RU2255396C2 - Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей - Google Patents

Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей Download PDF

Info

Publication number
RU2255396C2
RU2255396C2 RU2002131097/09A RU2002131097A RU2255396C2 RU 2255396 C2 RU2255396 C2 RU 2255396C2 RU 2002131097/09 A RU2002131097/09 A RU 2002131097/09A RU 2002131097 A RU2002131097 A RU 2002131097A RU 2255396 C2 RU2255396 C2 RU 2255396C2
Authority
RU
Russia
Prior art keywords
elements
weighting coefficients
complex
hermitian
signal
Prior art date
Application number
RU2002131097/09A
Other languages
English (en)
Other versions
RU2002131097A (ru
Inventor
П.Н. Башлы (RU)
П.Н. Башлы
Б.Д. Мануилов (RU)
Б.Д. Мануилов
В.М. Богданов (RU)
В.М. Богданов
Original Assignee
Башлы Петр Николаевич
Мануилов Борис Дмитриевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Башлы Петр Николаевич, Мануилов Борис Дмитриевич filed Critical Башлы Петр Николаевич
Priority to RU2002131097/09A priority Critical patent/RU2255396C2/ru
Publication of RU2002131097A publication Critical patent/RU2002131097A/ru
Application granted granted Critical
Publication of RU2255396C2 publication Critical patent/RU2255396C2/ru

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Изобретение относится к антенной технике. Техническим результатом является получение оптимального управления комплексными взвешивающими устройствами в каналах моноимпульсных антенных решеток (MAP) по критерию максимума отношения сигнал/шум+помеха. Способ энергетической оптимизации MAP с совместным формированием лучей основан на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, разделении сигналов на два канала, суммировании сигналов с одноименных выходов делителей с соответствующим прогрессивно нарастающим и убывающим фазовым сдвигом, обеспечивающим отклонение каждого луча на угол +ΔΘ, и последующем образовании суммарной и разностной диаграмм направленности, в соответствии с которым комплексные весовые коэффициенты находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка, при определении которого используют информацию о направлении на источник сигнала и о распределении источников помех, а в качестве первой и второй эрмитовых форм пучка выбирают соответственно мощность сигнала в суммарном канале и сумму мощностей шумов и помех в лучах моноимпульсной группы, при этом комплексные весовые коэффициенты части N-2M элементов моноимпульсной антенной решетки, где N - общее число элементов решетки, а 2М - число элементов с независимыми комплексными весовыми коэффициентами, принимают равными произведению исходных весовых коэффициентов, обеспечивающих ориентацию равносигнального направления на источник сигнала, на общий для этих элементов комплексный весовой коэффициент, после чего комплексные весовые коэффициенты всех элементов нормируют. 4 ил., 1 табл.

Description

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах моноимпульсных антенных решеток (MAP) по критерию максимума отношения сигнал/шум+помеха.
Известен способ формирования нуля диаграммы направленности (ДН) фазированной антенной решетки (АР), основанный на выделении двух адаптивных М-элементных подрешеток, расположенных на краях исходной, и введении фазовых поправок в элементы адаптивных подрешеток [1]. Получаемое при реализации этого способа решение не является оптимальным, поскольку при формировании нуля не учитывают мощность помехового сигнала, а также собственные шумы приемной системы. Данное обстоятельство является недостатком известного способа.
Более близким по технической сущности к заявленному способу является способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей [2].
Существо известного способа оптимизации заключается в выборе в качестве максимизируемого интегрального параметра MAP с совместным формированием лучей отношения мощности сигнала в суммарном канале MAP
Figure 00000002
к сумме мощностей собственных шумов и помех в каждом из каналов MAP (Ршп)(1,2), т.е.
Figure 00000003
представлении (1) в виде отношения эрмитовых форм и последующем определении вектора оптимальных комплексных весовых коэффициентов (KBК) на основе теоремы об экстремальных свойствах отношения эрмитовых форм, при определении которых используется информация о направлении на источник сигнала <Θ0> и распределении шумов и помех в пространстве <Т(Θ)>.
Недостатком известного способа энергетической оптимизации MAP является то, что оптимизация MAP достигается изменением КВК во всех элементах, что усложняет реализацию способа и может не позволить реализовать известный алгоритм в реальном масштабе времени, особенно при больших размерах MAP.
Предлагаемый способ направлен на устранение упомянутых выше недостатков известных способов. Структурная схема устройства, функционирующего по предлагаемому способу, представлена на фиг.1. На фиг.2 и 3 представлены соответственно суммарные и разностные ДН MAP с совместным формированием лучей до оптимизации и после оптимизации по известному и предлагаемому способам. На фиг.4 приведены амплитудные распределения, соответствующие результатам оптимизации по известному и заявленному способам соответственно.
Рассмотрим существо предлагаемого способа. Как и в прототипе, сигналы, принятые излучателями, взвешивают с помощью КВК, разделяют на два канала, суммируют сигналы с одноименных выходов делителей с соответствующим прогрессивно нарастающим и убывающим фазовым сдвигом, обеспечивающим отклонение каждого луча на угол ±ΔΘ, после чего образуют суммарную и разностную ДН, причем КВК находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка, при определении которого используют информацию о направлении на источник сигнала и о распределении источников помех, а в качестве первой и второй эрмитовых форм пучка выбирают соответственно мощность сигнала в суммарном канале и сумму мощностей шумов и помех в лучах моноимпульсной группы.
Однако в отличие от прототипа КВК части (N-2M) элементов MAP, где N - общее число элементов MAP, a 2M - число элементов с независимыми комплексными весовыми коэффициентами в двух подрешетках, принимают равными произведению исходных весовых коэффициентов, обеспечивающих ориентацию равносигнального направления (РСН) на источник сигнала, на общий для этих элементов КВК Iр, определяемый из решения задачи оптимизации, после чего комплексные весовые коэффициенты всех элементов нормируют к значению Iр, в связи с чем весовые коэффициенты неадаптируемых N-2M элементов не изменяют, а ранг эрмитовых форм понижают до порядка 2М+1.
Проведенный сравнительный анализ заявленного способа и прототипа показывает, что заявленный способ отличается тем, что изменены условия выполнения операции взвешивания, поскольку КВК в 2M адаптируемых элементах находят при условии равенства оставшейся части N-2M КВК произведению исходных значений весовых коэффициентов этих элементов на общий для этих элементов КВК, который определяют из решения задачи оптимизации, после чего нормируют КВК всех элементов к значению общего для N-2M элементов КВК.
Рассмотрим предлагаемый способ энергетической оптимизации MAP с совместным формированием лучей, полагая, как и в прототипе [2], что распределение шумов и помех в пространстве <Т(Θ)> известно, причем мощность помех в Т(Θ) нормирована к мощности собственных шумов приемной системы, как в [3, 4].
С учетом структурной схемы оптимизируемой MAP, представленной на фиг.1, для одновременной оптимизации и суммарной, и разностной ДН используем функционал (1), где в предположении единичной нагрузки числитель представляет мощность сигнала в суммарном канале MAP
Figure 00000004
а знаменатель - сумму мощностей шумов и помех в первом и втором лучах моноимпульсной группы, причем
Figure 00000005
Выражение (3) записано в предположении, что размеры излучателей вдоль оси X бесконечны, а излучение производится в полупространство z>0.
В (2) и (3)
Figure 00000006
Figure 00000007
Верхний знак в (4) и далее берется при ν=1.
Учитывая, что после взвешивания сигналов, принятых каждым излучателем, их разделяют на два канала и суммируют сигналы с одноименных выходов делителей с соответственно прогрессивным нарастающим и убывающим фазовым сдвигом, обеспечивающим отклонение каждого луча на угол ±ΔΘ, представим выражение для лучей моноимпульсной группы в виде:
Figure 00000008
где
Figure 00000009
Figure 00000010
Figure 00000011
λ, y0 - длина волны и шаг решетки,
Ip - неизвестный комплексный весовой коэффициент, принятый равным для всех N-2M неадаптируемых элементов MAP,
Figure 00000012
- фазовый сдвиг, обеспечивающий ориентацию равносигнального направления MAP на источник сигнала,
fm(Θ) - парциальная ДН MAP, полученная при возбуждении m-го входа волной единичной амплитуды и нулевой фазы.
Тогда для суммарной ДН получим
Figure 00000013
где
Figure 00000014
Figure 00000015
В (9)
Figure 00000016
и
Figure 00000017
- мерные вектор-строка и вектор-столбец соответственно с элементами
Figure 00000018
Figure 00000019
Принимая во внимание (2) и (9), можем записать
Figure 00000020
где
Figure 00000021
- эрмитова матрица 2М+1-го порядка с элементами
Figure 00000022
Аналогично можно для мощности шума и помех в ν-м луче моноимпульсной группы записать
Figure 00000023
где
Figure 00000024
- эрмитова матрица 2М+1-го порядка с элементами
Figure 00000025
где
Figure 00000026
- вектор-столбец.
С учетом (14) и (17) можем представить отношение мощности сигнала в суммарном канале к сумме шумов и помех в лучах моноимпульсной группы в виде
Figure 00000027
где [B’] - эрмитова матрица М+1-го порядка с элементами
Figure 00000028
Выражение (19) представляет собой отношение эрмитовых форм, которому соответствует пучок эрмитовых форм
Figure 00000029
В связи с этим в дальнейшем для определения максимума (19) (или, что то же самое (1)) воспользуемся теоремой об экстремальных свойствах отношения эрмитовых форм [5], а именно одним из частных случаев этой теоремы.
В соответствии с [3], если матрица, образующая первую эрмитову форму (числитель функционала (19)), может быть представлена в виде (15), где
Figure 00000030
- вектор-строка, то наибольшее и неравное нулю собственное значение пучка эрмитовых форм (21) определяется выражением
Figure 00000031
а собственный вектор, обеспечивающий максимум функционала (19), находится аналитически из выражения
Figure 00000032
После определения вектора
Figure 00000033
его элементы нормируют к значению Ip, т.е.
Figure 00000034
Работа устройства, функционирующего по предложенному способу, может быть проиллюстрирована с помощью фиг.1. Информация о направлении Θ0 на источник сигнала и о распределении источников помех Т(Θ) в пространстве поступает на входы 1 и 2 вычислителя КВК 3, функционирующего в соответствии с (23) и (24). Принятые первыми М и последними М элементами 4 решетки сигналы взвешивают с помощью устройств комплексного взвешивания 5 в соответствии с (24), поступающими от вычислителя 3.
Сигналы, принятые неадаптируемыми элементами MAP (с М+1 по N-M), взвешивают весовыми коэффициентами 6 exp(-jφm), обеспечивающими ориентацию равносигнального направления MAP на источник сигнала.
После этого сигналы всех элементов проходят на входы делителей 7 на два направления. Сигналы с одноименных выходов делителей поступают на входы сумматоров 9 и 10 соответственно через фиксированные фазовращатели 8. При этом на входах сумматора 9 обеспечивается прогрессивный нарастающий, а на входах сумматора 10 - убывающий фазовый сдвиг. В результате на выходах сумматоров 9 и 10 формируются лучи моноимпульсной группы, из которых суммарно-разностный преобразователь 11 формирует суммарную 13 и разностную 12 ДН.
На фиг.2 и 3 сплошной линией представлены соответственно суммарная и разностная ДН неоптимизированной MAP с совместным формированием лучей (т.е. при отсутствии помех), соответствующие исходному равномерному амплитудному и линейному фазовому распределению. Расчеты выполнены для решетки ненаправленных излучателей с параметрами N=29, y0=0.5λ, при Θ0=20° и ΔΘ=1.9°, а также функции Т(Θ) следующего вида
Figure 00000035
Для иллюстрации возможностей заявленного способа на краях MAP выделены две подрешетки по семь элементов в каждой (М=7), соответственно ранг пучка эрмитовых форм (21) по сравнению с известным способом снижен с 29 до 15, что является существенным преимуществом.
В общем случае число элементов в подрешетках М может быть произвольным, но не более (N-1)/2, при этом необходимо учитывать, что чем больше М, тем ближе получаемое решение к решению, получаемому по известному способу. В предельном случае, когда M=(N-1)/2, эти решения полностью совпадают. Выбор числа М зависит от количества элементов MAP и характера функции Т(Θ).
Пунктирными линиями на фиг.2 и 3 представлены результаты энергетической оптимизации соответственно в суммарной и разностной ДН, полученные при реализации известного способа [2].
Штрихованными линиями на фиг.2 и 3 представлены результаты энергетической оптимизации соответственно в суммарной и разностной ДН, полученные при реализации заявленного способа. На фиг.2 и 3 направление прихода помехи показано сплошной линией.
На фиг.4 сплошной линией представлено нормированное амплитудное распределение, соответствующее известному способу оптимизации, а штрихованной линией представлено нормированное амплитудное распределение, соответствующее заявленному способу.
Результаты моделирования показали, что в случае воздействия распределенной помехи вида (23) отношение сигнал/шум+помеха в суммарном канале до оптимизации составляет -4.1 дБ, а после оптимизации известным и заявленным способами соответственно 17.6 и 17.5 дБ, что свидетельствует о высокой эффективности заявленного способа, при этом полученный результат по заявленному способу достигается изменением амплитуд и фаз только в части (14-ти из 29-ти) элементов MAP.
Амплитуды КВК, соответствующие сравниваемым способам, приведены в таблице 1.
Таблица 1
  Номер КВК, n
  1,29 2,28 3,27 4,26 5,25 6,24 7,23 8,22 9,21 10,20 11,19 12,18 13,17 14,16 15
Исх. распре
деле
ние
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Извест
ный способ
0.17 0.2 0.25 0.34 0.44 0.52 0.59 0.66 0.74 0.82 0.9 0.95 0.98 0.99 1
Заявлен
ный способ
0.46 0.36 0.34 0.53 0.72 0.74 0.79 1 1 1 1 1 1 1 1
Предлагаемый способ может быть применен также к MAP с направленными идентичными и к MAP с неидентичными (например, искаженными взаимными связями) излучателями.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент №2123743 РФ. Способ формирования нуля диаграммы направленности фазированной антенной решетки. /Мануйлов Б.Д., Башлы П.Н., Гладушенко С.Г.// Б.И. 1998. №35.
2. Патент №2169970 РФ. Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей. Мануйлов Б.Д., Башлы П.Н., Каменюк А.Б., Тугушев С.В.// Б.И. 2001. №18.
3. Cheng D.K. Optimization techniques for antenna arrays// IEEE Proc. 1971. V.59. №12. Р.1664.
4. Проблемы антенной техники. /Под ред. Л.Д.Бахраха, Д.И.Воскресенского. - М.: Радио и связь, 1989.
5. Гантмахер Ф.Р. Теория матриц. 4-изд. М.: Наука. Гл. ред. физ.-мат. лит., 1988.

Claims (1)

  1. Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей, основанный на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, разделении этих сигналов на два канала, суммировании сигналов с одноименных выходов делителей с соответствующим прогрессивно нарастающим и убывающим фазовым сдвигом, обеспечивающим отклонение каждого луча на угол ±ΔΘ, и последующем образовании суммарной и разностной диаграмм направленности, в соответствии с которым комплексные весовые коэффициенты находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка, при определении которого используют информацию о направлении на источник сигнала и о распределении источников помех, а в качестве первой и второй эрмитовых форм пучка выбирают соответственно мощность сигнала в суммарном канале и сумму мощностей шумов и помех в лучах моноимпульсной группы, отличающийся тем, что комплексные весовые коэффициенты части N-2M элементов моноимпульсной антенной решетки, где N - общее число элементов моноимпульсной антенной решетки, а 2М - число элементов с независимыми комплексными весовыми коэффициентами, принимают равными произведению исходных весовых коэффициентов, обеспечивающих ориентацию равносигнального направления на источник сигнала, на общий для этих элементов комплексный весовой коэффициент Iр, определяемый из решения задачи оптимизации, после чего комплексные весовые коэффициенты всех элементов нормируют к значению Iр, в связи с чем весовые коэффициенты неадаптируемых N-2M элементов не изменяют, а ранг эрмитовых форм понижают до порядка 2М+1.
RU2002131097/09A 2002-11-19 2002-11-19 Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей RU2255396C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002131097/09A RU2255396C2 (ru) 2002-11-19 2002-11-19 Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002131097/09A RU2255396C2 (ru) 2002-11-19 2002-11-19 Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей

Publications (2)

Publication Number Publication Date
RU2002131097A RU2002131097A (ru) 2004-05-10
RU2255396C2 true RU2255396C2 (ru) 2005-06-27

Family

ID=35836915

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002131097/09A RU2255396C2 (ru) 2002-11-19 2002-11-19 Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей

Country Status (1)

Country Link
RU (1) RU2255396C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453952C1 (ru) * 2011-02-14 2012-06-20 Пётр Николаевич Башлы Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей
RU2491685C2 (ru) * 2007-07-20 2013-08-27 Астриум Лимитед Система для упрощения обработки реконфигурируемой диаграммообразующей схемы в фазированной антенной решетке для телекоммуникационного спутника
CN111525285A (zh) * 2020-05-20 2020-08-11 西安黄河机电有限公司 一种稀布阵天线及其设计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491685C2 (ru) * 2007-07-20 2013-08-27 Астриум Лимитед Система для упрощения обработки реконфигурируемой диаграммообразующей схемы в фазированной антенной решетке для телекоммуникационного спутника
RU2453952C1 (ru) * 2011-02-14 2012-06-20 Пётр Николаевич Башлы Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей
CN111525285A (zh) * 2020-05-20 2020-08-11 西安黄河机电有限公司 一种稀布阵天线及其设计方法

Similar Documents

Publication Publication Date Title
EP3352299B1 (en) Wideband beam broadening for phased array antenna systems
Friedlander On transmit beamforming for MIMO radar
CN108051782B (zh) 基于子阵划分的大规模相控阵差波束形成系统
TR201810572T4 (tr) Bir anten düzeneği kullanarak huzme oluşturma.
KR20050004605A (ko) 서브-어레이 그루핑된 적응 배열 안테나들을 이용하여빔형성 및 다이버시티 이득을 제공하는 무선 페이딩 채널복조기, 이를 구비한 이동 통신 수신 시스템 및 그 방법
EP0807992B1 (en) Logarithmic spiral array
CN111859644B (zh) 一种圆形相控阵列天线的接收波束形成与方位扫描方法
JP6817740B2 (ja) 直接放射型フェーズドアレイアンテナのためのアナログビームフォーミングのシステム及び方法
CN110837075A (zh) 一种低复杂度的极化参数估计跟踪装置及方法
US6906665B1 (en) Cluster beam-forming system and method
US6946992B2 (en) Multibeam phased array antenna
RU2255396C2 (ru) Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей
Kinsey An edge-slotted waveguide array with dual-plane monopulse
CN113569192B (zh) 一种多相位分级的嵌套阵列天线波束合成方法
CN115833887A (zh) 一种动态超表面天线阵列天线选择与波束赋形方法
CN114928384A (zh) 交错子阵混合波束形成系统及两独立波束同时形成方法
Rattan et al. Antenna Array Optimization using Evolutionary Approaches.
RU2287877C1 (ru) Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей
CN115133291A (zh) 非规则天线子阵、相控阵天线及相控阵天线的设计方法
RU2169970C2 (ru) Способ энергетической оптимизации моноимпульсных антенных решеток с совместным формированием лучей
JP7059935B2 (ja) 無線通信機、制御方法及びプログラム
RU2507646C1 (ru) Способ формирования провалов в диаграммах направленности фазированных антенных решеток в направлениях источников помех
Okorochkov et al. The spatial separation of signals by the curvature of the wave front
RU2314610C1 (ru) Способ энергетической оптимизации фазированной антенной решетки
CN112526510A (zh) 基于方向图分集的单通道角度超分辨方法及系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees