RU2251800C2 - Устройство и способ управления мощностью передачи в системе мобильной связи - Google Patents

Устройство и способ управления мощностью передачи в системе мобильной связи Download PDF

Info

Publication number
RU2251800C2
RU2251800C2 RU2003106808A RU2003106808A RU2251800C2 RU 2251800 C2 RU2251800 C2 RU 2251800C2 RU 2003106808 A RU2003106808 A RU 2003106808A RU 2003106808 A RU2003106808 A RU 2003106808A RU 2251800 C2 RU2251800 C2 RU 2251800C2
Authority
RU
Russia
Prior art keywords
power
signals
signal
threshold
compensation
Prior art date
Application number
RU2003106808A
Other languages
English (en)
Other versions
RU2003106808A (ru
Inventor
Сунг-Квон ДЗО (KR)
Сунг-Квон ДЗО
Санг-Хиун ЙАНГ (KR)
Санг-Хиун ЙАНГ
Дзеонг-Тае ОХ (KR)
Дзеонг-Тае ОХ
Original Assignee
Самсунг Электроникс Ко.,Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко.,Лтд filed Critical Самсунг Электроникс Ко.,Лтд
Publication of RU2003106808A publication Critical patent/RU2003106808A/ru
Application granted granted Critical
Publication of RU2251800C2 publication Critical patent/RU2251800C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Abstract

Устройство и способ предназначены для максимизации эффективности усилителя мощности посредством уменьшения отношения пиковой мощности к средней мощности (ОПСМ) базовой станции (БС) из состава системы мобильной связи. Контроллер мощности, расположенный между фильтрами-формирователями импульсов синфазного и квадратурного каналов и преобразователем частоты, вычисляет на каждом периоде выборки сигналы компенсации для импульсов сигналов, которые увеличивают ОПСМ; посредством фильтров-формирователей импульсов среди сигналов компенсации отфильтровывает сигналы компенсации с наиболее высоким уровнем и суммирует сигналы компенсации, прошедшие фильтрацию, с исходными сигналами. Таким образом, подавляется расширение спектра за пределы полосы частот сигнала. В случае системы, поддерживающей множество назначенных частот (НЧ), регулирование ОПСМ осуществляют для каждой НЧ согласно ее классу обслуживания. Техническим результатом является гарантированная минимальная производительность системы и повышение эффективности использования мощности. 4 н. и 31 з.п. ф-лы, 19 ил.

Description

Настоящее изобретение относится, в общем, к системе мобильной связи и, в частности, к устройству и способу, предназначенным для уменьшения отношения пиковой мощности к средней мощности сигнала (ОПСМ) на базовой станции (БС) из состава системы мобильной связи.
Как известно, для усиления высокочастотного (ВЧ) сигнала, включая предназначенные для мобильной станции (МС) речь и данные, БС использует ВЧ-усилитель мощности. ВЧ-усилитель является наиболее дорогостоящим устройством во всей системе и, таким образом, важным компонентом, подлежащим рассмотрению в контексте уменьшения стоимости системы. Данный ВЧ-усилитель следует сконструировать таким образом, чтобы он удовлетворял двум требованиям: одно из них состоит в том, чтобы выдавать мощность ВЧ-сигнала на уровне, достаточном для покрытия всех МС, находящихся в зоне обслуживания сотовой ячейки; а другое состоит в том, чтобы поддерживать помехи соседнего канала (ПСК) выходному сигналу ВЧ-усилителя на приемлемом уровне или ниже него.
Если значение входной мощности, которая обеспечивает достаточную выходную мощность ВЧ-сигнала, находится вне области линейного усиления усилителя мощности, то вследствие нелинейного усиления выходной сигнал усилителя мощности имеет компоненту искажений сигнала за пределами полосы частот данного сигнала. Иными словами, в частотной плоскости расширение спектра за пределы полосы частот сигнала обуславливает ПСК. Оказывается весьма сложным сконструировать усилитель мощности, удовлетворяющий этим требованиям, так как первое из них требует высокой входной мощности, а второе требует низкой входной мощности.
Особенностью является то, что система с высоким ОПСМ, такая как система множественного доступа с кодовым разделением каналов (МДКР), должна управлять входной мощностью с целью обеспечения усилителю мощности возможности функционировать в области линейного усиления, либо использовать дорогостоящий усилитель мощности, обладающий линейностью при максимальном значении входной мощности. В этом контексте системе МДКР требуется дорогостоящий усилитель мощности, который может адаптировать максимальную входную мощность, на 10 дБ превышающую среднюю входную мощность, для подавления искажений сигнала. Однако, как утверждалось ранее, подобный усилитель мощности снижает эффективность использования мощности и увеличивает энергопотребление, размеры системы и ее стоимость. Более того, БС в одно и то же время передает сигналы с множеством назначенных частот (НЧ), используя усилитель мощности для каждой НЧ, что налагает экономические ограничения. Следовательно, эффективные компоновка и конструкция усилителей мощности являются очень важными для конструкции БС.
Один из подходов к стабильному функционированию усилителя мощности в системе с высоким ОПСМ состоит в использовании схемы коррекции предыскажений для максимальной входной мощности. Схема коррекции предыскажений измеряет искажения сигнала, вносимые усилителем мощности, и управляет входным сигналом усилителя мощности на основе результатов измерений. Усилитель мощности формирует усиленный сигнал из исходного входного сигнала посредством ослабления искажений.
В процесс измерения искажений включаются очень сложные процессы, такие как модуляция и демодуляция, взятие выборок, дискретизация, синхронизация и сравнение между входными и выходными сигналами. Схема коррекции предыскажений использует свои входной и выходной сигналы с целью соответствия стандартам на мощность соседнего канала (МСК), регламентирующим реализацию системы. Однако с помощью этой схемы коррекции предыскажений нельзя добиться оптимальной компенсации искажений вследствие присущих ей недостатков, связанных с эффективностью, быстродействием и сложностью.
Другой подход состоит в уменьшении ОПСМ входного сигнала в усилителе мощности посредством уменьшения уровня сигнала с заранее заданной скоростью, используя максимальную входную мощность и линейные характеристики усиления усилителя мощности. Все входные сигналы преобразуют в сигналы малой мощности посредством умножения их на масштабные коэффициенты, основывающиеся на линейных характеристиках усиления, с целью эксплуатации усилителя мощности в пределах области линейного усиления. Либо ОПСМ можно уменьшить посредством уменьшения мощности входного сигнала, значение которой равно некоему пороговому значению или превышает его, до намеченного уровня. Результатом уменьшения уровня сигнала с заранее заданной скоростью или уменьшения уровня сигнала, превышающего некое пороговое значение, до заранее заданного уровня являются интенсивные изменения уровня сигнала и увеличение мощности за пределами полосы частот сигнала. Как следствие, снижается производительность всей системы.
Третий подход состоит в вычислении интенсивности и мощности входного сигнала синфазного (I) канала и интенсивности и мощности входного сигнала квадратурного (Q) канала и в формировании сигналов компенсации для сигналов, интенсивности которых равны пороговым значениям или превышают их. Интенсивности сигналов уменьшают до желаемого уровня посредством суммирования исходных сигналов и сигналов компенсации в одно и то же время. Передача сигнала с использованием этой схемы усиления проиллюстрирована на Фиг.1.
Согласно Фиг.1, в системе связи МДКР каждое канальное устройство или канальный элемент 1-2 из состава группы 1-1 канальных устройств формирует сигнал полосы модулирующих частот посредством применения к входным данным канала соответствующего кодирования, модуляции и формирования каналов. Сигналы полосы модулирующих частот синфазного и квадратурного каналов суммируют раздельно. Процессор 1-5 измеряет интенсивности сигналов синфазного (I) и квадратурного (Q) каналов, вычисляет их уровни мощности, принимает решение о значении интенсивности сигнала, подлежащего удалению, для каждого канала в соответствии с желаемым уровнем мощности и выдает сигналы компенсации. Блок 1-3 объединения полосы модулирующих частот, относящийся к синфазному каналу, и блок 1-4 объединения полосы модулирующих частот, относящийся к квадратурному каналу, задерживают сигналы синфазного и квадратурного каналов на время, требующееся процессору 1-5 для выполнения своих операций, и суммируют задержанные сигналы синфазного и квадратурного каналов с сигналами компенсации с целью получения сигналов с намеченным уровнем мощности. Фильтры-формирователи 1-6 и 1-7 импульсов ограничивают ширины полос частот выходных сигналов блоков 1-3 и 1-4 объединения полосы модулирующих частот, относящихся к синфазному и квадратурному каналам соответственно. Выходные сигналы фильтров-формирователей 1-6 и 1-7 импульсов передают на антенну через преобразователь 1-8 частоты и усилитель 1-9 мощности. Антенна испускает сигналы с требующейся мощностью передачи БС на станции МС, находящиеся в пределах обслуживаемой ею сотовой ячейки.
Несмотря на то что блоки 1-3 и 1-4 объединения полосы модулирующих частот, относящиеся к синфазному и квадратурному каналам, корректируют значения ОПСМ сигналов до желаемых значений, эти значения увеличиваются фильтрами-формирователями 1-6 и 1-7 импульсов. В результате в усилителе 1-9 мощности имеет место расширение спектра за пределы полосы частот сигнала, тем самым обуславливая ПСК.
Таким образом, задачей настоящего изобретения является осуществление способа и устройства, предназначенных для повышения эффективности использования ВЧ-усилителя мощности, с целью реализации стабильной и осуществимой системы мобильной связи.
Другой задачей настоящего изобретения является предоставление в системе с высоким ОПСМ способа и устройства, предназначенных для стабильного функционирования усилителя мощности в области линейного усиления.
Еще одной задачей настоящего изобретения является предоставление способа и устройства, предназначенных для уменьшения ОПСМ входного сигнала усилителя мощности, не оказывая при этом влияния на производительность всей системы.
Еще одной задачей настоящего изобретения является осуществление способа и устройства, предназначенных для уменьшения ОПСМ усилителя мощности и максимизации подавления расширения спектра за пределы полосы частот сигнала, для максимизации эффективности усилителя мощности в контексте передачи в системе мобильной связи.
Еще одной задачей настоящего изобретения является предоставление способа и устройства, предназначенных для одновременной передачи сигналов с использованием множества НЧ, эффективно используя усилители мощности.
Еще одной задачей настоящего изобретения является предоставление способа и устройства, предназначенных для управления входным сигналом усилителя мощности, используя контроллер мощности, помещенный между фильтрами-формирователями импульсов синфазного и квадратурного каналов и преобразователем частоты.
Для решения вышеизложенных и иных задач настоящего изобретения в устройстве управления мощностью передачи из состава системы мобильной связи, поддерживающей одну НЧ, группа канальных устройств формирует сигнал полосы модулирующих частот синфазного канала и сигнал полосы модулирующих частот квадратурного канала посредством выполнения кодирования и модуляции для данных каждого канала; фильтр-формирователь импульсов фильтрует сигналы полосы модулирующих частот; контроллер мощности регулирует значения ОПСМ фильтрованных сигналов в соответствии с пороговой мощностью, требующейся для линейного усиления мощности; преобразователь частоты преобразует сигналы, для которых было выполнено управление мощностью, с повышением частоты в ВЧ-сигналы; а усилитель мощности усиливает эти ВЧ-сигналы.
Вышеупомянутые и иные задачи, отличительные признаки и преимущества настоящего изобретения становятся более очевидны из подробного описания, приведенного ниже со ссылкой на сопровождающие чертежи, на которых:
Фиг.1 представляет собой блок-схему передатчика из состава соответствующей предшествующему уровню техники типичной системы мобильной связи;
Фиг.2 представляет собой блок-схему соответствующего варианту осуществления настоящего изобретения передатчика из состава системы мобильной связи, использующей одну НЧ;
Фиг.3 представляет собой детальную блок-схему контроллера мощности по Фиг.2;
Фиг.4 иллюстрирует принцип функционирования блока вычисления сигналов компенсации из состава контроллера мощности по Фиг.3;
Фиг.5 иллюстрирует структуру фильтров-формирователей импульсов по Фиг.3;
Фиг.6 представляет собой блок-схему алгоритма, иллюстрирующую соответствующую варианту осуществления настоящего изобретения операцию управления мощностью;
Фиг.7 иллюстрирует исходные сигналы, подаваемые на блок определения масштаба по Фиг.3;
Фиг.8 иллюстрирует сигналы, выдаваемые блоком определения масштаба по Фиг.3;
Фиг.9 иллюстрирует результирующие сигналы, вычисленные блоком вычисления сигналов компенсации по Фиг.3;
Фиг.10 иллюстрирует сигналы компенсации, сформированные блоком вычисления сигналов компенсации по Фиг.3;
Фиг.11 иллюстрирует сигналы компенсации с максимальными уровнями сигнала, выбранные блоками определения максимального уровня по Фиг.3;
Фиг.12 иллюстрирует сигналы компенсации с максимальными уровнями сигнала после обработки фильтрами-формирователями импульсов и их уровни мощности;
Фиг.13 представляет собой блок-схему соответствующего другому варианту осуществления настоящего изобретения передатчика из состава системы мобильной связи, использующей множество НЧ;
Фиг.14 представляет собой детальную блок-схему контроллера мощности, поддерживающего множество НЧ, по Фиг.13;
Фиг.15 иллюстрирует мощностные характеристики сигнала каждой НЧ в контроллере мощности, поддерживающем множество НЧ, в случае, когда сигналы НЧ имеют одинаковый приоритет;
Фиг.16 представляет собой блок-схему алгоритма, иллюстрирующую способ вычисления блоком вычисления масштаба по Фиг.14 масштабных коэффициентов для множества НЧ с одинаковым приоритетом;
Фиг.17 представляет собой блок-схему алгоритма, иллюстрирующую способ вычисления блоком вычисления масштаба по Фиг.14 масштабных коэффициентов для множества НЧ с отличающимися приоритетами;
Фиг.18 иллюстрирует мощностные характеристики сигнала каждой НЧ в контроллере мощности, поддерживающем множество НЧ, в случае, когда сигналы НЧ имеют отличающиеся приоритеты;
Фиг.19 представляет собой блок-схему алгоритма, иллюстрирующую другой способ вычисления блоком вычисления масштаба по Фиг.14 масштабных коэффициентов для множества НЧ с отличающимися приоритетами.
Ниже описывается предпочтительный вариант осуществления настоящего изобретения со ссылкой на сопровождающие чертежи. В нижеизложенном описании детальное описание широко известных функций или конструкций опущено, так как излишние подробности могут затенить само изобретение.
Описание настоящего изобретения предваряется определением используемых здесь терминов. ОПСМ или коэффициент амплитуды (КА) обозначает отношение пиковой мощности к средней мощности. Эта мощностная характеристика является важным фактором для конструирования усилителя мощности системы МДКР, в которой множество пользователей совместно используют общие частотные ресурсы. Алгоритм уменьшения коэффициента амплитуды (УКА) - это алгоритм, который выполняет контроллер мощности для уменьшения ОПСМ в соответствии с настоящим изобретением. Потери мощности определяют как отношение максимальной мощности, требующейся для достижения линейного усиления, к средней мощности. Потери мощности используют для задания области линейного усиления усилителя мощности.
Фиг.2-12 иллюстрируют вариант осуществления настоящего изобретения, в котором используется одна НЧ, а Фиг.13-19 иллюстрируют другой вариант осуществления настоящего изобретения, в котором используется множество НЧ.
Первый вариант осуществления
Фиг.2 представляет собой блок-схему соответствующего варианту осуществления настоящего изобретения передатчика БС из состава системы мобильной связи, использующей одну НЧ.
Согласно Фиг.2, передатчик включает в себя группу 2-1 канальных устройств, имеющую по меньшей мере один канальный элемент 2-2, фильтры-формирователи 2-3 и 2-4 импульсов синфазного и квадратурного каналов, преобразователь 2-5 частоты и усилитель 2-6 мощности. Особенностью является то, что контроллер 2-8 мощности помещен между фильтрами-формирователями 2-3 и 2-4 импульсов и преобразователем 2-5 частоты с целью выполнения алгоритма УКА в соответствии с настоящим изобретением.
При функционировании группа 2-1 канальных устройств формирует сигналы полосы модулирующих частот синфазного и квадратурного каналов посредством выполнения кодирования, модуляции и формирования каналов для данных каждого канала. В частности, в системе МДКР сигналы синфазного и квадратурного каналов представляют собой суммы общих сигналов управления и пользовательских данных, предназначенных для множества пользователей, причем суммирование выполняется на уровне чипов (символов псевдошумовой последовательности) синфазного и квадратурного каналов.
В силу того что в системе, которая передает сумму сигналов множества каналов, такой как система МДКР, имеют место значительные вариации выходной мощности, фильтры-формирователи 2-3 и 2-4 импульсов ограничивают частоту сигнала каждого канала в целях уменьшения ПСК. Преобразователь 2-5 частоты, расположенный перед входом усилителя 2-6 мощности, после цифроаналогового преобразования преобразует сигналы промежуточной частоты (ПЧ), принимаемые от фильтров-формирователей 2-3 и 2-4 импульсов, с повышением частоты в ВЧ-сигналы.
Усилитель 2-6 мощности помещен перед входом антенны и усиливает мощность своего входного сигнала для передачи этого сигнала с выходной мощностью, достаточной для всех пользователей, находящихся в пределах сотовой ячейки рассматриваемой БС. Антенна передает усиленный сигнал на станции МС.
Контроллер 2-8 мощности выполняет функцию уменьшения ОПСМ входного сигнала с целью снижения налагаемых на усилитель мощности ограничений стоимости и предотвращения снижения производительности системы посредством подавления расширения спектра за пределы полосы частот сигнала. Контроллер 2-8 мощности расположен за выходами фильтров-формирователей 2-3 и 2-4 импульсов для предотвращения увеличения ОПСМ в процессе функционирования фильтров-формирователей 2-3 и 2-4 импульсов.
Фиг.3 представляет собой соответствующую варианту осуществления настоящего изобретения детальную блок-схему контроллера 2-8 мощности. Согласно Фиг.3, контроллер 2-8 скомпонован из блока 3-1 определения масштаба, блока 3-2 вычисления сигналов компенсации, блоков 3-10 и 3-11 определения максимального уровня сигнала синфазного (I) и квадратурного (Q) каналов, фильтров-формирователей 3-12 и 3-13 импульсов максимального уровня сигнала синфазного и квадратурного каналов, блоков 3-14 и 3-15 задержки сигнала синфазного и квадратурного каналов и сумматоров 3-16 и 3-17 синфазного и квадратурного каналов.
Выходные сигналы фильтров-формирователей 2-3 и 2-4 импульсов подают на входы блока 3-1 определения масштаба, блоков 3-14 и 3-15 задержки сигнала и блока 3-2 вычисления сигналов компенсации. Выходной сигнал I2 фильтра-формирователя 3-12 импульсов максимального уровня сигнала синфазного (I) канала и выходной сигнал I3 блока 3-14 задержки сигнала синфазного канала суммируются в сумматоре 3-16 синфазного канала, в результате чего получается сигнал I’. Аналогично, выходной сигнал Q2 фильтра-формирователя 3-13 импульсов максимального уровня сигнала квадратурного (Q) канала и выходной сигнал Q3 блока 3-15 задержки сигнала квадратурного канала суммируются в сумматоре 3-17 квадратурного канала, в результате чего получается сигнал Q’.
Контроллер 2-8 мощности обрабатывает выходные сигналы I и Q фильтров-формирователей 2-3 и 2-4 импульсов для достижения значения ОПСМ, требующегося для линейности усилителя 2-6 мощности и, таким образом, для подавления расширения спектра за пределы полосы частот сигнала.
Далее со ссылкой на Фиг.3 описывается принцип функционирования контроллера 2-8 управления мощностью.
Блок 3-1 определения масштаба принимает сигнал синфазного канала, поступающий с выхода фильтра-формирователя 2-3 импульсов синфазного канала (в дальнейшем данный сигнал будет называться исходным сигналом синфазного канала), и сигнал квадратурного канала, поступающий с выхода фильтра-формирователя 2-4 импульсов квадратурного канала (в дальнейшем данный сигнал будет называться исходным сигналом квадратурного (Q) канала), посредством блоков 3-3 и 3-4 возведения уровня сигнала синфазного и квадратурного каналов в квадрат, периодически делает выборки исходных сигналов синфазного (I) и квадратурного (Q) каналов с заранее заданным периодом и измеряет уровни выборок сигналов. Мгновенную мощность на каждом периоде выборки вычисляют посредством суммирования выходных сигналов блоков 3-3 и 3-4 возведения уровня сигнала синфазного (I) и квадратурного (Q) каналов в квадрат, то есть Р=I2+Q2. Блок 3-5 вычисления масштабных коэффициентов вычисляет мгновенную мощность Р и заранее заданную пороговую мощность Рпорог следующим образом.
Мгновенную мощность Р сравнивают с пороговой мощностью Рпорог, которую определяют следующим образом:
Figure 00000002
Если мгновенная мощность Р меньше или равна пороговой мощности Рпорог, то масштабные коэффициенты, подлежащие умножению на сигналы синфазного и квадратурного каналов, определяют равными 1. Это означает, что выходные сигналы I1 и Q1 блока 3-2 вычисления сигналов компенсации равны 0 и, в результате, управление мощностью исходных сигналов не выполняется. С другой стороны, если мгновенная мощность Р больше пороговой мощности Рпорог, то упомянутые масштабные коэффициенты определяют равными значениям, на которые корректируют мощность исходных сигналов с целью уменьшения ОПСМ, в соответствии со следующим уравнением:
Figure 00000003
В качестве альтернативы, масштабные коэффициенты можно извлечь из таблицы масштабов, хранящейся в запоминающем устройстве (не показано). Эти масштабные коэффициенты подают на блок 3-2 вычисления сигналов компенсации.
Блоки 3-6 и 3-7 умножения из состава блока 3-2 вычисления сигналов компенсации умножают масштабные коэффициенты на исходные сигналы синфазного и квадратурного каналов. Выходные сигналы блоков 3-6 и 3-7 умножения являются результирующими сигналами синфазного и квадратурного каналов, требующимися для линейного функционирования усилителя 2-6 мощности. То есть если мгновенная мощность Р больше пороговой мощности Рпорог, то результирующий сигнал каждого канала, который имеет пороговую мощность Рпорог и ту же фазу, что и исходный сигнал данного канала, можно получить посредством умножения. Блоки 3-8 и 3-9 вычитания вычитают исходные сигналы синфазного и квадратурного каналов из соответствующих результирующих сигналов и формируют сигналы I1 и Q1 компенсации.
Фиг.4 иллюстрирует принцип функционирования блока 3-2 вычисления сигналов компенсации. Согласно Фиг.4, вектор 4-1 исходного сигнала представляет вектор исходных сигналов синфазного и квадратурного каналов, выдаваемых фильтрами-формирователями 2-3 и 2-4 импульсов. Вектор 4-2 результирующего сигнала представляет вектор результирующего сигнала, имеющего ту же фазу, что и вектор 4-1 исходного сигнала, и вышеупомянутую пороговую мощность. Вектор 4-3 сигнала компенсации представляет вектор сигналов I1 и Q1 компенсации, выдаваемых блоком 3-2 вычисления сигналов компенсации по Фиг.3. Внешняя сплошная окружность обозначает пороговую мощность, а внутренняя пунктирная окружность обозначает среднюю мощность исходных сигналов. В рассматриваемом случае вектор 4-3 сигнала компенсации получают посредством вычитания вектора 4-1 исходного сигнала из вектора 4-2 результирующего сигнала.
Сигналы компенсации, выработанные с помощью вышеописанного процесса задания фаз результирующих сигналов равными фазам исходных сигналов, обладают наименьшей мощностью среди всех сигналов компенсации, которые уменьшают ОПСМ исходных сигналов.
Сигналы I1 и Q1 компенсации подают на блоки 3-10 и 3-11 определения максимального уровня сигнала синфазного и квадратурного каналов.
Если импульсы, подаваемые на входы фильтров-формирователей 3-12 и 3-13 импульсов максимального уровня сигнала синфазного и квадратурного каналов, имеют одну и ту же полярность и последовательные ненулевые значения на каждом периоде выборки, то в результате обработки, выполняемой фильтрами-формирователями 3-12 и 3-13 импульсов, вышеупомянутые импульсы накладываются и имеют уровни сигнала, более высокие по сравнению с уровнями сигналов компенсации. Выходные сигналы I2 и Q2 фильтров-формирователей 3-12 и 3-13 импульсов максимального уровня сигнала синфазного и квадратурного каналов суммируют с выходными сигналами I3 и Q3 блоков 3-14 и 3-15 задержки сигнала в сумматорах 3-16 и 3-17, которые могут обусловить дополнительные искажения сигнала.
Для решения данной проблемы блоки 3-10 и 3-11 определения максимального уровня сигнала сохраняют импульсы сигналов компенсации, имеющие одну и ту же полярность и максимальные уровни относительно импульсов с уровнем 0 сигнала среди сигналов компенсации, принятых на каждом периоде выборки, при этом устанавливая остальные сигналы компенсации равными 0.
То есть блоки 3-10 и 3-11 определения максимального уровня сигнала синфазного и квадратурного каналов выбирают сигналы компенсации, имеющие наиболее высокие уровни среди последовательно принятых сигналов компенсации на каждом периоде выборки. Затем фильтры-формирователи 3-12 и 3-13 импульсов максимального уровня сигнала синфазного и квадратурного каналов ограничивают сигналы компенсации с наиболее высоким уровнем желаемой шириной полосы частот.
Как описывалось ранее, фильтры-формирователи 3-12 и 3-13 импульсов максимального уровня сигнала выполняют функцию подавления увеличения ПСК и внеполосных искажений посредством ограничения полосы частот входных сигналов желаемой шириной полосы частот. Следовательно, они могут представлять собой фильтры с конечной импульсной характеристикой (КИХ-фильтры) или фильтры с бесконечной импульсной характеристикой (БИХ-фильтры), предназначенные для ограничения входных сигналов шириной полосы частот выходных сигналов I3 и Q3 блоков 3-14 и 3-15 задержки сигнала.
Фиг.5 иллюстрирует структуру фильтра-формирователя 3-12 (или 3-13) импульсов максимального уровня сигнала, являющегося КИХ-фильтром. Согласно Фиг.5, сигнал А, поступающий из блока 3-10 определения максимального уровня сигнала, задерживается блоками задержки с 5-1 по 5-4. Сигналы на входах и выходах блоков задержки с 5-1 по 5-4 умножаются на коэффициенты с c0 по сn в блоках умножения с 5-5 по 5-8. Сумматор 5-9 суммирует выходные сигналы блоков умножения с 5-5 по 5-8 и выдает сумму В. Для приема на вход сигнала В от фильтра-формирователя 3-12 (или 3-13) импульсов максимального уровня сигнала контроллер 2-8 мощности формирует сигнал I2 (или Q2) в пределах желаемой полосы частот.
Возвращаясь к Фиг.3, блоки 3-14 и 3-15 задержки задерживают исходные сигналы синфазного и квадратурного каналов на заранее заданное время. Эта временная задержка есть время, требующееся для прохождения исходных сигналов синфазного и квадратурного каналов от блока 3-1 определения масштаба через фильтры-формирователи 3-12 и 3-13 импульсов максимального уровня сигнала.
Сумматоры 3-16 и 3-17 суммируют выходной сигнал I3 блока 3-14 задержки с выходным сигналом I2 фильтра-формирователя 3-12 импульсов максимального уровня сигнала, а также выходной сигнал Q3 блока 3-15 задержки с выходным сигналом Q2 фильтра-формирователя 3-13 импульсов максимального уровня сигнала. Сигналы I2 и Q2 - это сигналы компенсации с наиболее высокими уровнями после обработки в фильтрах-формирователях 3-12 и 3-13 импульсов максимального уровня сигнала. Следовательно, выходные сигналы сумматоров 3-16 и 3-17 скомпенсированы таким образом, что они обладают мощностью, требующейся для линейности усилителя 2-6 мощности.
Фиг.6 представляет собой соответствующую варианту осуществления настоящего изобретения блок-схему алгоритма, иллюстрирующую функционирование контроллера 2-8 мощности в целом. Согласно Фиг.6, блок 3-1 определения масштаба на этапе 6-1 измеряет уровни исходных сигналов синфазного и квадратурного каналов, принимаемых от фильтров-формирователей 2-3 и 2-4 импульсов синфазного и квадратурного каналов, и вычисляет мгновенную мощность Р(=I2+Q2), а на этапе 6-2 сравнивает мгновенную мощность Р с пороговой мощностью Рпорог. Если мгновенная мощность Р меньше или равна пороговой мощности Рпорог, то на этапе 6-9 масштабный коэффициент определяют равным 1. Если же мгновенная мощность Р больше пороговой мощности Рпорог, то на этапе 6-3 масштабный коэффициент определяют согласно ранее сохраненной таблице масштабов или уравнению (2).
Блок 3-2 вычисления сигналов компенсации на этапе 6-4 получает результирующие сигналы, имеющие ту же фазу, что и исходные сигналы синфазного и квадратурного каналов, и вышеупомянутую пороговую мощность, посредством умножения исходных сигналов синфазного и квадратурного каналов на масштабный коэффициент, а на этапе 6-5 вычисляет сигналы I1 и Q1 компенсации посредством вычитания исходных сигналов синфазного и квадратурного каналов из результирующих сигналов. Сигналы I1 и Q1 компенсации используют для достижения требуемого ОПСМ.
На этапе 6-6 блоки 3-10 и 3-11 определения максимального уровня сигнала определяют сигнал компенсации с наиболее высоким уровнем посредством повторения этапов с 6-1 по 6-5 на каждом периоде выборки. На этапе 6-7 фильтры-формирователи 3-12 и 3-13 импульсов максимального уровня сигнала ограничивают предназначенную для передачи ширину полосы частот сигнала компенсации с наиболее высоким уровнем.
На этапе 6-8 сумматоры 3-16 и 3-17 суммируют выходные сигналы фильтров-формирователей 3-12 и 3-13 импульсов с исходными сигналами синфазного и квадратурного каналов, задержанными блоками 3-14 и 3-15 задержки. В результате значения ОПСМ упомянутых сумм скомпенсированы до желаемого уровня.
Фиг.7-12 иллюстрируют изменения мощности, производимые контроллером 2-8 мощности. Фиг.7 иллюстрирует уровни сигналов синфазного и квадратурного каналов, измеренные после обработки фильтрами-формирователями импульсов синфазного и квадратурного каналов на каждом периоде выборки, а Фиг.8 иллюстрирует мгновенные уровни Р (=I2+Q2) мощности выбранных сигналов по Фиг.7.
Фиг.9 иллюстрирует импульсы результирующих сигналов синфазного и квадратурного каналов, полученные посредством умножения исходных сигналов синфазного и квадратурного каналов, обладающих мгновенной мощностью, большей пороговой мощности, на масштабные коэффициенты, вычисляемые на каждом периоде выборки, а Фиг.10 иллюстрирует импульсы сигналов компенсации синфазного и квадратурного каналов, получаемые посредством вычитания импульсов исходных сигналов по Фиг.7 из импульсов результирующих сигналов по Фиг.9 на каждом периоде выборки. Здесь необходимо отметить, что импульсы сигналов компенсации имеют фазы, противоположные фазам исходных сигналов и результирующих сигналов.
Фиг.11 иллюстрирует импульсы сигналов компенсации синфазного и квадратурного каналов, обладающие наиболее высокими уровнями относительно импульсов с уровнем 0 сигнала среди импульсов сигналов компенсации по Фиг.10. Фиг.12 иллюстрирует сигналы компенсации синфазного и квадратурного каналов с наиболее высокими уровнями, прошедшие обработку фильтрами-формирователями импульсов, а также уровни мощности этих сигналов. Сигналы компенсации синфазного и квадратурного каналов по Фиг.12 суммируются с исходными сигналами синфазного и квадратурного каналов по Фиг.7 в сумматорах 3-16 и 3-17. В результате выходные сигналы сумматоров 3-16 и 3-17 обладают значениями ОПСМ, требующимися для усилителя 2-6 мощности.
Второй вариант осуществления
Второй вариант осуществления настоящего изобретения применяется для ВС из состава системы мобильной связи, поддерживающей множество НЧ.
Фиг.13 представляет собой блок-схему соответствующего второму варианту осуществления настоящего изобретения передатчика БС из состава системы мобильной связи, использующей множество НЧ.
Согласно Фиг.13, данный передатчик включает в себя блок 13-1 канальных устройств, блок 13-2 фильтров-формирователей импульсов и усилитель 13-4 мощности. Особенностью является то, что контроллер 13-3 мощности, поддерживающий множество НЧ, помещен между блоком 13-2 фильтров-формирователей импульсов и усилителем 13-4 мощности с целью регулирования значений ОПСМ исходных сигналов НЧ.
При функционировании блок 13-1 канальных устройств содержит множество групп канальных элементов, соответствующих частотам НЧ, и каждая группа канальных элементов включает в себя канальные устройства, аналогичные по конфигурации устройствам группы 2-1 канальных элементов по Фиг.2, и выполняет кодирование, модуляцию и формирование каналов для сигнала каждой НЧ полосы модулирующих частот. Блок 13-1 канальных устройств управляет каждой НЧ независимо. Блок 13-2 фильтров-формирователей импульсов содержит множество фильтров-формирователей импульсов синфазного и квадратурного каналов и ограничивает ширину полосы частот сигналов синфазного и квадратурного каналов, выдаваемых блоком 13-1 канальных устройств для каждой НЧ. Выходные сигналы блока 13-2 фильтров-формирователей импульсов подают на вход контроллера 13-3 мощности, поддерживающего множество НЧ.
Тракт передачи сигналов с множеством НЧ подобен тракту передачи сигнала с одной НЧ по Фиг.2. А именно, контроллер 13-3 мощности, поддерживающий множество НЧ, выдает сигнал, для которого было выполнено управление мощностью, в качестве входного сигнала с высоким ОПСМ с целью обеспечения стабильного функционирования усилителя 13-4 мощности. Усилитель 13-4 мощности усиливает выходной сигнал контроллера 13-3 мощности, поддерживающего множество НЧ, до уровня, достаточного для передачи данного сигнала на все МС, находящиеся в зоне радиопокрытия рассматриваемой сотовой ячейки.
Фиг.14 представляет собой детальную блок-схему соответствующего второму варианту осуществления настоящего изобретения контроллера 13-3 мощности, поддерживающего множество НЧ. Согласно Фиг.14, контроллер 13-3 мощности, поддерживающий множество НЧ, скомпонован из блока 14-1 определения масштаба, множества контроллеров 14-3 и 14-10 - 14-11 мощности и сумматора 14-12. Контроллеры 14-3 и 14-10 - 14-11 мощности регулируют ОПСМ сигнала каждой НЧ способом, аналогичным способу по Фиг.6, за исключением того, что масштабный коэффициент для каждой НЧ вычисляют в корреляции с масштабными коэффициентами сигналов других НЧ.
Блок 14-1 определения масштаба принимает исходные сигналы I1, Q1, I1, Q1,...,IN, QN с множеством НЧ посредством соответствующих блоков возведения в квадрат и вычисляет уровни этих сигналов на каждом периоде выборки. Блок 14-2 вычисления масштаба из состава блока 14-1 определения масштаба вычисляет масштабные коэффициенты для множества НЧ, используя уровни соответствующих сигналов. Масштабные коэффициенты определяют согласно ранее сохраненной таблице масштабов или вычисляют по уравнению (2).
Контроллеры 14-3 и 14-10 - 14-11 мощности выполняют для соответствующих им НЧ те же самые операции, что и контроллер 2-8 мощности по Фиг.6. Далее приводится описание контроллера 14-3 мощности в качестве представителя всех рассматриваемых контроллеров мощности.
Блок 14-4 вычисления сигналов компенсации из состава контроллера 14-3 мощности получает результирующие сигналы синфазного и квадратурного каналов посредством умножения исходных сигналов I1 и Q1 синфазного и квадратурного каналов на масштабный коэффициент S1 для НЧ(1), полученный от блока 14-1 определения масштаба, и вычисляет сигналы компенсации посредством вычитания исходных сигналов I1 и Q1 синфазного и квадратурного каналов из упомянутых результирующих сигналов. Блок 14-5 определения максимального уровня сигнала выбирает сигналы компенсации с наиболее высокими уровнями относительно сигналов с уровнем 0 сигнала среди сигналов компенсации, принимаемых от блока 14-4 вычисления сигналов компенсации на каждом периоде выборки, при этом задавая другие сигналы компенсации равными 0. Выбранные сигналы компенсации подают на фильтр-формирователь 14-6 импульсов.
В то же время блок 14-7 задержки задерживает исходные сигналы I1 и Q1 синфазного и квадратурного каналов, а сумматор 14-8 суммирует эти задержанные сигналы с выходными сигналами фильтра-формирователя 14-6 импульсов, тем самым формируя сигналы, для которых было выполнено управление мощностью. Преобразователь 14-9 частоты повышает частоту сигнала, для которого было выполнено управление мощностью, до частоты ВЧ-сигнала, соответствующего НЧ(1), используя для каждой НЧ отличную от других среднюю частоту.
Контроллеры 14-10 - 14-11 мощности функционируют аналогичным образом и выдают сигналы с НЧ(2) по HЧ(N). Сумматор 14-12 суммирует выходные сигналы контроллеров 14-3 и 14-10 - 14-11 мощности и выдает сумму на усилитель 13-4 мощности.
Фиг.15 иллюстрирует выходной сигнал сумматора 14-12 из состава системы, поддерживающей три НЧ. Согласно Фиг.15, позиции 15-1, 15-2 и 15-3 обозначают окружности, радиусы которых являются уровнями исходных сигналов НЧ(1), НЧ(2) и НЧ(3). Позиция 15-5 обозначает окружность, радиус которой является уровнем опорного сигнала, который заведомо удовлетворяет требованию к ОПСМ, накладываемому на усилитель 13-4 мощности. Частоты исходных сигналов связаны следующим соотношением: НЧ(1)<НЧ(2)<НЧ(3). Вследствие различия полос частот комбинирование сигнала НЧ(1) с сигналом НЧ(2) дает окружность 15-2 с центром, принадлежащим окружности 15-1, а комбинирование сигнала НЧ(2) с сигналом НЧ(3) - окружность 15-3 с центром, принадлежащим окружности 15-2.
Изменение уровня сигнала НЧ(1) происходит быстрее, чем изменение уровня сигнала НЧ(2), а изменение уровня сигнала НЧ(2) быстрее, чем НЧ(3). Следовательно, мгновенный уровень сигнала для каждой НЧ не является постоянным, а периодически меняется по соответствующей окружности. Следовательно, максимальный выходной сигнал сумматора 14-12 можно представить точкой 15-4. Максимальное значение представляет собой сумму уровней сигналов всех НЧ. Чтобы удовлетворить условию, согласно которому сумма мгновенных уровней сигналов должна быть меньше порогового уровня сигнала, необходимо определить масштабные коэффициенты таким образом, чтобы выходной сигнал сумматора 14-12 лежал внутри окружности 15-5.
Таким образом, если сумма мгновенных уровней исходных сигналов для каждой НЧ меньше или равна пороговому уровню сигнала, то контроллер 13-3 мощности, поддерживающий множество НЧ, устанавливает масштабные коэффициенты для всех НЧ равными 1. С другой стороны, если эта сумма больше порогового уровня сигнала, то вычисляют соответствующий масштабный коэффициент. Здесь для всех НЧ применяют один и тот же масштабный коэффициент, либо для каждой НЧ применяют отличный от других масштабный коэффициент.
Если для каждой НЧ имеется отличный от других масштабный коэффициент, то это означает, что НЧ имеют разные приоритеты (или классы обслуживания), то есть уровни приоритета. Таким образом, БС может назначить каждой НЧ отличный от других уровень приоритета. Например, система CDMA2000 EV-DO (только обмен данными) отличает НЧ, относящуюся к службе МДКР первого поколения, от НЧ, относящейся к службе высокоскоростной передачи данных. Так как НЧ, поддерживающая службу высокоскоростной передачи данных, чувствительна к качеству передаваемого сигнала ввиду характеристик этой службы, ей следует обладать более высоким уровнем приоритета по сравнению с НЧ, поддерживающей службу МДКР первого поколения.
Фиг.16 представляет собой блок-схему алгоритма, иллюстрирующую процесс вычисления блоком 14-2 вычисления масштаба единого масштабного коэффициента для N НЧ, имеющих один и тот же уровень приоритета. Согласно Фиг.16, мгновенный уровень сигнала НЧ(1) равен квадратному корню из суммы квадрата уровня исходного сигнала I1 синфазного канала НЧ(1) и квадрата уровня исходного сигнала Q1 квадратурного канала НЧ(1)
Figure 00000004
. После того как для всех НЧ вычислены мгновенные уровни
Figure 00000005
сигнала, на этапе 16-1 их суммируют для получения максимального выходного сигнала сумматора 14-12
Figure 00000006
.
На этапе 16-2 величину
Figure 00000007
сравнивают с заранее заданным или вычисленным пороговым уровнем
Figure 00000008
сигнала. Если
Figure 00000009
меньше или равно
Figure 00000010
, то на этапе 16-3 масштабные коэффициенты для всех НЧ устанавливают равными 1. Если
Figure 00000011
больше
Figure 00000012
, то на этапе 16-2 вычисляют масштабные коэффициенты S по следующей формуле:
Figure 00000013
Масштабные коэффициенты S подают на блоки 14-4 вычисления сигналов компенсации, где их используют для формирования сигналов подавления в случае, когда исходные сигналы имеют максимально возможные уровни сигнала.
Масштабные коэффициенты для N НЧ можно вычислить с использованием весовых коэффициентов или пороговых уровней сигнала в соответствии с классами обслуживания.
В предыдущем способе сигналу каждой НЧ назначали отличный от других весовой коэффициент в целях вычисления масштабного коэффициента для данной НЧ.
Согласно Фиг.17, мгновенный уровень сигнала НЧ(1) равен квадратному корню из суммы квадрата уровня исходного сигнала I1 синфазного канала НЧ(1) и квадрата уровня исходного сигнала Q1 квадратурного канала НЧ(1)
Figure 00000014
. После того как для всех НЧ вычислены мгновенные уровни
Figure 00000015
сигнала, на этапе 17-1 их суммируют для получения максимального выходного сигнала сумматора 14-12
Figure 00000016
На этапе 17-2 величину
Figure 00000017
сравнивают с заранее заданным или вычисленным пороговым уровнем
Figure 00000018
сигнала. Если
Figure 00000019
меньше или равно
Figure 00000020
, то на этапе 17-3 масштабные коэффициенты для всех НЧ устанавливают равными 1. Если
Figure 00000021
больше
Figure 00000022
, то на этапе 17-4 в соответствии с классом обслуживания НЧ(1) вычисляют весовой коэффициент αi для НЧ(1). Весовой коэффициент αi - это весовой коэффициент для i-ой НЧ. Исходные сигналы для всех НЧ с назначенными им весовыми коэффициентами записывают как
Figure 00000023
Больший весовой коэффициент следует назначить НЧ с более высоким приоритетом. Весовой коэффициент НЧ можно определить как показатель приоритета данной НЧ. Если все НЧ разделить по таким категориям, как класс 1 обслуживания или класс 2 обслуживания, и если класс 1 обслуживания имеет более высокий приоритет, чем класс 2 обслуживания, то всем НЧ, относящимся к классу 1 обслуживания, назначают весовой коэффициент 2, а всем НЧ, относящимся к классу 2 обслуживания - весовой коэффициент 1.
Затем на этапе 17-5 вычисляют общий масштабный коэффициент Sобщ по следующей формуле:
Figure 00000024
На этапе 17-6 масштабный коэффициент Si вычисляют посредством умножения общего масштабного коэффициента Sобщ на соответствующий весовой коэффициент αi.
Figure 00000025
Соответствующие частотам НЧ масштабные коэффициенты подают на блоки 14-4 вычисления сигналов компенсации. Весовые коэффициенты влияют на определение масштабных коэффициентов для частот НЧ, и мощность передачи сигнала НЧ с более высоким приоритетом ограничивается в меньшей степени. Следовательно, максимизируется эффективность использования доступной мощности передачи.
Теперь со ссылкой на Фиг.18 и 19 приводится описание способа вычисления масштабных коэффициентов в соответствии с классами обслуживания. Согласно этому способу, блок 14-2 вычисления масштаба устанавливает для каждой НЧ отличный от других пороговый уровень сигнала.
А именно, сначала множество НЧ в убывающем порядке разделяют по таким категориям, как классы обслуживания с 1-го по k-ый, и для каждой НЧ устанавливают пороговый уровень
Figure 00000026
сигнала.
Figure 00000027
- это пороговый уровень для i-ой НЧ, соответствующий ее классу обслуживания, и более высокий пороговый уровень сигнала устанавливают для более высокого класса обслуживания. То есть
Figure 00000028
Сумма
Figure 00000029
пороговых уровней сигнала меньше или равна общему пороговому уровню
Figure 00000030
сигнала, требующемуся в рассматриваемой системе.
В системе CDMA2000 EV-DO НЧ, поддерживающие службу высокоскоростной передачи данных, и НЧ, поддерживающие службу МДКР первого поколения, разделяют по таким категориям, как класс 1 обслуживания и класс 2 обслуживания соответственно.
Согласно Фиг.18, пороговые уровни сигнала, относящиеся к классу 1 обслуживания и классу 2 обслуживания, представлены окружностями 18-1 и 18-2 соответственно. Следовательно, внешняя окружность на Фиг.18 представляет общий пороговый уровень
Figure 00000031
сигнала.
Согласно Фиг.19, мгновенный уровень сигнала НЧ(1) равен квадратному корню из суммы квадрата уровня исходного сигнала I1 синфазного канала НЧ(1) и квадрата уровня исходного сигнала Q1 квадратурного канала НЧ(1)
Figure 00000032
. После того как для всех НЧ вычислены мгновенные уровни
Figure 00000033
сигнала, на этапе 19-1 их суммируют для получения максимального выходного сигнала сумматора 14-12
Figure 00000034
На этапе 19-2 величину
Figure 00000035
сравнивают с заранее заданным (или вычисленным) пороговым уровнем
Figure 00000036
сигнала. Если
Figure 00000037
меньше или равно
Figure 00000038
то на этапе 19-3 масштабные коэффициенты для всех НЧ устанавливают равными 1. Если
Figure 00000039
больше
Figure 00000040
то масштабные коэффициенты для каждой НЧ вычисляют в соответствии с ее уровнем приоритета.
Сначала на этапе 19-4 среднее значение
Figure 00000041
мгновенных уровней сигналов частот НЧ с классом 1 обслуживания сравнивают с пороговым уровнем
Figure 00000042
сигнала для класса 1 обслуживания. Если
Figure 00000043
больше
Figure 00000044
, то на этапе 19-5 масштабные коэффициенты для частот НЧ с классом 1 обслуживания вычисляют как
Figure 00000045
. С другой стороны, если
Figure 00000046
меньше или равно
Figure 00000047
, то масштабные коэффициенты устанавливают равными 1, а новое значение порогового уровня сигнала для частот НЧ с классом 2 обслуживания вычисляют на этапе 19-6 как
Figure 00000048
с той целью, чтобы назначить оставшуюся от частот НЧ с классом 1 обслуживания мощность
Figure 00000049
частотам НЧ с классом 2 обслуживания и тем самым повысить эффективность использования мощности.
Аналогичным образом на этапе 19-7 среднее значение
Figure 00000050
мгновенных уровней сигналов частот НЧ с классом 2 обслуживания сравнивают с новым пороговым уровнем
Figure 00000051
сигнала для класса 2 обслуживания. Если
Figure 00000052
больше нового значения
Figure 00000053
, то на этапе 19-8 масштабные коэффициенты для частот НЧ с классом 2 обслуживания вычисляют как
Figure 00000054
. С другой стороны, если
Figure 00000055
меньше или равно новому значению
Figure 00000056
, масштабные коэффициенты устанавливают равными 1, а новое значение порогового уровня сигнала для частот НЧ с классом 3 обслуживания вычисляют на этапе 19-9 как
Figure 00000057
Когда на этапах 19-10, 19-11 и 19-12 определен масштабный коэффициент для частот НЧ с самым нижним классом k обслуживания, масштабные коэффициенты подают на блоки 14-4 вычисления сигналов компенсации. Описанное управление пороговыми уровнями сигнала гарантирует минимальную производительность в соответствии с характеристиками сигнала каждой НЧ.
В соответствии с настоящим изобретением, описание которого приведено выше, (1) можно без труда реализовать контроллер мощности для разнообразных систем, включая МДКР с расширением спектра прямой последовательностью (МДКР-ПП), широкополосный МДКР (ШМДКР) и МДКР с множеством несущих (МДКР-МН), и использовать его совместно со схемой коррекции предыскажений; (2) в системах, подобных МДКР, можно исправить неэффективное функционирование усилителя мощности, обусловленное высоким значением ОПСМ, являющимся следствием суммы сигналов управления и пользовательских данных, предназначенных для множества пользователей; (3) падение производительности минимизируется без использования дорогостоящих усилителей мощности, что снижает полную стоимость системы; (4) в мобильных системах связи, в особенности в тех из них, что поддерживают множество НЧ, можно гарантировать минимальную производительность в соответствии с характеристиками сигнала каждой НЧ во время передачи сигналов с множеством НЧ, и максимизировать эффективность использования мощности посредством процесса регулирования масштабного коэффициента для сигнала каждой НЧ.
Не взирая на тот факт, что настоящее изобретение было представлено и описано со ссылкой на определенные предпочтительные варианты его осуществления, специалист в рассматриваемой области техники согласится, что разнообразные изменения в его форме и деталях могут быть сделаны без какого-либо отступления от сущности и объема притязаний настоящего изобретения, который определен нижеследующей формулой изобретения.

Claims (35)

1. Устройство управления мощностью передачи в системе мобильной связи, поддерживающей одну назначенную частоту (НЧ), содержащее:
группу канальных устройств, предназначенную для формирования сигнала полосы модулирующих частот синфазного (I) канала и сигнала полосы модулирующих частот квадратурного (Q) канала из данных каждого канала;
два фильтра-формирователя импульсов, предназначенные для фильтрации и формирования импульсов сигналов полосы модулирующих частот;
контроллер мощности, предназначенный для регулирования значений отношения пиковой мощности к средней мощности (ОПСМ) сигналов, прошедших фильтрацию и формирование импульсов, в соответствии с пороговой мощностью, требующейся для линейного усиления мощности;
преобразователь частоты, предназначенный для преобразования сигналов, для которых было выполнено управление мощностью, с повышением частоты в высокочастотные (ВЧ) сигналы и выдачи этих ВЧ сигналов.
2. Устройство управления мощностью передачи по п.1, в котором контроллер мощности содержит блок определения масштаба, предназначенный для приема исходных сигналов синфазного и квадратурного каналов от фильтра-формирователя импульсов, вычисления мгновенной мощности исходных сигналов синфазного и квадратурного каналов на каждом периоде выборки, сравнения мгновенной мощности с пороговой мощностью и определения масштабных коэффициентов в соответствии с результатами сравнения;
блок вычисления сигналов компенсации, предназначенный для вычисления результирующих сигналов посредством умножения исходных сигналов синфазного и квадратурного каналов на масштабные коэффициенты и вычисления сигналов компенсации посредством вычитания исходных сигналов синфазного и квадратурного каналов из результирующих сигналов;
два блока задержки сигнала, предназначенные для задержки исходных сигналов синфазного и квадратурного каналов на время, требующееся блоку вычисления сигналов компенсации и блоку определения масштаба для выполнения своих операций;
два блока определения максимального уровня сигнала, предназначенные для приема сигналов компенсации от блока вычисления сигналов компенсации на каждом периоде выборки и выбора сигналов компенсации с максимальными уровнями;
два фильтра-формирователя импульсов максимального уровня сигнала, предназначенные для фильтрации и формирования импульсов выбранных сигналов компенсации с максимальными уровнями; и
два сумматора, предназначенные для суммирования задержанных сигналов с сигналами компенсации, прошедшими фильтрацию и формирование импульсов.
3. Устройство управления мощностью передачи по п.2, в котором блоки определения максимального уровня сигнала выбирают сигналы компенсации с максимальными уровнями среди последовательных ненулевых сигналов компенсации.
4. Устройство управления мощностью передачи по п.2, в котором масштабные коэффициенты определяют по следующему уравнению:
если мгновенная мощность ≤ пороговая мощность, то масштабный коэффициент = 1;
если мгновенная мощность > пороговая мощность,
Figure 00000058
то масштабный коэффициент =
Figure 00000059
5. Устройство управления мощностью передачи по п.2, в котором пороговую мощность определяют по следующему уравнению:
Figure 00000060
где Рпорог - пороговая мощность, Рсредн - средняя мощность в системе мобильной связи, а потери мощности представляют собой отношение максимальной мощности, требующейся для достижения линейного усиления, к средней мощности.
6. Способ управления мощностью передачи в системе мобильной связи, поддерживающей одну назначенную частоту (НЧ), который включает следующие этапы:
формируют сигнал полосы модулирующих частот синфазного (I) канала и сигнал полосы модулирующих частот квадратурного (Q) канала из данных каждого канала;
выполняют фильтрацию и формирование импульсов сигналов полосы модулирующих частот;
регулируют отношение пиковой мощности к средней мощности (ОПСМ) сигналов, прошедших фильтрацию и формирование импульсов, в соответствии с пороговой мощностью, требующейся для линейного усиления мощности; преобразуют сигналы, для которых было выполнено управление мощностью, с повышением частоты в высокочастотные (ВЧ) сигналы и выдают эти ВЧ сигналы.
7. Способ по п.6, по которому этап регулирования ОПСМ включает в себя этапы, заключающиеся в том, что
принимают исходные сигналы, прошедшие фильтрацию и формирование импульсов, на каждом периоде выборки вычисляют мгновенную мощность исходных сигналов, прошедших фильтрацию и формирование импульсов, и определяют масштабные коэффициенты посредством сравнения мгновенной мощности с пороговой мощностью;
вычисляют результирующие сигналы посредством умножения исходных сигналов на масштабные коэффициенты и вычисляют сигналы компенсации посредством вычитания исходных сигналов из результирующих сигналов; и
комбинируют сигналы компенсации с исходными сигналами, прошедшими фильтрацию и формирование импульсов.
8. Способ по п.7, который далее включает этапы, заключающиеся в том, что
на каждом периоде выборки принимают сигналы компенсации и выбирают сигналы компенсации с максимальными уровнями;
выполняют фильтрацию и формирование импульсов выбранных сигналов компенсации с максимальными уровнями перед комбинированием.
9. Способ по п.8, по которому сигналы компенсации с максимальными уровнями выбирают среди последовательных ненулевых сигналов компенсации.
10. Способ по п.7, который далее включает этап, заключающийся в том, что исходные сигналы задерживают на заранее заданное время таким образом, чтобы к моменту их комбинирования с выбранными сигналами компенсации эти сигналы совпадали по фазе.
11. Способ по п.7, по которому масштабные коэффициенты определяют по следующему уравнению:
если мгновенная мощность ≤ пороговая мощность, то масштабный коэффициент = 1,
если мгновенная мощность > пороговая мощность, то масштабный коэффициент =
Figure 00000061
12. Способ по п.8, по которому пороговую мощность определяют по следующему уравнению:
Figure 00000062
где Рпорог - пороговая мощность, Рсредн - средняя мощность в системе мобильной связи, а потери мощности представляют собой отношение максимальной мощности, требующейся для достижения линейного усиления, к средней мощности.
13. Устройство управления мощностью передачи в системе мобильной связи, поддерживающей множество назначенных частот (НЧ), содержащее:
множество групп канальных устройств, относящихся к каждой из НЧ и предназначенных для формирования сигналов полосы модулирующих частот синфазного (I) канала и сигналов полосы модулирующих частот квадратурного (Q) канала из данных каждого канала;
множество фильтров-формирователей импульсов синфазного и квадратурного каналов, предназначенных для ограничения ширины полосы частот сигналов синфазного и квадратурного каналов, выдаваемых группами канальных устройств для каждой НЧ; и
контроллер мощности НЧ, предназначенный для регулирования значений отношения пиковой мощности к средней мощности (ОПСМ) сигналов, прошедших фильтрацию и формирование импульсов, в соответствии с пороговой мощностью, требующейся для линейного усиления мощности.
14. Устройство управления мощностью передачи по п.13, в котором контроллер мощности НЧ содержит:
блок определения масштаба, предназначенный для приема исходных сигналов синфазного и квадратурного каналов, соответствующих частотам НЧ, от фильтров-формирователей импульсов, вычисления мгновенной мощности исходных сигналов синфазного и квадратурного каналов на каждом периоде выборки, сравнения мгновенной мощности с пороговой мощностью и определения масштабных коэффициентов в соответствии с результатами сравнения;
множество контроллеров мощности, соответствующих частотам НЧ и предназначенных для регулирования значений ОПСМ исходных сигналов НЧ с использованием масштабных коэффициентов; и
сумматор, предназначенный для суммирования выходных сигналов контроллеров мощности.
15. Устройство управления мощностью передачи по п.14, в котором каждый из контроллеров мощности содержит:
блок вычисления сигналов компенсации, предназначенный для вычисления результирующих сигналов посредством умножения исходных сигналов синфазного и квадратурного каналов на масштабные коэффициенты и вычисления сигналов компенсации посредством вычитания исходных сигналов синфазного и квадратурного каналов из результирующих сигналов;
блок задержки сигнала, предназначенный для задержки исходных сигналов синфазного и квадратурного каналов на время, требующееся блоку вычисления сигналов компенсации и блоку определения масштаба для выполнения своих операций;
сумматор, предназначенный для суммирования задержанных сигналов с сигналами компенсации.
16. Устройство управления мощностью передачи по п.15, в котором каждый из контроллеров мощности далее включает в себя:
блок определения максимального уровня сигнала, предназначенный для приема сигналов компенсации на каждом периоде выборки и выбора сигналов компенсации с максимальными уровнями;
фильтр-формирователь импульсов максимального уровня сигнала, предназначенный для фильтрации и формирования импульсов выбранных сигналов компенсации с максимальными уровнями.
17. Устройство управления мощностью передачи по п.16, в котором блок определения максимального уровня сигнала выбирает сигналы компенсации с максимальными уровнями среди последовательных ненулевых сигналов компенсации.
18. Устройство управления мощностью передачи по п.14, в котором если множество НЧ имеет один и тот же класс обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000063
где Рi(i=1, 2,..., N) - мгновенная мощность сигнала i-й НЧ, Рпорог - пороговая мощность, а Si - масштабный коэффициент для i-й НЧ.
19. Устройство управления мощностью передачи по п.14, в котором если множество НЧ имеет разные классы обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000064
где Si - масштабный коэффициент i-й НЧ (i=1, 2,..., N), αI - весовой коэффициент, назначенный i-й НЧ, Рпорог - пороговая мощность, a Рi - мгновенная мощность сигнала i-й НЧ.
20. Устройство управления мощностью передачи по п.14, в котором если множество НЧ имеет разные классы обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000065
где Рi - мгновенная мощность (i=1, 2,...,N),
Figure 00000066
- пороговая мощность, соответствующая классу обслуживания i-й Н4, а Si - масштабный коэффициент для i-й НЧ.
21. Устройство управления мощностью передачи по п.20, в котором если сигнал некоторой НЧ, обладающий более высоким классом обслуживания, чем сигнал i-й НЧ, имеет масштабный коэффициент, равный 1, то новое значение пороговой мощности сигнала i-й НЧ вычисляют посредством суммирования i-ой пороговой мощности
Figure 00000067
с величиной мощности, остающейся от пороговой мощности той НЧ, которая обладает более высоким классом обслуживания.
22. Устройство управления мощностью передачи по п.21, в котором остающаяся величина мощности - это разность между пороговой мощностью и мгновенной мощностью сигнала НЧ с более высоким классом обслуживания.
23. Устройство управления мощностью передачи по п.14, в котором пороговую мощность определяют по следующему уравнению:
Figure 00000068
,
где Рпорог - пороговая мощность, Рсредн - средняя мощность в системе мобильной связи, а потери мощности представляют собой отношение максимальной мощности, требующейся для достижения линейного усиления, к средней мощности.
24. Способ управления мощностью передачи в системе мобильной связи, поддерживающей множество назначенных частот (НЧ), включающий в себя следующие этапы:
для каждой НЧ формируют сигнал полосы модулирующих частот синфазного (I) канала и сигнал полосы модулирующих частот квадратурного (Q) канала из данных каждого канала;
выполняют фильтрацию и формирование импульсов сигналов полосы модулирующих частот, соответствующих частотам НЧ;
регулируют отношение пиковой мощности к средней мощности (ОПСМ) сигналов, прошедших фильтрацию и формирование импульсов, в соответствии с пороговой мощностью, требующейся для линейного усиления мощности, и выдают сигналы, для которых было выполнено регулирование ОПСМ, в ВЧ диапазоне.
25. Способ по п.24, по которому этап регулирования ОПСМ включает в себя следующие этапы:
принимают исходные сигналы каждой НЧ, прошедшие фильтрацию и формирование импульсов, на каждом периоде выборки, вычисляют мгновенную мощность этих исходных сигналов, прошедших фильтрацию и формирование импульсов, и посредством сравнения мгновенной мощности с пороговой мощностью определяют масштабные коэффициенты для данной НЧ;
регулируют ОПСМ исходных сигналов НЧ с использованием масштабного коэффициента;
комбинируют сигналы НЧ, для которых было выполнено регулирование ОПСМ.
26. Способ по п.25, по которому этап регулирования ОПСМ включает в себя следующие этапы:
вычисляют результирующие сигналы посредством умножения исходных сигналов НЧ на масштабные коэффициенты и вычисляют сигналы компенсации посредством вычитания исходных сигналов НЧ из результирующих сигналов; и
суммируют сигналы компенсации с исходными сигналами.
27. Способ по п.26, который далее включает следующие этапы:
на каждом периоде выборки принимают сигналы компенсации и выбирают сигналы компенсации с максимальными уровнями;
выполняют фильтрацию и формирование импульсов выбранных сигналов компенсации с максимальными уровнями перед суммированием.
28. Способ по п.27, по которому сигналы компенсации с максимальными уровнями выбирают среди последовательных ненулевых сигналов компенсации.
29. Способ по п.26, который далее включает этап, на котором исходные сигналы задерживают на заранее заданное время таким образом, чтобы к моменту их суммирования с выбранными сигналами компенсации эти сигналы совпадали по фазе.
30. Способ по п.25, по которому если множество НЧ имеет один и тот же класс обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000069
где Рi (i=1, 2,..., N) - мгновенная мощность сигнала i-й НЧ, Рпорог - пороговая мощность, а Si - масштабный коэффициент для i-й НЧ.
31. Способ по п.25, по которому если множество НЧ имеет разные классы обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000070
где Si - масштабный коэффициент i-й НЧ (1=1, 2,..., N), αI - весовой коэффициент, назначенный i-й НЧ, Рпорог - пороговая мощность, a Рi - мгновенная мощность сигнала i-й НЧ.
32. Способ по п.25, по которому если множество НЧ имеет разные классы обслуживания, то каждый из масштабных коэффициентов определяют согласно следующему уравнению:
Figure 00000071
где Рi - мгновенная мощность (i = 1, 2,..., N) i-й НЧ,
Figure 00000072
- пороговая мощность, соответствующая классу обслуживания i-й Н4, а Si - масштабный коэффициент для сигнала i-й НЧ.
33. Способ по п.32, по которому если сигнал некоторой НЧ, обладающий более высоким классом обслуживания, чем сигнал i-й НЧ, имеет масштабный коэффициент, равный 1, то новое значение пороговой мощности сигнала i-й НЧ вычисляют посредством суммирования i-й пороговой мощности (
Figure 00000073
) с величиной мощности, остающейся от пороговой мощности той НЧ, которая обладает более высоким классом обслуживания.
34. Способ по п.33, по которому остающаяся величина мощности - это разность между пороговой мощностью и мгновенной мощностью сигнала НЧ с более высоким классом обслуживания.
35. Способ по п.25, по которому пороговую мощность определяют по следующему уравнению:
Figure 00000074
,
где Рпорог - пороговая мощность, Рсредн - средняя мощность в системе мобильной связи, а потери мощности представляют собой отношение максимальной мощности, требующейся для достижения линейного усиления, к средней мощности.
RU2003106808A 2001-07-13 2002-07-10 Устройство и способ управления мощностью передачи в системе мобильной связи RU2251800C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001/42312 2001-07-13
KR20010042312A KR100547843B1 (ko) 2001-07-13 2001-07-13 이동통신 시스템의 송신전력 제어장치 및 방법

Publications (2)

Publication Number Publication Date
RU2003106808A RU2003106808A (ru) 2004-07-10
RU2251800C2 true RU2251800C2 (ru) 2005-05-10

Family

ID=19712137

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003106808A RU2251800C2 (ru) 2001-07-13 2002-07-10 Устройство и способ управления мощностью передачи в системе мобильной связи

Country Status (13)

Country Link
US (1) US6944469B2 (ru)
EP (1) EP1276233B1 (ru)
JP (1) JP3908732B2 (ru)
KR (1) KR100547843B1 (ru)
CN (1) CN1213551C (ru)
AU (1) AU2002315936B2 (ru)
BR (1) BR0205754A (ru)
CA (1) CA2421235C (ru)
DE (2) DE60224242T2 (ru)
FR (1) FR2827445B1 (ru)
GB (1) GB2381396B (ru)
RU (1) RU2251800C2 (ru)
WO (1) WO2003007507A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064537B2 (en) 2006-11-03 2011-11-22 Qualcomm Incorporated Method and apparatus for dynamically adjusting a transmission power spectral density of pilot and data symbols
US8315226B2 (en) 2006-01-05 2012-11-20 Qualcomm Incorporated Power control and handoff with power control commands and erasure indications
RU2494534C2 (ru) * 2008-12-17 2013-09-27 Ресерч Ин Моушен Лимитед Способ уменьшения пиковой мощности (варианты) и система связи
US8548383B2 (en) 2008-08-27 2013-10-01 Qualcomm Incorporated Power spectrum density control for wireless communications
RU2496266C2 (ru) * 2009-04-27 2013-10-20 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ управления мощностью
RU2531356C2 (ru) * 2009-05-07 2014-10-20 Телефонактиеболагет Лм Эрикссон (Пабл) Управление потребляемой мощностью устройства мобильной связи

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20121863U1 (de) 2000-07-26 2003-06-26 Interdigital Tech Corp Benutzervorrichtung mit einer Sendeleistungsregelung
DE10206966B4 (de) * 2002-02-19 2011-08-11 Rohde & Schwarz GmbH & Co. KG, 81671 Verfahren zum Schätzen von Verstärkungsfaktoren eines CDMA-Signals
JP4152205B2 (ja) * 2003-01-29 2008-09-17 富士通株式会社 ディジタルベースバンド変/復調装置
JP4099086B2 (ja) * 2003-02-28 2008-06-11 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線制御装置、基地局及び送信電力制御方法
GB2402308B (en) * 2003-05-28 2006-01-04 Nokia Corp Par reduction for edge clipper
US7808944B2 (en) * 2003-11-21 2010-10-05 Interdigital Technology Corporation Wireless communication method and apparatus for controlling the transmission power of downlink and uplink coded composite transport channels based on discontinuous transmission state values
US7142831B2 (en) * 2003-12-18 2006-11-28 Kiomars Anvari Crest factor reduction and amplitude pre-distortion for multi-carrier signals
KR20050087893A (ko) * 2004-02-27 2005-09-01 삼성전자주식회사 코드분할 다중접속 이동통신 시스템에서의 피크 전력 대평균전력 비 감소 장치 및 방법
US20050195916A1 (en) * 2004-03-04 2005-09-08 Kiomars Anvari Clipping technique for bursty complex and real signal
JP4701345B2 (ja) * 2004-03-04 2011-06-15 エスティー‐エリクソン、ソシエテ、アノニム ベースバンド・プロセッサと無線周波数サブシステムにコマンドを送信する方法とベースバンド・プロセッサを内蔵する無線電気通信装置
KR100606358B1 (ko) * 2004-09-10 2006-07-28 엘지노텔 주식회사 이동통신 시스템의 다중 에프에이용 송신기 및 그 제어방법
US7715866B2 (en) * 2004-10-12 2010-05-11 Pauli Seppinen Power control
KR100882529B1 (ko) * 2005-04-20 2009-02-06 삼성전자주식회사 광대역 무선통신시스템에서 피크 전력 대 평균 전력비를감소하기 위한 장치 및 방법
CN100527602C (zh) * 2005-06-06 2009-08-12 株式会社Ntt都科摩 多频带用型幂级数型前置补偿器
EP1763146A1 (en) * 2005-09-12 2007-03-14 Sigma Designs, Inc. Ultra wideband baseband chip with intelligent array radio and method of use thereof
US7330070B2 (en) * 2005-11-10 2008-02-12 Nokia Corporation Method and arrangement for optimizing efficiency of a power amplifier
US7583583B2 (en) * 2005-12-15 2009-09-01 Nortel Networks Limited System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
US7596183B2 (en) * 2006-03-29 2009-09-29 Provigent Ltd. Joint optimization of transmitter and receiver pulse-shaping filters
KR100986936B1 (ko) * 2007-03-21 2010-10-12 삼성전자주식회사 다중 에프에이를 사용하는 광대역 무선통신 시스템에서서비스품질을 지원하기 위한 장치 및 방법
JP5212402B2 (ja) * 2010-02-24 2013-06-19 住友電気工業株式会社 ピーク電力抑制回路とこの回路を有する通信装置
US9564939B2 (en) 2010-03-12 2017-02-07 Sunrise Micro Devices, Inc. Power efficient communications
US8416884B2 (en) * 2010-08-18 2013-04-09 Panasonic Corporation Digital RF transmitter optimized for linear quantized IQ up conversion
US8731027B2 (en) * 2011-12-05 2014-05-20 Battelle Energy Alliance, Llc Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
US9497058B2 (en) * 2012-11-26 2016-11-15 Aviacomm Inc. High efficiency adaptive RF transmitter
US10205617B2 (en) * 2013-07-24 2019-02-12 Texas Instruments Incorporated Circuits and methods for reducing the amplitude of complex signals
CN104954051A (zh) * 2014-03-31 2015-09-30 富士通株式会社 脉冲成型滤波器的优化装置、发射机及方法
US10581481B1 (en) 2018-09-18 2020-03-03 Battelle Energy Alliance, Llc Communication device, spread-spectrum receiver, and related method using normalized matched filter for improving signal-to-noise ratio in harsh environments

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302914A (en) * 1992-10-20 1994-04-12 At&T Bell Laboratories Method and apparatus for reducing the peak-to-average power in multi-carrier RF communication systems
FI100152B (fi) * 1993-11-22 1997-09-30 Nokia Telecommunications Oy Menetelmä lähetystehon säätämiseksi sekä tukiasemalaitteisto
US5838732A (en) * 1994-10-31 1998-11-17 Airnet Communications Corp. Reducing peak-to-average variance of a composite transmitted signal generated by a digital combiner via carrier phase offset
US5930299A (en) * 1996-08-08 1999-07-27 Motorola, Inc. Digital modulator with compensation and method therefor
US5991262A (en) * 1997-03-31 1999-11-23 Motorola, Inc. Method and apparatus for reducing peak-to-average power ratio of a composite carrier signal
US6266320B1 (en) * 1998-04-08 2001-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Amplitude limitation in CDMA system
KR100383575B1 (ko) * 1998-05-12 2004-06-26 삼성전자주식회사 단말기의송신전력에서피크전력대평균전력비를줄이기위한확산변조방법및장치
US6366619B1 (en) * 1998-08-28 2002-04-02 Sicom, Inc. Constrained-envelope transmitter and method therefor
US6931053B2 (en) * 1998-11-27 2005-08-16 Nortel Networks Limited Peak power and envelope magnitude regulators and CDMA transmitters featuring such regulators
US6236864B1 (en) * 1998-11-27 2001-05-22 Nortel Networks Limited CDMA transmit peak power reduction
KR100640454B1 (ko) * 2000-04-07 2006-10-31 삼성전자주식회사 이동 통신시스템의 기지국의 송신전력 제어장치 및 방법
JP3877937B2 (ja) * 2000-05-18 2007-02-07 株式会社エヌ・ティ・ティ・ドコモ フィードフォワード増幅器
US6407634B1 (en) * 2000-06-16 2002-06-18 Motorola, Inc. Linear envelope tracking RF power amplifier with adaptive analog signal processing
KR20020071417A (ko) * 2001-03-06 2002-09-12 정영교 이동 통신 시스템의 기지국 송신 전력 제어 시스템 및방법
KR100396777B1 (ko) * 2001-06-08 2003-09-02 엘지전자 주식회사 송신전력 제어회로

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315226B2 (en) 2006-01-05 2012-11-20 Qualcomm Incorporated Power control and handoff with power control commands and erasure indications
US8737360B2 (en) 2006-01-05 2014-05-27 Qualcomm Incorporated Power control and handoff with power control commands and erasure indications
US8064537B2 (en) 2006-11-03 2011-11-22 Qualcomm Incorporated Method and apparatus for dynamically adjusting a transmission power spectral density of pilot and data symbols
US8548383B2 (en) 2008-08-27 2013-10-01 Qualcomm Incorporated Power spectrum density control for wireless communications
RU2494534C2 (ru) * 2008-12-17 2013-09-27 Ресерч Ин Моушен Лимитед Способ уменьшения пиковой мощности (варианты) и система связи
RU2496266C2 (ru) * 2009-04-27 2013-10-20 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ управления мощностью
US9060339B2 (en) 2009-04-27 2015-06-16 Huawei Technologies Co., Ltd. Power control method and device
RU2531356C2 (ru) * 2009-05-07 2014-10-20 Телефонактиеболагет Лм Эрикссон (Пабл) Управление потребляемой мощностью устройства мобильной связи
US10206177B2 (en) 2009-05-07 2019-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Managing a power consumption of a mobile communication device

Also Published As

Publication number Publication date
CA2421235A1 (en) 2003-01-23
EP1276233A3 (en) 2005-11-30
GB2381396A (en) 2003-04-30
FR2827445B1 (fr) 2005-11-04
DE60224242T2 (de) 2008-05-08
DE20211598U1 (de) 2003-01-23
EP1276233A2 (en) 2003-01-15
DE60224242D1 (de) 2008-02-07
JP3908732B2 (ja) 2007-04-25
AU2002315936B2 (en) 2004-05-06
KR100547843B1 (ko) 2006-02-01
WO2003007507A1 (en) 2003-01-23
GB2381396B (en) 2003-11-19
US20030054851A1 (en) 2003-03-20
CA2421235C (en) 2008-01-22
GB0216065D0 (en) 2002-08-21
CN1213551C (zh) 2005-08-03
CN1466826A (zh) 2004-01-07
BR0205754A (pt) 2005-02-15
JP2004522374A (ja) 2004-07-22
KR20030006512A (ko) 2003-01-23
EP1276233B1 (en) 2007-12-26
FR2827445A1 (fr) 2003-01-17
US6944469B2 (en) 2005-09-13

Similar Documents

Publication Publication Date Title
RU2251800C2 (ru) Устройство и способ управления мощностью передачи в системе мобильной связи
AU2002315936A1 (en) Apparatus and method for controlling transmission power in a mobile communication system
US8619903B2 (en) Crest factor reduction for a multicarrier-signal with spectrally shaped single-carrier cancelation pulses
EP1835678B1 (en) Peak suppression method, and corresponding apparatus
RU2003106808A (ru) Устройство и способ управления мощностью передачи в системе мобильной связи
CA2452349C (en) System and method for post filtering peak power reduction in multi-carrier communications systems
EP1802065A1 (en) Apparatus and method for crest factor reduction in a communication system
EP2019491B1 (en) Strain control device and method
JP4298167B2 (ja) Cdmaシステムにおける振幅の制限
EP1360760B1 (en) Amplitude limitation
US8027406B2 (en) Transmitter
JP2000252868A (ja) Cdma通信装置とその自動利得制御回路
US6118987A (en) Radio transmitting apparatus and gain control method for the same based on complex weight coefficients and modulation precision characteristics
CN102437838B (zh) 由功率放大器传输信号
AU6525299A (en) Control of amplitude level of baseband signal to be transmitted on the basis of the number of transmission codes
JP2002305489A (ja) 符号多重信号送信装置
CN111464476A (zh) 一种削波方法及装置
KR20070029307A (ko) 다중 fa를 사용하는 통신시스템의 적응형 cfr
US6999734B2 (en) Nonlinear compensating circuit, base-station apparatus, and transmission power clipping method
JP2013062732A (ja) ピークファクタ低減装置および基地局、無線システム
CA2450378C (en) System and method for post filtering peak power reduction in communications systems
EP1596618A1 (en) Radio communication system, base station apparatus, and downstream transmission directing characteristic control method used therefor
JP2003152593A (ja) 送信ピーク制限回路
JP2004193663A (ja) 歪補償増幅装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170711