RU2241523C2 - Способ низкотемпературной очистки гелия - Google Patents

Способ низкотемпературной очистки гелия

Info

Publication number
RU2241523C2
RU2241523C2 RU2003102355/15A RU2003102355A RU2241523C2 RU 2241523 C2 RU2241523 C2 RU 2241523C2 RU 2003102355/15 A RU2003102355/15 A RU 2003102355/15A RU 2003102355 A RU2003102355 A RU 2003102355A RU 2241523 C2 RU2241523 C2 RU 2241523C2
Authority
RU
Russia
Prior art keywords
adsorber
temperature
helium
regeneration
adsorption
Prior art date
Application number
RU2003102355/15A
Other languages
English (en)
Other versions
RU2003102355A (ru
Inventor
И.М. Морковкин (RU)
И.М. Морковкин
Ю.И. Духанин (RU)
Ю.И. Духанин
Е.И. Гуров (RU)
Е.И. Гуров
Original Assignee
Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш") filed Critical Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority to RU2003102355/15A priority Critical patent/RU2241523C2/ru
Publication of RU2003102355A publication Critical patent/RU2003102355A/ru
Application granted granted Critical
Publication of RU2241523C2 publication Critical patent/RU2241523C2/ru

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

Изобретение относится к криогенной технике. Способ включает адсорбцию примесей O2, N2 на уровне 78-80 К в двух переключающихся адсорберах, высокотемпературную регенерацию в виде нагрева до 100-120°С, вакуумирование и охлаждение до рабочей температуры адсорбции, при этом в адсорберы засыпают разное количество сорбента, во вспомогательном адсорбере с меньшим количеством сорбента режим адсорбции проводят с продолжительностью, равной максимальному времени режима регенерации в рабочем адсорбере, после чего в нем осуществляют высокотемпературную регенерацию, в рабочем адсорбере с большим количеством сорбента осуществляют и высокотемпературную и низкотемпературную регенерации, при этом после высокотемпературной регенерации выполняют, например, 2 цикла адсорбционной очистки и низкотемпературной регенерации, причем низкотемпературную регенерацию проводят в три этапа: на первом этапе адсорбер нагревают на 30-40 К выше рабочей температуры абсорбции циркуляцией гелия через адсорбер, которую проводят при том же давлении, что и адсорбцию примесей, за счет эжектирования гелия с более высоким давлением и температурой 270-300 К, при этом из регенерируемого адсорбера отводят “грязный поток”, равный потоку, подаваемому на эжектирование, во вспомогательный адсорбер, работающий в режиме очистки, на втором этапе гелий сбрасывают из адсорбера в атмосферу, на третьем этапе ведут нагрев адсорбера до 5-10°С прокачкой через него чистого теплого гелия за счет эжектирования части гелия, направляемого на очистку, при этом в процессе нагрева вакуумируют полость адсорбера путем периодического отключения чистого потока гелия, прокачиваемого через адсорбер. Изобретение позволяет снизить энергозатраты и сократить время регенерации. 1 ил.

Description

Изобретение относится к криогенной технике и может быть широко использовано при создании низкотемпературных блоков очистки гелия от CO2, O2, N2 и др. примесей.
Известен способ очистки водорода, гелия от низкотемпературных примесей СO2, O2, N2 методом вымораживания, который осуществляют в регенераторах или переключающихся теплообменниках [1].
В данном способе удаление адсорбируемых примесей не обеспечивает необходимой глубины очистки и требует значительного расхода регенерирующего газа, который составляет 25-35% от очищаемого потока.
Известен способ низкотемпературной очистки гелия, включающий адсорбцию O2, N2 на уровне 78-80 К в двух переключающихся адсорберах, высокотемпературную регенерацию отработавшего адсорбера в виде нагрева до 100-120°С, вакуумирование и охлаждение адсорбера до рабочей температуры адсорбции [2].
Основными недостатками данного способа являются его неэкономичность при проведении в обоих адсорберах высокотемпературной регенерации и длительность процесса регенерации.
Решаемая задача - снижение энергозатрат и сокращение времени регенерации.
Для решения поставленной задачи в предлагаемом способе, включающем адсорбцию низкотемпературных примесей О2, N2 на уровне 78-80 К в двух переключающихся адсорберах, высокотемпературную регенерацию в виде нагрева до 100-120°С, вакуумирование и охлаждение до рабочей температуры адсорбции, в адсорберы засыпают разное количество сорбента, при этом во вспомогательном адсорбере с меньшим количеством сорбента режим адсорбции проводят с продолжительностью, равной максимальному времени режима регенерации в рабочем адсорбере, после чего в нем осуществляют высокотемпературную регенерацию, в рабочем адсорбере с большим количеством сорбента осуществляют высокотемпературную и низкотемпературную регенерации, при этом после высокотемпературной регенерации выполняют, например, 2 цикла адсорбционной очистки и низкотемпературной регенерации, причем низкотемпературную регенерацию проводят в три этапа:
на первом этапе адсорбер нагревают на 30-40 К выше рабочей температуры адсорбции циркуляцией гелия через адсорбер, которую проводят при том же давлении, что и адсорбцию примесей, за счет эжектирования гелия с более высоким давлением и температурой 300 К, при этом из регенерируемого адсорбера отводят "грязный поток", равный потоку, подаваемому на эжектирование во вспомогательный адсорбер, работающий в режиме очистки;
на втором этапе гелий сбрасывают из адсорбера в атмосферу;
на третьем этапе ведут нагрев адсорбера до 5-10°С прокачкой через него чистого теплого гелия за счет эжектирования части гелия, направляемого на очистку, при этом в процессе нагрева вакуумируют полость адсорбера путем периодического отключения чистого потока гелия, прокачиваемого через адсорбер.
Проведенный анализ уровня техники позволяет установить, что заявитель не обнаружил аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, следовательно, оно соответствует критерию "новизна".
На фиг.1 изображена схема устройства низкотемпературной очистки гелия по предлагаемому способу.
Устройство включает переключающиеся адсорберы (вспомогательный адсорбер 1, заполненный меньшим по сравнению с рабочим адсорбером 2 количеством сорбента), электронагреватель азота 3, контур циркуляции греющего азота 4 с эжектором 5, контур 6 циркуляции греющего гелия высокого давления с эжектором 7, контур 8 греющего гелия низкого давления с откачным эжектором 9, испаритель 10, рекуперативный теплообменник 11с трубопроводом 12 подачи "грязного потока" гелия и трубопроводом 13 чистого гелия низкого давления, вакуумный насос 14, сужающее устройство 15, технологическую арматуру В1-В20 с трубопроводной обвязкой.
Способ низкотемпературной очистки гелия от O2, N2 осуществляют следующим образом.
Поток гелия, содержащий примеси O2, N2, с давлением, например, 2,5 МПа после компрессора (на черт. не показан) проходит рекуперативный теплообменник 11, где охлаждается обратным потоком гелия низкого давления, например, 0,12 МПа до температуры 80 К. Охлажденный поток гелия по трубопроводу 12 через открытый вентиль В7 поступает в рабочий адсорбер 2, где производится адсорбция из гелия O2, N2. Из адсорбера 2 очищенный поток гелия с температурой 80 К, давлением 2,5 МПа через открытый вентиль В-15 направляют в ожижитель (на черт. не показан). После того как адсорбер 2 отработает до "проскока" примеси, в режим очистки включают вспомогательный адсорбер 1, рабочая кампания которого в режиме очистки по продолжительности равна максимальному времени процесса регенерации в рабочем адсорбере 2, а адсорбер 2 при условии, что перед этим в нем была проведена высокотемпературная регенерация, переводят в режим низкотемпературной регенерации, которую осуществляют в три этапа. На первом этапе закрывают вентиль В15, открывают В-16, В-17 и подают теплый гелий с температурой 300 К под давлением, большим, чем давление, соответствующее режиму адсорбции, например 4,0 МПа в эжектор 7, подключенный к циркуляционному контуру 6. После эжектора 7 суммарный поток поступает в адсорбер 2. На выходе из адсорбера часть потока, эквивалентная расходу, подаваемому на эжектор, соединяется с потоком "грязного потока" гелия, поступающим из теплообменника 11 по трубопроводу 12. Совместный поток проходит очистку от низкотемпературных примесей в адсорбере 1. При достижении температуры регенерирующего гелия на выходе из адсорбера 2 на 30-40 К выше температуры адсорбции 80 К закрывают вентили В-17, В-16, В-7, открывают В-5 и проводят сброс давления из адсорбера в атмосферу. После сброса давления и удаления из адсорбера основного количества адсорбированных низкотемпературных примесей приступают к третьему этапу нагрева адсорбера до 5-10°С, который сочетают с периодической откачкой полости адсорбера 2. Для проведения этого этапа закрывают вентиль В-5, открывают вентили В-13, В-6, В-19. Нагрев адсорбера производят прокачкой теплого чистого газа низкого давления, поступающего по трубопроводу 8 за счет работы эжектора 9, на который отбирают часть "грязного" гелия под рабочим давлением из трубопровода 12. Смешанный поток после эжектора проходит испаритель 10, где нагревается и возвращается в компрессор. В процессе нагрева адсорбера производят периодическую откачку адсорбера эжектором 9 путем закрытия и открытия вентиля В-13. При достижении температуры гелия 5-10°С на выходе из адсорбера 2 третий этап регенерации заканчивается. Далее производят охлаждение адсорбера чистым гелием, который отбирают после адсорбера 1. С этой целью закрывают вентили В-19, В-13 и открывают В-12. Холодный поток гелия проходит сужающее устройство 15, адсорбер 2, вентиль В-6, испаритель 10. При достижении температуры гелия на выходе из адсорбера, равной 80 К, закрывают вентиль В-6, выравнивают давление в адсорбере до рабочего значения, открывают вентили В-7, В-15, закрывают В-12 и переводят адсорбер 2 в режим очистки. Адсорбер 1 ставят в режим высокотемпературной регенерации по известному алгоритму:
высокотемпературный нагрев до 100°С циркуляционным способом с помощью азота, который нагревают в электронагревателе 3, подают в адсорбер 1 через эжектор 5 и вентиль В-10, затем через вентиль В-20 в эжектор 5, при этом часть потока после адсорбера в количестве, равном расходу азота, подаваемого на эжектор 5 после нагревателя 3, выводят через вентиль 4 в атмосферу;
вакуумирование с помощью вакуумного насоса 14 через вентиль В-3 при закрытых вентилях В-1, В-3, В-4, В-20, В-10, В-11, В-12;
охлаждение до рабочей температуры 80 К адсорбции за счет отбора части чистого холодного гелия после адсорбера 2 через сужающее устройство 15, вентиль В-12 и далее через адсорбер 1, вентиль В-1, эжектор 9, испаритель 10.
Так как рабочая кампания адсорбера 1 в режиме очистки рассчитана только на максимальное время регенерации адсорбера 2, поэтому количество адсорбента и габариты его значительно меньше. Высокотемпературную регенерацию адсорбера 2 также осуществляют греющим азотом. В этом случае газообразный азот с давлением 0,8-1,0 МПа проходит электронагреватель 3, нагревается и поступает в адсорбер 2 через вентиль В-14 и эжектор 5, который подсасывает азот после адсорбера через вентиль В-9 с расходом в 2-3 раза больше, чем расход азота высокого давления, подаваемый на эжектор, при этом часть азота, эквивалентная количеству азота, подаваемого на эжектор 5, через вентиль В5 отводится в атмосферу. Такая схема нагрева позволяет обеспечить повышенную циркуляцию азота через адсорбер и обеспечить равномерный нагрев по всему объему адсорбера. После нагрева адсорбера до 100°C циркуляционный нагрев прекращают, после чего проводят вакуумирование адсорбера 2 с помощью насоса 14, а далее охлаждение чистым гелием, отбираемым после адсорбера 1 через вентиль В-12, сужающее устройство 15 и далее через адсорбер 1, вентиль В-6, эжектор 9, испаритель 10.
Сравнение существенных признаков предложенного и известных решений дает основание считать, что предложенное техническое решение отвечает критериям “изобретательский уровень” и “промышленная применимость”.
Таким образом, предлагаемый способ позволяет уменьшить общее количество дорогостоящего сорбента, а главное, снизить энергозатраты в процессе осуществления режимов как высокотемпературной, так и низкотемпературной регенерации, а также время регенерации.
1. Архаров А.М. и др. Криогенные системы. Т.2. - М.: Машиностроение, 1999, с.385-407.
2. Малков М.П., Данилов И.Б. и др. Справочник по физико-техническим основам глубокого охлаждения. - М., 1963, с.290 и 291.

Claims (1)

  1. Способ низкотемпературной очистки гелия, включающий адсорбцию примесей O2, N2 на уровне 78-80 К в двух переключающихся адсорберах, высокотемпературную регенерацию в виде нагрева до 100-120°С, вакуумирование и охлаждение до рабочей температуры адсорбции, отличающийся тем, что в адсорберы засыпают разное количество сорбента, при этом во вспомогательном адсорбере с меньшим количеством сорбента режим адсорбции проводят с продолжительностью, равной максимальному времени режима регенерации в рабочем адсорбере, после чего в нем осуществляют высокотемпературную регенерацию, в рабочем адсорбере с большим количеством сорбента осуществляют и высокотемпературную, и низкотемпературную регенерации, при этом после высокотемпературной регенерации выполняют, например, 2 цикла адсорбционной очистки и низкотемпературной регенерации, причем низкотемпературную регенерацию проводят в три этапа: на первом этапе адсорбер нагревают на 30-40 К выше рабочей температуры абсорбции циркуляцией гелия через адсорбер, которую проводят при том же давлении, что и адсорбцию примесей, за счет эжектирования гелия с более высоким давлением и температурой 270-300 К, при этом из регенерируемого адсорбера отводят “грязный поток”, равный потоку, подаваемому на эжектирование, во вспомогательный адсорбер, работающий в режиме очистки; на втором этапе гелий сбрасывают из адсорбера в атмосферу; на третьем этапе ведут нагрев адсорбера до 5-10°С прокачкой через него чистого теплого гелия за счет эжектирования части гелия, направляемого на очистку, при этом в процессе нагрева вакуумируют полость адсорбера путем периодического отключения чистого потока гелия, прокачиваемого через адсорбер.
RU2003102355/15A 2003-01-29 2003-01-29 Способ низкотемпературной очистки гелия RU2241523C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003102355/15A RU2241523C2 (ru) 2003-01-29 2003-01-29 Способ низкотемпературной очистки гелия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003102355/15A RU2241523C2 (ru) 2003-01-29 2003-01-29 Способ низкотемпературной очистки гелия

Publications (2)

Publication Number Publication Date
RU2003102355A RU2003102355A (ru) 2004-08-10
RU2241523C2 true RU2241523C2 (ru) 2004-12-10

Family

ID=34387534

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003102355/15A RU2241523C2 (ru) 2003-01-29 2003-01-29 Способ низкотемпературной очистки гелия

Country Status (1)

Country Link
RU (1) RU2241523C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606223C2 (ru) * 2011-07-22 2017-01-10 Эксонмобил Апстрим Рисерч Компани Извлечение гелия из потоков природного газа
RU2789934C1 (ru) * 2022-02-28 2023-02-14 Юрий Иванович Духанин Способ получения сверхчистого сжатого гелия в баллонах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАЛКОВ М.П. и др. Справочник по физико-техническим основам глубокого охлаждения. - М., 1963, с.290 и 291. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606223C2 (ru) * 2011-07-22 2017-01-10 Эксонмобил Апстрим Рисерч Компани Извлечение гелия из потоков природного газа
RU2789934C1 (ru) * 2022-02-28 2023-02-14 Юрий Иванович Духанин Способ получения сверхчистого сжатого гелия в баллонах

Similar Documents

Publication Publication Date Title
US5024064A (en) Method of operating adsorption refrigerator
TWI493106B (zh) Cryogenic pump system, compressor and cryogenic pump regeneration method
JP2631827B2 (ja) 水蒸気クライオポンプ
CN103429316B (zh) 干燥来自富氧燃烧工序的湿的富co2气体流的方法
JPH10309426A (ja) 空気から酸素を得るための圧力切換式装置及びその装置の運転方法
RU2241523C2 (ru) Способ низкотемпературной очистки гелия
KR100869518B1 (ko) 헬륨가스의 초저온 정제 방법 및 장치
CN105126536B (zh) 天然气净化装置、净化系统、处理系统及吸附剂再生方法
CN115497650A (zh) 一种高温气冷堆分子筛床和低温活性炭床联合再生方法
KR100450282B1 (ko) 외기 흡입 재생식 흡착 공기건조기의 재생방법 및 장치
JPH1073078A (ja) 真空排気システム
JP3867229B2 (ja) 気体分離装置
JP3195986B2 (ja) ヘリウムガス供給方法及び装置
JP4796688B2 (ja) 希ガス回収方法及び希ガス回収装置
JPH07124440A (ja) 二酸化炭素分離装置
RU2239489C2 (ru) Способ регенерации адсорбера от влаги и устройство для его осуществления
JP3246632B2 (ja) 水素吸蔵合金ヒートポンプ
SU504545A1 (ru) Установка дл очистки и разделени газов
CN105062597B (zh) 天然气净化装置、净化系统、处理系统及吸附剂再生方法
CN203530422U (zh) 一种真空镀膜机抽气系统低温水汽捕集器的配置结构
CN116558229B (zh) 一种可连续工作的氦气纯化器与纯化方法
JPH05340620A (ja) 極低温冷凍装置用常温精製装置
JP3424940B2 (ja) ターボ分子ポンプによる排気方法及び装置
KR102036331B1 (ko) 에어 드라이어시스템
SU1150006A1 (ru) Блок очистки газа

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner