RU2247444C1 - Высокомощный светоизлучающий диод - Google Patents

Высокомощный светоизлучающий диод Download PDF

Info

Publication number
RU2247444C1
RU2247444C1 RU2004108063/28A RU2004108063A RU2247444C1 RU 2247444 C1 RU2247444 C1 RU 2247444C1 RU 2004108063/28 A RU2004108063/28 A RU 2004108063/28A RU 2004108063 A RU2004108063 A RU 2004108063A RU 2247444 C1 RU2247444 C1 RU 2247444C1
Authority
RU
Russia
Prior art keywords
layer
emitting diode
contact pad
metal contact
fragments
Prior art date
Application number
RU2004108063/28A
Other languages
English (en)
Inventor
Д.А. Закгейм (RU)
Д.А. Закгейм
А.Л. Закгейм (RU)
А.Л. Закгейм
С.А. Гуревич (RU)
С.А. Гуревич
И.П. Смирнова (RU)
И.П. Смирнова
Е.Д. Васильева (RU)
Е.Д. Васильева
Г.В. Иткинсон (RU)
Г.В. Иткинсон
Original Assignee
Закрытое акционерное общество "Инновационная фирма "ТЕТИС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Инновационная фирма "ТЕТИС" filed Critical Закрытое акционерное общество "Инновационная фирма "ТЕТИС"
Priority to RU2004108063/28A priority Critical patent/RU2247444C1/ru
Application granted granted Critical
Publication of RU2247444C1 publication Critical patent/RU2247444C1/ru
Priority to PCT/RU2005/000110 priority patent/WO2005088742A1/ru
Priority to EP05731787A priority patent/EP1729349A4/de

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Изобретение относится к области полупроводниковых излучающих приборов, а именно к светоизлучающим диодам на основе нитридных соединений металлов III группы - алюминия, галлия, индия (АIIIN). Техническим результатом изобретения является повышение выходной оптической мощности и КПД светоизлучающего диода. Сущность заявляемого изобретения заключается в том, что в светоизлучающем диоде, включающем расположенную на изолирующей подложке эпитаксиальную структуру с р-n-переходом, содержащую слои n- и р-типа проводимости на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N, (0≤х≤1, 0≤у≤1), а также металлические контактные площадки к слоям n- и р-типа проводимости, расположенные со стороны эпитаксиальных слоев соответственно на уровне нижнего эпитаксиального слоя n-типа проводимости и на уровне верхнего эпитаксиального слоя р-типа проводимости. Проекции на горизонтальную плоскость сечения светоизлучающего диода, области, занимаемые металлической контактной площадкой к слою n-типа проводимости, и области, занимаемые металлической контактной площадкой к слою р-типа проводимости, расположены по площади сечения светоизлучающего диода чередующимися зонами. Металлическая контактная площадка к слою n-типа проводимости имеет участки, выполненные в виде отдельных фрагментов, расположенных в углублениях, вытравленных в эпитаксиальной структуре до слоя n-типа проводимости, причем в проекции на горизонтальную плоскость сечения светоизлучающего диода области, занимаемые указанными фрагментами, окружены со всех сторон областью, занимаемой металлической контактной площадкой к слою р-типа проводимости, при этом фрагменты металлической контактной площадки к n-слою проводимости электрически соединены с помощью металлических шин, проходящих поверх контактной металлической площадки к слою р-типа проводимости по слою диэлектрического материала, нанесенного на участки указанной контактной площадки, над которыми проходят металлические шины. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области полупроводниковых излучающих приборов, а именно к светоизлучающим диодам на основе нитридных соединений металлов III группы - алюминия, галлия, индия (АIIIN).
В последние годы светоизлучающие диоды (светодиоды) находят все более широкое применение в светотехнике, где ключевым требованием к ним является большая выходная оптическая мощность.
Наиболее перспективными для элементной базы светотехники являются светодиоды на основе эпитаксиальных структур в системе твердых растворов AlInGaN, выращенных на изолирующей, например, сапфировой (Аl2O3) подложке, имеющие меза-планарную конструкцию, в которой металлические контактные площадки к слоям n- и р-типа проводимости располагаются со стороны эпитаксиальной структуры.
Существенным условием повышения выходной мощности светоизлучающего диода является обеспечение возможности протекания через него значительного по величине тока питания при условии равномерности его распределения по площади р-n-перехода. При этом для уменьшения джоулевых потерь необходимо, чтобы светоизлучающий диод имел низкое электрическое сопротивление, что для приборов на основе AlInGaN структур является сложной задачей. Последнее обусловлено тем, что в рассматриваемых светоизлучающих диодах ток проходит значительный путь по тонкому (обычно, толщиной 2-3 мкм) n-GaN токопроводящему слою с относительно малой электропроводностью [X.Guo, E.Shubert. Current crowding and optical saturation effects in GaInN/GaN LEDs grown on insulating substrates / Appl. Phys, Lett., v.78 (2001), p.3337].
Известны светодиоды на основе эпитаксиальной структуры в системе твердых растворов AlInGaN со сложной конфигурацией контактных площадок [см., например, патент US 6,307,218 В1], которая должна обеспечивать повышение допустимой величины питающего тока и равномерность его распределения. Так, в частности, известно решение по патенту US 6,518,598 В1, в котором для достижения указанной цели контактным площадкам к слоям n- и р-типа проводимости, расположенным соответственно на уровне слоев n- и р-типа проводимости, придается форма "расширяющейся спирали". Однако данные конструкции светодиодов обладают весьма ограниченными возможностями повышения рабочих токов и при этом имеют сложную топологию, что снижает технологичность изготовления и надежность приборов.
Известен высокомощный светоизлучающий диод [патент US 6,521,914], который выбран авторами в качестве прототипа.
Указанный светодиод включает расположенную на изолирующей подложке эпитаксиальную структуру с р-n-переходом, содержащую слои n- и р-типа проводимости, на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N, (0≤x≤1, 0≤y≤l). Светодиод имеет меза-планарную конструкцию с выводом излучения через подложку и содержит расположенную на уровне нижнего эпитаксиального слоя n-типа проводимости металлическую контактную площадку к слою n-типа проводимости и расположенную на уровне верхнего эпитаксиального слоя р-типа проводимости металлическую контактную площадку к слою р-типа проводимости. В проекции на горизонтальную плоскость сечения светодиода области, занимаемые металлической контактной площадкой к слою n-типа проводимости, и области, занимаемые металлической контактной площадкой к слою р-типа проводимости, расположены по площади сечения светодиода чередующимися полосами, образуя встречно-штыревую (гребенчатую) конфигурацию.
Рассматриваемый светодиод обеспечивает возможность пропускания значительного по величине тока питания (до 1А) и при этом имеет относительно низкое электрическое сопротивление (около 1 Ом), что позволяет достичь достаточно высоких значений выходной оптической мощности и КПД. Однако в данной конструкции светодиода контактная площадка к слою n-типа проводимости выполнена в виде совокупности протяженных полос, что приводит к потере значительной части активной площади светодиода (площади р-n-перехода), что ограничивает возможности улучшения указанных энергетических параметров рассматриваемого полупроводникового источника света.
Задачей заявляемого изобретения является повышение выходной оптической мощности и КПД светоизлучающего диода.
Сущность заявляемого изобретения заключается в том, что в светоизлучающем диоде, включающем расположенную на изолирующей подложке эпитаксиальную структуру с р-n-переходом, содержащую слои n- и р-типа проводимости на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N, (0≤x≤1, 0≤y≤1), a также металлические контактные площадки к слоям n- и р-типа проводимости, расположенные со стороны эпитаксиальных слоев соответственно на уровне нижнего эпитаксиального слоя n-типа проводимости и на уровне верхнего эпитаксиального слоя р-типа проводимости, причем в проекции на горизонтальную плоскость сечения светоизлучающего диода области, занимаемые металлической контактной площадкой к слою n-типа проводимости, и области, занимаемые металлической контактной площадкой к слою р-типа проводимости, расположены по площади сечения светоизлучающего диода чередующимися зонами, согласно изобретению металлическая контактная площадка к слою n-типа проводимости имеет участки, выполненные в виде отдельных фрагментов, расположенных в углублениях, вытравленных в эпитаксиальной структуре до слоя n-типа проводимости, причем в проекции на горизонтальную плоскость сечения светоизлучающего диода области, занимаемые указанными фрагментами, окружены со всех сторон областью, занимаемой металлической контактной площадкой к слою р-типа проводимости, при этом фрагменты металлической контактной площадки к n-слою проводимости электрически соединены с помощью металлических шин, проходящих поверх контактной металлической площадки к слою р-типа проводимости по слою диэлектрического материала, нанесенного на участки указанной контактной площадки, над которыми проходят металлические шины.
Возможен вариант выполнения изобретения, в котором каждый из фрагментов металлической контактной площадки к слою n-типа проводимости имеет форму круга, указанные фрагменты в проекции на горизонтальную плоскость сечения светоизлучающего диода расположены равномерно распределенными по площади сечения светоизлучающего диода рядами.
Возможен вариант выполнения изобретения, в котором металлическая контактная площадка к слою р-типа проводимости имеет форму квадрата, а металлическая контактная площадка слою n-типа проводимости включает четыре фрагмента, каждый из которых имеет г-образную форму, указанные фрагменты расположены таким образом, что в проекции на горизонтальную плоскость сечения светоизлучающего диода они образуют в центральной части площади сечения светоизлучающего диода углы квадрата.
Благодаря тому, что металлическая контактная площадка к n-слою проводимости имеет участки, выполненные в виде отдельных фрагментов, расположенных таким образом, что в проекции на горизонтальную плоскость сечения светодиода области, занимаемые указанными фрагментами, чередуются с областями, занимаемыми металлической контактной площадкой к слою р-типа проводимости, и окружены указанными областями со всех сторон, достигается (даже для светодиодов больших размеров) равномерная инжекция тока в область р-n-перехода и, соответственно, обеспечивается близкое к однородному распределение тока по площади р-n-перехода. При этом за счет использования металлических шин, электрически соединяющих отдельные фрагменты, проложенных по слою диэлектрика поверх металлической контактной площадки к слою р-типа проводимости, высвобождается значительная часть площади активной области светодиода и снижается электрическое сопротивление, связанное с протеканием тока по металлическим контактам к n-области. Совокупность указанных факторов обеспечивает повышение выходной оптической мощности с единицы площади заявляемого светоизлучающего диода.
На фиг.1 представлен чертеж общего вида светоизлучающего диода (вид сверху) в случае, когда фрагменты металлической контактной площадки к слою n-типа проводимости имеют форму круга; на фиг.2 - то же (разрез А-А и разрез Б-Б на фиг.1); на фиг.3 показан вариант выполнения светоизлучающего диода в случае, когда фрагменты металлической контактной площадки к слою n-типа проводимости имеют г-образную форму.
Светоизлучающий диод содержит подложку 1, изготовленную, в частности, из сапфира, эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N, (0≤x≤1, 0≤у≤1), выращенную методом газофазной эпитаксии из металлоорганических соединений на подложке 1. Эпитаксиальная структура включает ближайший к подложке токопроводящий слой 2 n-типа проводимости (n-GaN), активный слой 3 (InxGa1-xN), включающий р-n-переход, блокирующий слой 4 (p-AlxGa1-xN) и контактный слой 5 р-типа проводимости (p-GaN). Светоизлучающий диод также содержит металлическую контактную площадку 6 к слою р-типа проводимости и металлическую контактную площадку 7 к слою n-типа проводимости.
У светоизлучающего диода, представленного на фиг.1, 2, контактная площадка 6 имеет в горизонтальной плоскости сечения светодиода прямоугольную форму и занимает почти всю площадь светодиода. Контактная площадка 7 образована полосой, проходящей вдоль одной стороны контактной площадки 6 и расположенной в соответствующем по форме углублении, вытравленном в эпитаксиальной структуре до уровня слоя 2 n-типа проводимости, а также имеющими форму круга фрагментами, расположенными также в углублениях, вытравленных до уровня слоя 2. Указанные фрагменты в проекции на горизонтальную плоскость сечения светодиода расположены равномерно распределенными по площади светодиода рядами и электрически соединены с участком контактной площадки 7, выполненным в виде полосы, и друг с другом с помощью металлических шин 8, проходящих по слою 9 из диэлектрического материала (например, из магнетронного SiO2), нанесенного в виде полос на участки контактной площадки 6 там, где над ними проходят металлические шины 8.
У светоизлучающего диода, представленного на фиг.3, контактная площадка 6 имеет в горизонтальной плоскости сечения светодиода форму квадрата и занимает почти всю площадь светодиода. Контактная площадка 7 образована полосой, расположенной по периметру контактной площадки 6 в соответствующем по форме углублении, вытравленном в эпитаксиальной структуре до уровня слоя 2 n-типа проводимости, и четырьмя фрагментами, каждый из которых имеет г-образную форму, расположенными также в углублениях, вытравленных до уровня слоя 2. Указанные фрагменты расположены таким образом, что в проекции на горизонтальную плоскость сечения светодиода они образуют в центральной части площади сечения светодиода углы квадрата. Фрагменты электрически соединены с помощью металлических шин 8 с участком контактной площадки 7, выполненным в виде полосы.
Над теми участками контактной площадки 6, где проложены металлические шины 8, имеется слой 9 из диэлектрического материала.
Устройство работает следующим образом.
При подводе электрического питания к светоизлучающему диоду ток от контактной площадки 6 через слои 5, 4, 3 и по слою 2 эпитаксиальной структуры течет к контактной площадке 7. В активном слое 3, где расположен р-n-переход, при протекании тока происходит генерация светового излучения.
В силу того, что контактный слой 5 р-типа проводимости и блокирующий слой 4 обладают гораздо меньшей электропроводностью, чем токопроводящий слой 2 n-типа проводимости, ток практически не растекается по слоям 5 и 4, а течет вертикально вниз до активного слоя 3 (области р-n-перехода), при этом область генерации света геометрически повторяет область, занимаемую контактной площадкой 6 к слою р-типа проводимости. Поскольку в рассматриваемом светоизлучающем диоде площадь, занимаемая фрагментами контактной площадки 7, мала относительно площади, занимаемой контактной площадкой 6, и при этом для электрической связи фрагментов используются металлические шины 8, проложенные поверх контактной площадки 6, увеличивается доля площади, занимаемой контактной площадкой 6 к слою р-типа проводимости в общей площади светодиода, а следовательно, увеличивается и площадь активной области, где происходит генерация света. При этом сечение металлических шин 8 может быть выбрано достаточно большим, благодаря чему снимаются ограничения на минимизацию электрического сопротивления, связанного с контактом n-области. За счет выбора формы, количества фрагментов контактной площадки к слою n-типа проводимости, а также схемы распределения их по площади светодиода можно достичь высокой степени однородности распределения тока, и, соответственно, повысить ток питания, а следовательно, увеличить выходную оптическую мощность и КПД заявляемого полупроводникового прибора.
Так, в частности, для светоизлучающего диода, конструкция которого представлена на фиг.3, были достигнуты следующие характеристики прибора: при площади активной области 1 мм2 значение прямого тока составило 2 А, а значение электрического сопротивления составило 0,7 Ом, что обеспечило высокую выходную оптическую мощность и высокий КПД данного светоизлучающего прибора.

Claims (3)

1. Светоизлучающий диод, включающий расположенную на изолирующей подложке эпитаксиальную структуру с р-n-переходом, содержащую слои n- и р-типа проводимости на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N, (0≤х≤1, 0≤у≤1), а также металлические контактные площадки к слоям n- и р-типа проводимости, расположенные со стороны эпитаксиальных слоев соответственно на уровне нижнего эпитаксиального слоя n-типа проводимости и на уровне верхнего эпитаксиального слоя р-типа проводимости, причем в проекции на горизонтальную плоскость сечения светоизлучающего диода области, занимаемые металлической контактной площадкой к слою n-типа проводимости, и области, занимаемые металлической контактной площадкой к слою р-типа проводимости, расположены по площади сечения светоизлучающего диода чередующимися зонами, отличающийся тем, что металлическая контактная площадка к слою n-типа проводимости имеет участки, выполненные в виде отдельных фрагментов, расположенных в углублениях, вытравленных в эпитаксиальной структуре до слоя n-типа проводимости, причем в проекции на горизонтальную плоскость сечения светоизлучающего диода области, занимаемые указанными фрагментами, окружены со всех сторон областью, занимаемой металлической контактной площадкой к слою р-типа проводимости, при этом фрагменты металлической контактной площадки к n-слою проводимости электрически соединены с помощью металлических шин, проходящих поверх контактной металлической площадки к слою р-типа проводимости по слою диэлектрического материала, нанесенного на участки указанной контактной площадки, над которыми проходят металлические шины.
2. Светоизлучающий диод по п.1, отличающийся тем, что каждый из фрагментов металлической контактной площадки к слою n-типа проводимости имеет форму круга, указанные фрагменты в проекции на горизонтальную плоскость сечения светоизлучающего диода расположены равномерно распределенными по площади сечения светоизлучающего диода рядами.
3. Светоизлучающий диод по п.1, отличающийся тем, что металлическая контактная площадка к слою р-типа проводимости имеет форму квадрата, а металлическая контактная площадка к слою n-типа проводимости включает четыре фрагмента, каждый из которых имеет Г-образную форму, указанные фрагменты расположены таким образом, что в проекции на горизонтальную плоскость сечения светоизлучающего диода они образуют в центральной части площади сечения светоизлучающего диода углы квадрата.
RU2004108063/28A 2004-03-15 2004-03-15 Высокомощный светоизлучающий диод RU2247444C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2004108063/28A RU2247444C1 (ru) 2004-03-15 2004-03-15 Высокомощный светоизлучающий диод
PCT/RU2005/000110 WO2005088742A1 (fr) 2004-03-15 2005-03-04 Diode lumineuse grande puissance
EP05731787A EP1729349A4 (de) 2004-03-15 2005-03-04 Hochleistungs-leuchtdiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004108063/28A RU2247444C1 (ru) 2004-03-15 2004-03-15 Высокомощный светоизлучающий диод

Publications (1)

Publication Number Publication Date
RU2247444C1 true RU2247444C1 (ru) 2005-02-27

Family

ID=34975878

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004108063/28A RU2247444C1 (ru) 2004-03-15 2004-03-15 Высокомощный светоизлучающий диод

Country Status (3)

Country Link
EP (1) EP1729349A4 (ru)
RU (1) RU2247444C1 (ru)
WO (1) WO2005088742A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549335C1 (ru) * 2013-12-18 2015-04-27 Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" Светоизлучающий диод
RU2570060C1 (ru) * 2014-05-29 2015-12-10 Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" Высоковольтное светоизлучающее устройство

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014102B1 (ko) 2010-04-06 2011-02-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254732A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 半導体発光装置
JPH09266351A (ja) * 1996-03-28 1997-10-07 Fuji Photo Film Co Ltd AlInGaN系半導体発光素子
RU2159483C1 (ru) * 1999-08-13 2000-11-20 Закрытое акционерное общество "Полупроводниковые приборы" Эпитаксиальная полупроводниковая структура нитридов элементов группы а3
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6635904B2 (en) * 2001-03-29 2003-10-21 Lumileds Lighting U.S., Llc Indium gallium nitride smoothing structures for III-nitride devices
GB2378039B (en) * 2001-07-27 2003-09-17 Juses Chao AlInGaN LED Device
US6828596B2 (en) 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
JP3912219B2 (ja) * 2002-08-01 2007-05-09 日亜化学工業株式会社 窒化物半導体発光素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549335C1 (ru) * 2013-12-18 2015-04-27 Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" Светоизлучающий диод
RU2570060C1 (ru) * 2014-05-29 2015-12-10 Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" Высоковольтное светоизлучающее устройство

Also Published As

Publication number Publication date
WO2005088742A1 (fr) 2005-09-22
WO2005088742A8 (fr) 2006-11-09
EP1729349A1 (de) 2006-12-06
EP1729349A4 (de) 2012-05-16

Similar Documents

Publication Publication Date Title
US7842963B2 (en) Electrical contacts for a semiconductor light emitting apparatus
CN112397626B (zh) 一种发光二极管
EP1234343B1 (en) Scalable led with improved current spreading structures
US7544971B2 (en) Lateral current blocking light-emitting diode and method for manufacturing the same
CN111048639B (zh) 一种正装集成单元发光二极管
TWI702738B (zh) 發光二極體元件
CN107437542A (zh) 一种紫外led芯片及其制备方法
KR100748247B1 (ko) 질화물계 반도체 발광다이오드 및 그 제조방법
CN112993108B (zh) 一种发光二极管
KR20120045919A (ko) 반도체 발광소자
US20210351332A1 (en) Optoelectronic semiconductor component
RU2247444C1 (ru) Высокомощный светоизлучающий диод
CN112310259A (zh) 发光二极管元件及其制造方法
CN108735869B (zh) 一种发光二极管
CN207265051U (zh) 一种紫外led芯片
KR20120016830A (ko) 반도체 발광 소자 및 발광 장치
CN112993113B (zh) 一种发光二极管
RU2570060C1 (ru) Высоковольтное светоизлучающее устройство
CN112993114A (zh) 一种发光二极管
CN112993110B (zh) 一种发光二极管
CN112993109B (zh) 一种发光二极管
RU152350U1 (ru) Высоковольтное светоизлучающее устройство
KR100635920B1 (ko) 발광 소자
RU2549335C1 (ru) Светоизлучающий диод

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20070809

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150316