесса требуется температура выше 850 °C, КРБНС имеет такой температурный потенциал. Высокотемпературный потенциал свинцового теплоносителя от 1250°С до 850°C будет использоваться в вышеуказанном процессе.
Ингибированный композиционный керамический материал на основе C-SiC и ингибированный керамический материал на основе SiC-SiC имеет высокую коррозионную стойкость при высокой температуре в среде воды, йода, диоксида серы, йодоводородной кислоты, серной кислоты. Следовательно, из них возможно изготовить элементы высокотемпературной установки для выработки водорода и кислорода.
Использование свинца или свинцово-висмутового сплава вместо лития в первом контуре и воды вместо аргона во втором контуре позволит:
- существенно увеличить безопасность КРБНС в связи с гарантированным теплосъёмом от активной зоны в случае аварийного обесточивания АЭС;
- в КРБН в случае разгерметизации второго контура аргон не сможет эффективно охлаждать теплоноситель первого контура в отличие от водяного контура в КРБНС;
- повысить пожаробезопасность АЭС, так как в отличие от КРБН исключено взаимодействие лития с водой;
- уменьшить габариты свинцово-водного теплообменника за счёт гораздо большего коэффициента теплопередаче в нём по сравнению с литий-аргоновым теплообменником;
- исключить разработку и изготовление дорогостоящей высокотемпературной (на 1200 °С) газовой турбины, а использовать паровую турбину с температурой входа пара ниже 840 °C;
- использование сплава свинца с висмутом позволит снизить температуру плавления сплава (у чистого свинца - 342 °С, у свинцово - висмутового сплава с процентным содержанием висмута 48-63 % – менее 150 °С). Если процентное содержание висмута другое, то температура плавления сплава повышается;
- улучшить радиационную обстановку около работающего реактора, т.к. свинцово висмутовый сплав – отличная защита от γ-излучения;
-улучшить физические характеристики КРБНС, т.к. свинец и свинцово-висмутовый сплав практически прозрачный для n-излучения.
За счет увеличения температуры теплоносителя первого контура с 1250°С до 1300°С к.п.д. КРБНС увеличится на 3% по сравнению с КРБН.
Конструкция КРБНС позволит удешевить строительство за счет удешевления системы пожаротушения, удешевления турбины, более дешёвого теплоносителя первого и второго контуров.
В КРБН необходимо также предусмотреть с систему улавливания трития, такая установка не нужна в КРБНС. Радиационная обстановка КРБНС существенно улучшается так же за счет отсутствия образования трития, который образуется в КРБН.
Технология литиевого теплоносителя является сложной технологией, и это может привести к снижению надёжности эксплуатации КРБН. Для КРБНС не требуется производить изотопное разделение свинца в отличие от КРБН (литиевый теплоноситель требует изотопное разделение на изотопы Li6 и Li7).
Высокий коэффициент теплопроводности UN позволит увеличить тепловые нагрузки в твэлах, а также выбранный размер правильных шестигранных призм с длиной стороны основания 8-35мм и высотой боковой грани 8-100 мм в качестве топливных элементов из нитрида урана или смеси нитрида урана и оксидом плутония будет способствовать более низкой стоимости изготовления твэлов и уменьшит потери нейтронов в конструкционных материалах.
Нитрид урана и смешанные нитриды урана и плутония, обладающие рядом благоприятных физических свойств, являются потенциально важными видами ядерного топлива и воспроизводящимися материалами. Они имеют высокую размерную стабильность при облучении и их использование в ядерных реакторах позволяет достигнуть глубокого выгорания и, следовательно, снизить стоимость ядерного топливного цикла. Характерными особенностями простых и смешанных нитридов урана и плутония являются: высокая, по сравнению с оксидами, теплопроводность; повышенная плотность и лучшая способность к удержанию газообразных продуктов деления (ГПД).
Температура топлива из UN является более низкой по сравнению с температурой оксидного топлива при одинаковом объемном энерговыделении, что позволяет уменьшить выделение ГПД в процессе облучения.
Рабочая температура нитридного топлива существенно ниже его допустимой предельной температуры эксплуатации, что приводит к потенциальному увеличению уровня безопасной работы из-за более низкого значения отрицательного эффекта Доплера.
Лучшее удержание ГПД топлива из UN уменьшает количество ГПД в зазоре топливо-оболочка и снижает давление газа под оболочкой твэла.
Более высокая плотность топлива из UN по сравнению с оксидным и карбидным топливом может при более низком обогащении приводить к большим скоростям расширенного воспроизводства, более короткому времени удвоения и большей длительности кампании топлива. Совместимость топлива из UN со свинцовым теплоносителем повышает безопасность работы КРБНС. UN и UPuN не взаимодействует с Pb и Pb-Bi при температуре до 1300оС («Справочник по свойствам материалов для перспективных реакторных технологий», т.6, Москва, ИздАТ, под общей редакцией д.т.н., профессора В.М.Поплавского, 2014, c. 237).
Существует возможность изготовления твэлов в виде правильных призм. При этом возможно увеличение соотношения «топливо: теплоноситель», а это в свою очередь приведёт к созданию в реакторе более жёсткого спектра нейтронов и соответственно меньшего их «нецелевого» использования, следовательно, коэффициент воспроизводства топлива будет максимальным.
Увеличение размеров топливных элементов, уменьшение зазора для протекания свинца приведёт к увеличению пропорции «топливо: теплоноситель». При применении Pb в качестве теплоносителя, сохранит «быстрый» спектр нейтронов в реакторе. Оптимальные размеры топливных элементов в виде правильных шестигранных призм находятся в диапазоне: длина стороны основания от 8 до 35 мм, а высота боковой грани от 8 мм до 100 мм. Если высота грани менее 8 мм, то это приведет к увеличению количества призм, а призмы с высотой грани более 100 мм не технологичны. Если длина стороны основания призмы менее 8 мм, это приведет к увеличению количества призм, а в призмах с длиной стороны основания более 35 мм будет перегреваться ее центр.
Эффективность использования нейтронов в КРБНС резко возрастает.
Использование КРБНС позволит увеличить глубину выгорания ядерного топлива и довести коэффициент воспроизводства топлива до 1,46.
КРБНС обеспечит новый уровень экологической безопасности за счет многократного снижения объемов отработанного ядерного топлива и радиоактивных отходов. Отходы будут «сжигаться» в КРБНС.
КРБНС позволит увеличить срок службы АЭС до 110 лет, так как керамические композиционные материалы не ржавеют и практически не деградируют при облучении.
Использование свинца или свинцово-висмутового сплава в качестве теплоносителя первого контура позволит поднять температуру теплоносителя на выходе из реактора до 1250°С (температура кипения свинца 1737 °С, лития - 1330°С). Высокая температура кипения свинца 1737°С создает большой запас до кипения (427оС) даже в случае малоразмерной активной зоны с высокими коэффициентами неравномерности.
Сечение захвата нейтронов у природного лития - 77,6 барн, что существенно больше, чем у природного свинца – 14,5 барн, следовательно коэффициент использования нейтронов у КРБНС будет выше, чем у КРБН.
Допустимые тепловые потоки за счёт высоких теплофизических характеристик свинца практически не ограничивают критические тепловые нагрузки.
Свинец является одноатомным металлом, поэтому проблем радиационных нарушений и образования высокоактивных продуктов в теплоносителе не происходит. Свинец гораздо более инертный материал, чем литий, и не пожароопасный.
Высокая электрическая проводимость свинца позволяет использовать герметичные электронасосы постоянного и переменного тока. Природный свинец в 21 раз дешевле природного лития. А с учетом отсутствия проблемы изотопного разделения (в отличие от литиевого теплоносителя) стоимость свинцового теплоносителя на много порядков меньше, чем Li7.
Теплоемкость лития в 27 раз больше теплоемкости свинца при температуре 1400К, а плотность при температуре 1400К в 21 раз меньше, чем свинца, следовательно, произведение этих величин будет примерно одинаково, и равнотолщинные слои будут иметь примерно одинаковый показатель энергоемкости. Для испарения свинца требуется значительное количество энергии, это также повышает безопасность АЭС.
Физические свойства жидкометаллических теплоносителей натрия, лития и свинца приведены в таблице 1.
Таблица 1
Параметры Литий
при 527°С
Свинец Свинцово-висмутовый сплав
Плотность при 450 °С, кг/м3 483 10470 10180
Температура, °С
плавления
кипения
180
1330
327,4
1737
124 *
1670
*для эвтектики
Теплоемкость при 450 °С, кДж/(кг·К) 4,181 0,155 0,147
Критическая температура, °К 3503 5000 4900
Стоимость 1 тонны, тыс. $ США 49 2,3 2,3
При работе КРБНС вырабатывается водород, кислород, электроэнергия и тепло.
За счет большей химической стойкости деталей реактора к расплаву свинца, чем к расплаву лития возможно увеличение температуры первого контура и, следовательно, высокотемпературный потенциал свинцового теплоносителя позволит выработать водород и кислород путем разложения воды в высокотемпературной установке для получения водорода и кислорода по серно-йодному циклу.
Применение воды во втором контуре значительно уменьшит габариты свинцово-водного теплообменника за счёт гораздо большего коэффициента теплопередаче в нём по сравнению с литий-аргоновым теплообменником и не будет приводить к затруднениям в расхолаживании первого контура в случае аварийного обесточивания АЭС, а также не будет необходимости в разработке высокотемпературной газовой турбины большой мощности и это позволит применить «классическую паровую турбину» с температурой эксплуатации до 840оС.
Керамические композиционные материалы на основе ингибированных С-SiC и SiC-SiC сохраняют высокую прочность при температурах до 1400°С, радиационно-стойкие, инертные к расплаву свинца.
Для повышения эффективности АЭС предусматривается возможность отопления зданий и сооружений третьим контуром, в качестве теплоносителя которого используется вода.
Поток нейтронов высокой энергии в КРБНС способен эффективно «сжигать» наиболее опасные долгоживущие радионуклиды, образующиеся в отработанном ядерном топливе. Применив замкнутый топливный цикл с выжиганием актинидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов ядерной энергетики и многократно уменьшить объём радиоактивных отходов, подлежащих захоронению.
Переход к быстрым реакторам-бридерам наряду с тепловыми реакторами, а также переход на замкнутый топливный цикл, позволит создать безопасную технологию получения энергии, в полной мере отвечающую требованиям устойчивого развития человеческого общества.
Технико-экономические показатели реакторов КРБН-1000 и КРБНС-1000 приведены в таблице 2.
Таблица 2
Технико-экономические показатели Реактор КРБН-1000 Реактор КРБНС-1000
Коэффициент использования установленной мощности 0,95 0,95
КПД, % 75 78
Поэтапное повышение выгорания МОКС-топлива с достигнутого уровня, % 40% 41%
Коэффициент воспроизводства 1,45 1,46
Срок службы реактора, лет 100 110
Разработка КРБНС приведет к решению поставленных целей.
На фигуре приводится общая схема АЭС, которая состоит из реактора 1, твэлов 2, электрического насоса 3, свинцово-водного теплообменника 4, корпуса реактора 5, внутрикорпусных деталей 6, трубопровод первого контура 7, высокотемпературного теплообменника - деструктора серной кислоты 8, низкотемпературного теплообменника - деструктора йодо-водорода 9, бунзеновского реактора 10, выходного трубопровода из деструктора серной кислоты 11, выходного трубопровода из деструктора йодо-водорода 12, входного трубопровода в деструктор серной кислоты 13, входного трубопровода в деструктор йодо-водорода 14, выходного паропровода из свинцово-водного теплообменника 15, паровой турбины 16, генератора 17, холодной части трубопровода второго контура 18, паро-водяного теплообменника 19, электрического насоса второго контура 20, трубопровода третьего контура 21, насоса для циркуляции воды в третьем контуре 22.
Работает АЭС с керамическим реактором на быстрых нейтронах следующим образом. Уран 238 и плутоний расщепляются при поглощении быстрых нейтронов в правильных шестигранных призмах из нитрида урана или смеси нитрида урана с нитридом и оксидом плутония, при этом выделяется энергия (температура призм около 1550°С в центре и 1350°С на периферии). Затем нагреваются стенки твэлов 2, изготовленные из материала на основе ингибированного композиционного керамического материала на основе С-SiC или ингибированного керамического материала на основе SiC-SiC, до температуры около 1300°С. Далее тепло передаётся к жидкому свинцу или свинцово-висмутовому сплаву - теплоносителю первого контура, который нагревается до температуры 1250°С. Жидкий свинец или свинцово-висмутовый сплав перекачивается электрическим насосом 3 к высокотемпературному теплообменнику - деструктору серной кислоты 8, затем к низкотемпературному теплообменнику - деструктору йодо-водорода 9, затем в свинцово-водный теплообменник 4 и обратно в реактор 1. В деструкторе серной кислоты происходит деструкция серной кислоты и образования оксида серы, воды и кислорода, в деструкторе йодоводородной кислоты происходит деструкция йодоводорода на йод, воду и водород. В бунзеровском реакторе происходит синтез серной и йодоводородной кислоты.
Корпус реактора 5, внутрикорпусные детали 6, трубопровод первого контура 7, высокотемпературный теплообменник - деструктор серной кислоты 8, низкотемпературный теплообменник- деструктор йодо-водорода 9, бунзеновский реактор 10, выходной трубопровод из деструктора серной кислоты 11, выходной трубопровод из деструктора йодо-водорода 2, входной трубопровод в деструктор серной кислоты 13, входной трубопровод в деструктор йодо-водорода 14, выходной паропровод из свинцово-водного теплообменника 15, свинцово-водный теплообменник 4 изготовлены из материалов на основе ингибированного композиционного керамического материала на основе С-SiC или ингибированного керамического материала на основе SiC-SiC.
В свинцово-водном теплообменнике 15 свинец передаёт тепло воде, которая нагревается до температуры 840°С и по выходному паропроводу из свинцово-водного теплообменника подаётся в паровую турбину 16, где она отдаёт энергию турбине, при этом генератором 17 вырабатывается электроэнергия. Затем вода по холодной части трубопровода второго контура 18 направляется в паро-водный теплообменник 19, где она нагревает воду до 90°С. Затем вода перекачивается электрическим насосом 20 и снова попадает в свинцово-водяной теплообменник 4, где она снова нагревается, и по трубопроводам третьего контура 21 подаётся на отопление зданий и сооружений. Паро-водяной теплообменник и трубопроводы третьего контура изготавливаются из металла. После передачи тепла зданиям и сооружениям вода с помощью электрического насоса 22 возвращается в паро-водяной теплообменник для повторного нагревается, при необходимости, возможно, добавлять воду в третий контур для компенсации её потерь.
Таким образом, оптимальное сочетание референтных и новых решений и возможность расширенного воспроизводства топлива позволяют отнести проект КРБНС-1000 к ядерным технологиям четвертого поколения.

Claims (1)

  1. Атомная электростанция с керамическим реактором на быстрых нейтронах, включающая ядерный реактор с топливом из нитрида урана или смеси нитрида урана с нитридом и оксидом плутония, корпус реактора, твэлы с чехлами, внутрикорпусные детали, генератор, теплообменники, насосы для обеспечения циркуляции жидкого теплоносителя через теплообменники с трубопроводами первого, второго, имеющего горячую часть, и третьего контуров, при этом корпус реактора, чехлы твэлов, внутрикорпусные детали, трубопроводы первого контура, горячая часть трубопроводов второго контура, теплообменники изготовлены из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC, отличающаяся тем, что в качестве теплоносителя первого контура используется свинец или свинцово-висмутовый сплав с содержанием висмута от 48 до 63%, в качестве теплоносителя второго контура используется вода, топливные элементы имеют форму правильных шестигранных призм с длиной стороны основания от 8 до 35 мм и высотой боковой грани от 8 до 100 мм, при этом электростанция дополнительно содержит высокотемпературную установку для получения водорода и кислорода по серно-йодному циклу и свинцово-водный теплообменник, изготовленные из ингибированного композиционного керамического материала на основе C-SiC или ингибированного керамического материала на основе SiC-SiC.
RU2022102560A 2022-02-03 Атомная электростанция с керамическим реактором на быстрых нейтронах RU2782232C1 (ru)

Publications (1)

Publication Number Publication Date
RU2782232C1 true RU2782232C1 (ru) 2022-10-25

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2260862C1 (ru) * 2004-01-20 2005-09-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ формирования микроструктуры сердечника тепловыделяющего элемента
RU2394291C2 (ru) * 2007-08-15 2010-07-10 Селиванов Николай Павлович Атомная электростанция и тепловыделяющий элемент ядерного реактора
RU2549829C1 (ru) * 2014-01-31 2015-04-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Активная зона реактора на быстрых нейтронах со свинцовым теплоносителем, твэл и тепловыделяющая сборка для ее создания
RU2755261C1 (ru) * 2021-03-10 2021-09-14 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2260862C1 (ru) * 2004-01-20 2005-09-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ формирования микроструктуры сердечника тепловыделяющего элемента
RU2394291C2 (ru) * 2007-08-15 2010-07-10 Селиванов Николай Павлович Атомная электростанция и тепловыделяющий элемент ядерного реактора
RU2549829C1 (ru) * 2014-01-31 2015-04-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Активная зона реактора на быстрых нейтронах со свинцовым теплоносителем, твэл и тепловыделяющая сборка для ее создания
RU2755261C1 (ru) * 2021-03-10 2021-09-14 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Атомная электростанция с керамическим реактором на быстрых нейтронах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Маргулова Т.Х. Электрические станции. 5 изд. М.: МЭИ, 1994, стр. 21. *

Similar Documents

Publication Publication Date Title
Şahin et al. Generation-IV reactors and nuclear hydrogen production
Merle-Lucotte et al. Launching the thorium fuel cycle with the molten salt fast reactor
US20160217874A1 (en) Molten Salt Reactor
Shin et al. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation
CA2925576A1 (en) Molten salt reactor
Pioro et al. Generation IV nuclear reactors as a basis for future electricity production in the world
Adamov et al. Brest lead-cooled fast reactor: from concept to technological implementation
Pioro et al. Current status of electricity generation at nuclear power plants
Acır et al. Investigation of the hydrogen production of a laser FUSION driver thorium breeder using various coolants
RU2782232C1 (ru) Атомная электростанция с керамическим реактором на быстрых нейтронах
Galahom et al. Investigation of the possibility of using a uranium–zirconium metal alloy as a fuel for nuclear power plant AP-1000
Poullikkas An overview of future sustainable nuclear power reactors.
Furukawa et al. New sustainable secure nuclear industry based on thorium molten-salt nuclear energy synergetics (THORiMS-NES)
Asif et al. Advancement of Integral Fast Reactor
RU2755261C1 (ru) Атомная электростанция с керамическим реактором на быстрых нейтронах
Han et al. An overview of heavy water reactors
Poplavskii Fast reactors. Status and prospects
Adamov et al. Project Proryv (Breakthrough)
Dolan Molten Salt Reactors
Glebov et al. Prospects of VVER-SKD reactor in a closed fuel cycle
Houghton Molten Salt Reactors: Overview and Comparison of Uranium and Thorium Fuel Cycles
Lam Economics of Thorium and Uranium Reactors
Orlov et al. Mononitride fuel and large scale nuclear power industry
Dulera et al. With high temperature thorium reactors
Shi Feasibility of HALEU-loaded Breed-and-Burn Molten Salt Fast Reactor without Online Actinide Treatment