RU2250806C1 - Способ изготовления тонких листов из высокопрочных титановых сплавов - Google Patents
Способ изготовления тонких листов из высокопрочных титановых сплавов Download PDFInfo
- Publication number
- RU2250806C1 RU2250806C1 RU2003125890/02A RU2003125890A RU2250806C1 RU 2250806 C1 RU2250806 C1 RU 2250806C1 RU 2003125890/02 A RU2003125890/02 A RU 2003125890/02A RU 2003125890 A RU2003125890 A RU 2003125890A RU 2250806 C1 RU2250806 C1 RU 2250806C1
- Authority
- RU
- Russia
- Prior art keywords
- rolling
- temperature
- deformation
- sheets
- thickness
- Prior art date
Links
Images
Landscapes
- Metal Rolling (AREA)
Abstract
Изобретение относится к обработке металлов давлением, а именно к способам изготовления тонких листов из высокопрочных титановых сплавов методом пакетной прокатки. Задача изобретения - получение листов с ультрамелкозернистой структурой, пригодных для сверхпластической деформации при температурах ниже 800°С. В предлагаемом способе изготовления тонких листов исходную заготовку с размером зерна α-фазы не более 2 мкм получают методом горячей прокатки кованого или штампованного сляба с относительной толщиной hз/hk=8,0-10,0, где hз - толщина исходной заготовки перед пакетной прокаткой, мм, hk - толщина готовых листов, мм, затем охлаждают со скоростью 200-400°С/мин. Последующую термомеханическую обработку проводят в квазиизотермических условиях методом горячей прокатки пакета заготовок, помещенных в стальной кейс, в продольном и поперечном направлениях с разворотом на 90°. Изменение направления прокатки осуществляют при достижении суммарной степени деформации в одном направлении 60-70%. Величина частных обжатий при одном цикле нагрева составляет не менее 10%, причем в каждом последующем проходе не более чем в предыдущем, а температура каждого последующего прохода прокатки не превышает предыдущую, кроме того, температуру горячей деформации пакета устанавливают в диапазоне на 200-300°С ниже температуры полиморфного превращения. Изобретение обеспечивает получение крупногабаритных тонких листов с субмикрокристаллической структурой и необходимым комплексом механических свойств. 3 з.п. ф-лы, 2 ил.,1 табл.
Description
Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочных титановых сплавов методом пакетной прокатки.
Известен способ изготовления тонких листов (0,076-1,0 мм) из титана, циркония и их сплавов (патент США № 2985945, опубл. 30.05.61). Способ включает подготовку карточной заготовки, сборку заготовок в пакет в стальном кейсе, нагрев пакета до 727-759°С, горячую прокатку пакета, отжиг, холодную прокатку со степенью деформации 10-60%, термообработку, раскрой пакета и операции отделки листов.
Способ позволяет получить требуемые механические свойства листов в продольном и поперечном направлениях за счет поддержания оптимальных температурно-деформационных условий процесса. Размер зерна полученных листов составляет 4-6 мкм и более.
Формовка изделий в условиях сверхпластической деформации (СПД) из указанных листов возможна только при высоких температурах (900-960°С), что существенно усложняет технологический процесс и удорожает стоимость получаемых изделий.
Известно, что для снижения температуры деформации в условиях сверхпластичности необходимо получить заготовку с субмикрокристаллической структурой с размером зерен 1 мкм и менее (Кузнечно-штамповочное производство, 1999 г., №7, с.17-19). Получение полуфабрикатов с таким размером зерен позволит снизить температуру деформации на сотни градусов - в зависимости от легированности сплавов. Одним из наиболее технически приемлемых способов получения такой структуры является метод многосторонней изотермической ковки. Однако существуют определенные трудности реализации предлагаемых процессов в промышленных условиях на существующем оборудовании.
Наиболее близким аналогом к заявляемому изобретению является способ обработки заготовок из металлов и сплавов посредством термомеханического деформирования за один или несколько этапов, обеспечивающего измельчение микроструктуры материала заготовки за счет выбора условий нагружения (патент РФ № 2203975, кл. C 22 F 1/18, публ. 19.04.2000) - прототип.
Условия нагружения обеспечивают трансформацию микроструктуры в процессе деформации и/или процессе термообработки. Количество этапов деформирования и вид нагружения выбирают с учетом конфигурации исходной и конечной заготовки и размера зерна в исходной заготовке. На первом этапе получают заготовку многокомпонентным нагружением, в частности “кручение - растяжение (сжатие)”. Далее деформирование заготовок проводят в оболочке.
Способ позволяет получать заготовки, в основном, круглого сечения с размером зерен менее 0,5 мкм.
Основным недостатком способа-прототипа является низкая технологичность процесса, ограниченность форм и размеров получаемых заготовок. Реализация процесса в промышленных условиях требует больших капитальных затрат для создания необходимого оборудования и инструмента.
Проведенный анализ патентных и литературных источников показал актуальность создания технологического процесса получения крупногабаритных полуфабрикатов из высокопрочных сплавов титана с однородной микрокристаллической структурой в промышленных условиях на существующем оборудовании.
Задачей изобретения является создание способа изготовления крупногабаритных плоских полуфабрикатов (тонких листов) с получением субмикрокристаллической структуры (размер зерен в пределах 1 мкм) и необходимым комплексом механических свойств, пригодных для сверхпластического деформирования при температурах ниже 800°С.
Поставленная задача решается тем, что в способе изготовления тонких листов из высокопрочных титановых сплавов, включающем операции подготовки заготовки и горячую деформацию пакета заготовок в оболочке, исходную заготовку с размером зерна α-фазы не более 2 мкм получают методом горячей прокатки кованого или штампованного сляба с относительной толщиной hз/hк=8-10, где hз - толщина исходной заготовки перед прокаткой, мм; hк - толщина готового листа, мм, затем охлаждают со скоростью 200-400°С/мин, а последующую термомеханическую обработку проводят в квазиизотермических условиях методом горячей прокатки пакета заготовок, помещенных в стальной кейс, в продольном и поперечном направлениях с разворотом на 90°С, причем изменение направления прокатки осуществляют при достижении суммарной степени деформации в одном направлении 60-70%. Величина частных обжатий при одном цикле нагрева составляет не менее 10%, причем в каждом последующем проходе при прокатке пакета не более чем в предыдущем, а температура каждого последующего прохода прокатки не превышает предыдущую, кроме того, температуру горячей деформации пакета заготовок в кейсе устанавливают в диапазоне на 200-300°С ниже температуры полиморфного превращения (Тпп).
Создание в заготовке структуры с размером зерен менее 2 мкм достигается путем проведения операции термообработки при получении требуемого размера заготовки с регламентированной скоростью охлаждения. Термообработку заготовок проводят при температуре Тпп+(50-150)°С с последующим охлаждением в воде со скоростью 200-400°С/мин. Такой режим позволяет получить в структуре материала заготовки игольчатый α-мартенсит с величиной зерна не более 2 мкм.
Дальнейшее измельчение зерна обеспечивается режимом термомеханической деформации пакета заготовок в оболочке (стальном кейсе). Горячая прокатка при температуре Тпп - (200-300)°С со степенью деформации 60-70% разрушает игольчатый мартенсит. В результате структура преобразуется в α-фазу, которая деформируется с образованием строчечных включений, состоящих из мельчайших зерен, обеспечивая получение субмикроструктуры.
Относительный размер толщины заготовки hз/hк=8-10 принят из условия обеспечения необходимой пластической деформации для получения листов с размером зерен в пределах 1 мкм в процессе горячей деформации пакета заготовок в кейсе.
Кристаллографическую текстуру листов формируют направлением прокатки пакета. Изменение последовательности продольной и поперечной прокатки пакета (разворот на 90 градусов) позволяет получить оптимальную кристаллографическую текстуру в листах и снизить анизотропию механических свойств.
Величину частных обжатий не менее 10% назначают из условия полной проработки сечения обрабатываемой заготовки. Поскольку в процессе прокатки температура обрабатываемого пакета падает, то предусматривают снижение величины частного обжатия с целью сохранения постоянства энергосиловых параметров процесса.
Температуру каждого последующего цикла деформации выбирают не выше предыдущей в целях сохранения получаемого в предыдущем цикле размера зерна.
Для опытного опробования предлагаемого способа изготовления листов, пригодных для СПД при температурах ниже 800°С, был подобран химический состав сплава Ti-6Al-4V в пределах требований спецификации ASM-Т-9046 с следующим содержанием компонентов, мас.%: 5,5-6,0 Аl; 4,0-4,5 V; 0,08-0,16 О2; 0,2-0,3 Fe; 0,06-0,1 Ni; 0,06-0,1 Сr; не более 0,005 С; не более 0,005 N, Ti - остальное.
Целью подбора химического состава сплава было максимально увеличить содержание β-фазы в сплаве путем увеличения содержания легирующих элементов, стабилизирующих β-фазу, что приводит к снижению температуры полиморфного превращения β-фазы в α-фазу и, как следствие, снижение температуры, при которой устанавливается равное количество фаз (50% α-фазы и 50% β-фазы), необходимое для получения наилучших значений свойств сверхпластичности в сплаве, т.е. для снижения напряжения течения при СПД.
Из слитка с таким химическим составом были изготовлены листы размерами 2,23×915×1650 мм (пример 1) и 2,032×1219×3658 мм (пример 2). Температура полиморфного превращения (Тпп) сплава равна 940°С.
Пример 1.
Штампованный в β-области сляб нагревали в электрической печи до температуры Тпп - 40°С и прокатывали с суммарной степенью деформации 25%. Затем раскат повторно нагревали до температуры Тпп +140°С и прокатывали с суммарной степенью деформации 69%. После операции резки на краты и удаления газонасыщенного слоя подкат нагревали до температуры Тпп - 40°С и прокатывали в α+β-области с суммарной степенью деформации 50% на толщину 20 мм (hз/hк=8,97). Полосу толщиной 20 мм разрезали на карточки размером 1380×1120 мм. Карточки нагревали до температуры 1050°С (Тпп +110°С), выдерживали 30 минут и закаливали в воде со скоростью охлаждения 300°С/мин. После удаления с поверхности газонасыщенного слоя и дефектов карточки укладывали в кейс, изготовленный из углеродистой стали. Собранный кейс нагревали до температуры 700°С (Тпп - 240°С) и прокатывали в поперечном направлении относительно направления прокатки первоначальной заготовки (сляба) с суммарной степенью деформации 63% на толщину листа 7,2 мм. Затем карточки перекладывали в кейс для получения готового листа, вновь нагревали до температуры 700°С (Тпп -240°С) и прокатывали с разворотом на 90 градусов в направлении, перпендикулярном направлению первой прокатки пакета с суммарной степенью деформации 63% до получения листов толщиной 2,4 мм. Далее кейс подвергали отжигу при температуре 650°С с выдержкой при этой температуре 60 минут.
Затем проводились обычные отделочные операции, включающие правку листов на ролико-правильной машине, шлифовку, травление, вырезку образцов для испытаний и обрезку листов на готовый размер. В результате были получены листы размерами 2,23×915×1650 мм.
Пример 2.
Листы размерами 2,032×1219×3658 мм производили по аналогии с примером 1 с использованием двойной пакетной прокатки. Отличие заключалось в изменении направления прокатки после закалки карточных заготовок на α’-мартенсит (первой прокатки). Пакет сначала прокатывался в продольном направлении относительно направления прокатки первоначальной заготовки (сляба), а затем в направлении, перпендикулярном направлению первой прокатки пакета.
Были проведены механические испытания образцов листов, полученных по примеру 1 и примеру 2. Результаты механических испытаний приведены в таблице.
Таблица | ||||||
Габариты листов, мм | вдоль направления прокатки | поперек направления прокатки | ||||
σ0,2, МПа | σв, МПа | относительное удлинение, % | σ0,2, МПа | σв, МПа | относительное удлинение, % | |
2,23×915×1650 | 978 | 1049 | 12,0 | 1071 | 1073 | 8,0 |
2,032×1219×3658 | 876 | 903 | 15,6 | 888 | 916 | 10,6 |
Микроструктура полученных листов приведена на фиг.1, где:
а) - микроструктура листов, полученных по примеру 1;
в) - микроструктура листов, полученных по примеру 2.
Анализ микроструктуры показал, что средний размер зерна α-фазы составляет менее 1 мкм, что существенно (в 3-5 раз) меньше, чем размер зерна серийно выпускаемых листов.
Образцы листов подвергли испытаниям в условиях сверхпластической деформации при температуре 760°С при скорости деформации 3·10-4 сек-1.
Результаты испытаний приведены на фиг.2.
Анализ результатов испытаний показал, что напряжение течения материала образцов серийных листов с размером зерна 6,0 мкм, испытанного при температуре 900°С, практически не отличается от напряжения течения материала листов с размером зерна 1,0 мкм, но испытанного при температуре 760°С (при истинной деформации = 1,1 напряжение течения не превышает 35 МПа). Но при этом истинная деформация до разрушения образцов с размером зерна 1,0 мкм составляет 2,0 против 1,7 для образцов от серийно выпускаемых листов. Таким образом, полученные листы пригодны для СПД при температуре 760°С.
Предлагаемый способ позволяет на существующем промышленном оборудовании без дополнительных капитальных затрат изготавливать крупногабаритные тонкие листы с субмикрокристаллической структурой и необходимым комплексом механических свойств, пригодных для сверхпластического деформирования при температурах ниже 800°С.
Снижение температуры СПД позволит значительно повысить стойкость штампов при проведении процесса сверхпластической штамповки и снизить расход электроэнергии при эксплуатации печей. Кроме того, уменьшение температуры нагрева листов перед сверхпластической штамповкой позволит уменьшить затраты на безвозвратные потери металла, связанные с очисткой поверхности детали после процесса штамповки от окалины и газонасыщенного слоя. Безвозвратные потери металла снизятся в 3-10 раз в зависимости от условий проведения СПД.
Claims (4)
1. Способ изготовления тонких листов из высокопрочных титановых сплавов, включающий операции подготовки заготовки и горячую деформацию пакета заготовок в оболочке, отличающийся тем, что исходную заготовку с размером зерна α-фазы не более 2 мкм получают методом горячей прокатки кованого или штампованного сляба с относительной толщиной h3/hk=8,0-10,0, где hз - толщина исходной заготовки перед пакетной прокаткой, мм, hk - конечная толщина готовых листов, мм, затем охлаждают со скоростью 200-400°С/мин, а последующую термомеханическую обработку проводят в квазиизотермических условиях методом горячей прокатки пакета заготовок, помещенных в стальной кейс, в продольном и поперечном направлениях с разворотом на 90°, причем изменение направления прокатки осуществляют при достижении суммарной степени деформации в одном направлении 60-70%.
2. Способ по п.1, отличающийся тем, что величина частных обжатий при одном цикле нагрева составляет не менее 10%, причем в каждом последующем проходе не более чем в предыдущем.
3. Способ по п.1, отличающийся тем, что температура каждого последующего прохода прокатки не превышает предыдущую.
4. Способ по пп.1-3, отличающийся тем, что температуру горячей деформации пакета заготовок устанавливают в диапазоне Тпп-(200-300)°С.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003125890/02A RU2250806C1 (ru) | 2003-08-25 | 2003-08-25 | Способ изготовления тонких листов из высокопрочных титановых сплавов |
EP04775265A EP1658389B1 (en) | 2003-08-25 | 2004-08-25 | Method for manufacturing thin sheets of high-strength titanium alloys |
PCT/RU2004/000330 WO2005019489A1 (en) | 2003-08-25 | 2004-08-25 | Method for manufacturing thin sheets of high-strength titanium alloys |
DE602004011531T DE602004011531T2 (de) | 2003-08-25 | 2004-08-25 | Verfahren zur herstellung von dünnen blechen aus hochfesten titanlegierungen |
US11/351,533 US7708845B2 (en) | 2003-08-25 | 2006-02-10 | Method for manufacturing thin sheets of high strength titanium alloys description |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003125890/02A RU2250806C1 (ru) | 2003-08-25 | 2003-08-25 | Способ изготовления тонких листов из высокопрочных титановых сплавов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003125890A RU2003125890A (ru) | 2005-02-27 |
RU2250806C1 true RU2250806C1 (ru) | 2005-04-27 |
Family
ID=35286091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003125890/02A RU2250806C1 (ru) | 2003-08-25 | 2003-08-25 | Способ изготовления тонких листов из высокопрочных титановых сплавов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2250806C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008004906A1 (fr) * | 2006-07-06 | 2008-01-10 | Institut Problem Sverkhplastichnosti Metallov Ran | Procédé de fabrication d'un blanc en feuille à partir d'un alliage de titane |
RU2555267C2 (ru) * | 2013-06-25 | 2015-07-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов |
RU2569605C1 (ru) * | 2014-06-03 | 2015-11-27 | Публичное акционерное общество "Корпорация ВСМПО-АВИСМА" (ПАО "Корпорация ВСМПО-АВИСМА") | Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si |
RU2691434C2 (ru) * | 2017-04-25 | 2019-06-13 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Листовой материал на основе титанового сплава для низкотемпературной сверхпластической деформации |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112496036A (zh) * | 2020-11-12 | 2021-03-16 | 太原理工大学 | 一种通过轧制制备金属梯度材料的方法 |
-
2003
- 2003-08-25 RU RU2003125890/02A patent/RU2250806C1/ru active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008004906A1 (fr) * | 2006-07-06 | 2008-01-10 | Institut Problem Sverkhplastichnosti Metallov Ran | Procédé de fabrication d'un blanc en feuille à partir d'un alliage de titane |
RU2555267C2 (ru) * | 2013-06-25 | 2015-07-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов |
RU2569605C1 (ru) * | 2014-06-03 | 2015-11-27 | Публичное акционерное общество "Корпорация ВСМПО-АВИСМА" (ПАО "Корпорация ВСМПО-АВИСМА") | Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si |
RU2691434C2 (ru) * | 2017-04-25 | 2019-06-13 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Листовой материал на основе титанового сплава для низкотемпературной сверхпластической деформации |
Also Published As
Publication number | Publication date |
---|---|
RU2003125890A (ru) | 2005-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7708845B2 (en) | Method for manufacturing thin sheets of high strength titanium alloys description | |
US6908519B2 (en) | Isothermal forging of nickel-base superalloys in air | |
RU2441097C1 (ru) | Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов | |
RU2555267C2 (ru) | Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов | |
WO2021219056A1 (zh) | 一种高强度不锈钢转子及其制备方法 | |
CN101815800A (zh) | 具有黄铜织构的再结晶铝合金及其制造方法 | |
CN111438317A (zh) | 一种具有高强高韧近β型钛合金锻件锻造成形的制备方法 | |
RU2487962C2 (ru) | Способ изготовления тонких листов | |
RU2522252C1 (ru) | Способ изготовления тонких листов | |
RU2250806C1 (ru) | Способ изготовления тонких листов из высокопрочных титановых сплавов | |
US6565683B1 (en) | Method for processing billets from multiphase alloys and the article | |
RU2675011C1 (ru) | Способ изготовления плоских изделий из гафнийсодержащего сплава на основе титана | |
RU2243833C1 (ru) | Способ изготовления тонких листов из высокопрочных титановых сплавов | |
RU2691471C1 (ru) | Способ изготовления листового проката из титанового сплава марки вт8 | |
CN105483585B (zh) | 一种室温塑性优异的钛铝基合金制备方法 | |
RU2583567C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ОСОБО ТОНКИХ ЛИСТОВ ИЗ ТИТАНОВОГО СПЛАВА Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si | |
RU2335571C2 (ru) | Способ изготовления плит из титановых сплавов | |
RU2569605C1 (ru) | Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si | |
RU2635650C1 (ru) | Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами | |
RU2318913C1 (ru) | СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ ИЗ β-ТИТАНОВЫХ СПЛАВОВ | |
RU2203975C2 (ru) | Способ обработки заготовок из металлов и сплавов | |
RU2224047C1 (ru) | Способ изготовления листовых полуфабрикатов из титановых сплавов | |
RU2479366C1 (ru) | Способ обработки полуфабрикатов из титанового сплава вт6 | |
RU2224046C1 (ru) | Способ изготовления листовых полуфабрикатов из технического титана | |
RU2790711C1 (ru) | Способ изготовления лопаток газотурбинных двигателей из деформированных заготовок сплава на основе орторомбического алюминида титана |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |