RU2239754C2 - Способ преобразования солнечной энергии, накопленной путём фотосинтеза, в электрическую энергию - Google Patents

Способ преобразования солнечной энергии, накопленной путём фотосинтеза, в электрическую энергию Download PDF

Info

Publication number
RU2239754C2
RU2239754C2 RU2001126058/06A RU2001126058A RU2239754C2 RU 2239754 C2 RU2239754 C2 RU 2239754C2 RU 2001126058/06 A RU2001126058/06 A RU 2001126058/06A RU 2001126058 A RU2001126058 A RU 2001126058A RU 2239754 C2 RU2239754 C2 RU 2239754C2
Authority
RU
Russia
Prior art keywords
water
macroalgae
combustion
pool
specified
Prior art date
Application number
RU2001126058/06A
Other languages
English (en)
Other versions
RU2001126058A (ru
Inventor
Евгений ЯНТОВСКИЙ (DE)
Евгений Янтовский
Original Assignee
Солмекс (Израиль) Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Солмекс (Израиль) Лтд. filed Critical Солмекс (Израиль) Лтд.
Publication of RU2001126058A publication Critical patent/RU2001126058A/ru
Application granted granted Critical
Publication of RU2239754C2 publication Critical patent/RU2239754C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1687Integration of gasification processes with another plant or parts within the plant with steam generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/202Waste heat recuperation using the heat in association with another installation with an internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к способу преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию. Способ осуществляется путем использования электростанции замкнутого цикла, содержащей массив воды для выращивания помещенных в него макроводорослей, и камеру сгорания с псевдоожиженным слоем для сжигания, по меньшей мере, части частично высушенных макроводорослей, содержащих до 60% мас./воды; сжигание производится в искусственно созданной атмосфере кислорода и углекислого газа (диоксида углерода). Изобретение позволяет повысить эффективность преобразования энергии.16 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к способам преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию. Точнее, настоящее изобретение относится к способу преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию с применением электростанции замкнутого цикла. Указанный способ основан на сжигании морских макроводорослей с нулевой эмиссией СО2.
Предшествующий уровень техники
В настоящее время известно и используется множество способов извлечения солнечной энергии для производства электроэнергии. Наиболее широко распространено использование фотоэлектрической энергии и тепловой энергии солнца с оптической концентрацией солнечного света посредством параболических тарелок.
Указанный выше способ, используемый на электростанциях, является неэффективным, так как среднегодовой уровень концентрации энергии (солнечное излучение) относительно низкий, в Центральной Европе около 125 Вт/м2, в Израиле 250 Вт/м2, в пустыне Сахара 290 Вт/м2. Например, энергия в случае с фотоэлектрической энергией, требующаяся для конструкции, имеющей большую поверхность, покрытую чистым силиконом, большие тарелки и гелиостаты, в качестве средств извлечения солнечной энергии, весьма велика в соотношении с количеством топлива, требующимся в производственном процессе. Такие затраты энергии могут быть восполнены системой только через несколько лет использования.
В книге "Энергия и эксергетические потоки", автором которой является изобретатель Е.Ш. Янтовский, и опубликованной Nova Science Publishers (1994), описывается сжигание морских микроводорослей. Однако использование микроводорослей считается неудачным, так как приводит к выходу из строя турбин, используемых на таких электростанциях.
В противопоставление к доводам, изложенным в указанной выше книге, изобретатель обнаружил способ преобразования солнечной энергии в электрическую энергию эффективным способом с высоким выходом энергии, путем использования процесса, включающего сжигание макроводорослей.
Следует заметить, что морские макроводоросли, используемые в настоящем изобретении, существенно превышают размером микроводоросли, и их использование на электростанциях, использующих указанные выше микроводоросли, не представляется возможным. Таким образом, настоящее изобретение также нацелено на новый способ, отличающийся от системы, описанной в указанной книге, не только использованием макроводорослей в противоположность микроводорослям, как описано и предложено выше, но и использованием отличной системы сгорания.
Раскрытие изобретения
В соответствии с настоящим изобретением предлагается способ преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию, путем использования электростанции замкнутого цикла, содержащей: а) массив воды с помещенными в него растущими макроводорослями; и
б) камеру сгорания с псевдоожиженным слоем для сжигания, по меньшей мере, части частично высушенных макроводорослей, содержащих до 60% мас./воды, сжигание производится в искусственно созданной атмосфере кислорода и углекислого газа (диоксида углерода).
Предпочтительный средний размер макроводорослей при осуществлении данного изобретения не менее 5 мкм; указанная атмосфера существенно лишена азота; указанное сжигание производится при температуре не менее 800°С; указанное сжигание производится при давлении, по меньшей мере, равном атмосферному, причем пепел от сжигания сбрасывается в указанный массив воды и служит в качестве питательного вещества для роста макроводорослей.
Указанная искусственно созданная атмосфера существенно лишена азота и создана с помощью установки воздушной сепарации, которая отделяет и выводит из атмосферы азот.
Настоящее изобретение представляет способ, при котором полученный в процессе сжигания углекислый газ подается в указанный массив воды, чтобы способствовать процессу фотосинтеза. При этом упомянутый массив воды в бассейне может содержать соль.
Кроме того, вода представляет собой сточные воды или загрязненные воды.
При осуществлении данного способа вода, выделенная из водорослей перед их сожжением, используется для поглощения углекислого газа, далее направляется в указанный массив воды и используется для охлаждения конденсата пара.
Кроме того, макроводоросли выбираются из группы, состоящей из Gracillaria и Ulva.
Кроме того, газы, полученные в результате указанного сжигания, используются для нагревания пара в паровой энергетической установке Ранкина. Дополнительно газы, полученные в результате указанного сжигания, используются для испарения воды в указанном псевдоожиженном слое.
В реферате японского патента 015 №385 (С-0871) описывается электростанция замкнутого цикла для преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию, включающая массив воды для выращивания в нем морских водорослей и камеру сгорания для сжигания по крайней мере части высушенных водорослей. Однако данное издание не содержит каких-либо указаний или предложений по использованию макроводорослей в противопоставление микроводорослям, не указывает и не предлагает использовать камеру сгорания с псевдоожиженным слоем, не указывает и не предлагает сжигание высушенных макроводорослей, содержащих до 60% мас./воды и также не указывает и не предлагает производить сжигание в искусственно созданной атмосфере кислорода и углекислого газа (диоксида углерода).
Как видно из приведенного ниже описания, макроводоросли легко поддаются выращиванию и сжиганию в камере сгорания с псевдоожиженным слоем в отличие от микроводорослей, которые невозможно сжечь в псевдоожиженном слое из-за малого размера частиц и низкой скорости ожиженного газа. Кроме того, настоящий способ допускает относительно высокое содержание воды -до 60% при использовании искусственно созданной атмосферы кислорода и углекислого газа (диоксида углерода), поскольку в системе нет балласта в виде азота, присутствие которого привело бы к потреблению слишком большего количества энергии в процессе высушивания водорослей, что значительно снизило бы эффективность. Кроме того, недостаток азота в отработавших газах обеспечивает полное поглощение потока углекислого газа, в результате чего эмиссия газов в этом процессе равна нулю и отсутствует необходимость в вытяжных или выводных трубах, поскольку весь кислород используется для испарения воды в указанном псевдоожиженном слое, а весь углекислый газ поглощается в процессе фотосинтеза.
Другая особенность настоящего изобретения заключается в том, что камера сгорания относится к газообразователям с псевдоожиженным слоем и указанные макроводоросли проходят частичное сгорание в указанном газообразователе с псевдоожиженным слоем, а продукты газообразования из указанного газообразователя используются в качестве источника энергии для двигателя с газораспределением или газовой турбины.
Главной целью настоящего изобретения является создание электростанции с уникальным приемником солнечной энергии. Этот приемник будет иметь форму бассейна для выращивания морских водорослей.
Преобразование солнечной радиации осуществляется с помощью реакции фотосинтеза. Эта реакция использует солнечную энергию для превращения углекислого газа и воды в органическое вещество и кислород:
СО22О+hv→CН2О+О2
Углекислый газ, полученный в результате реакции сгорания, сначала разжижается в воде, а затем направляется в бассейн, где используется в качестве питания водорослей. Нижняя теплота сгорания данного органического вещества, представленного в основном формальдегидом, - около 19 МДж/кг. Такая теплота достаточно велика для сгорания. Основная проблема заключается в том, что для роста органическое вещество должно быть сильно растворено в воде, имея, например, отношение вещества к воде в пропорции 1:1000. Это означает, что горючее органическое вещество должно выделяться из бассейна и хотя бы частично отделяться от жидкости. В этих целях возможно использование установки по отделению жидкости.
Как было указано выше, для настоящего исследования предпочтительно использование водоросли Gracillaria. Данная водоросль, которая также выращивается в северном Израиле, может достигать среднего уровня роста в 8 кг/м2/год.
Морская водоросль Ulva также представляет предпочтительный вариант, и она может достичь даже более высоких темпов роста, чем Gracillaria.
Понятно, что самое большое преимущество электростанции, представленной данным изобретением, заключается в том, что она производит энергию без загрязнения окружающей среды, поскольку нет эмиссии СО2, которая усугубляла бы тепличный эффект.
Напряженность потока энергии в проводящем канале, ведущем от бассейна с водорослями к электростанции, которая примерно в 100 раз больше, чем полученная путем оптической концентрации, рассчитывается по уравнению
Конвекция=(a) (s) (V) (LHV)=19000 кВ/м2,
где а - фактор концентрации, равен 10-3 кг топливо/кг воды;
s - специфическая масса воды, равна 10-3 кг/м3;
V - массовая скорость в проводящем канале, равна 1 м/с;
LHV - нижняя теплота сгорания топлива, равна 19 МДж/кг.
Далее будет описано, как будет возможно применять изобретение в некоторых предпочтительных конструктивных реализациях, с ссылкой на ниже приведенные иллюстрации, чтобы описание было более понятным.
Особо следует заметить, что детали, показанные на приведенных иллюстрациях, приведены только в качестве примеров и с целью иллюстративного описания предпочтительных конструктивных реализации настоящего изобретения и представлены с целью обеспечения наиболее полезного и понятного описания принципов и концептуальных аспектов изобретения. В связи с этим не предпринимаются попытки показать конструктивные детали более подробно, чем представляется необходимым для основного понимания изобретения, описание и рисунки наглядно показывают, как формулы изобретения могут быть реализованы на практике.
Фиг.1 представляет собой схематическое изображение электростанции по настоящему изобретению.
Фиг.2 представляет собой графическое отображение влияния доли топливной массы на эффективность сгорания.
Фиг.3 представляет собой схематическое изображение электростанции, где макроводоросли подвергаются частичному сгоранию и газификации в газификаторе с псевдоожиженным слоем.
Цикл управляется компьютером с помощью коммерческого кода ASPen+. При получаемой эффективности фотосинтеза в 6% (Watanable, de la Noue and Hall, 1995; Watanable and Hall, 1995) и эффективности цикла в 25-45%, общая эффективность равняется 1,5 -2,7%. Для энергоустановки в 100 кВ со средней для Центральной Европы солнечной радиации в 125 В/м2, поверхность бассейна будет равна 3-5 га. На юге США, в Австралии и Израиле, где радиация равна 250%, размеры будут вполовину меньше.
Краткое описание чертежей.
На фиг.1 показана электростанция замкнутого цикла 2 для преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую. Станция прежде всего состоит из бассейна с водой 4 для выращивания в нем макроводорослей 6 и из камеры сгорания 8 для сжигания частично высушенных водорослей с содержанием воды до 60%, причем сгорание происходит при искусственной атмосфере кислорода и углекислого газа.
Процесс основан на классическом цикле Ранкина, где топливо из биомассы сжигается при низком давлении в котлоагрегате с псевдоожиженным слоем. При этом в процессе сжигания вместо воздуха используется смесь кислорода и углекислого газа. Чистый кислород производится установкой воздушной сепарации УВС 10, основанной на процессе сжижения. УВС производит кислород с чистотой более 98%, потребляя 0,22 кВтч на кг O2. Искусственная атмосфера используется в процессе для того, чтобы избежать появления в цикле азота, который мешает растворению углекислого газа в воде.
Смесь воды и водорослей откачивается из бассейна 4 при давлении в 2 бара и направляется в установку разделения топлива (УРТ) 12. Вплоть до 99,9% воды отклоняется к конденсатору 14, затем к поглотителю СО2 16, оставшаяся суспензия направляется в котел с псевдоожиженным слоем 8, через подогреватель топлива 18. Регенератор подогрева воды 19 несет ту же функцию, что и подогреватель воды, используемой для компенсации потерь при охлаждении, который подогревает воду, которая поступает в котел, и, используя тепло топочных газов, повышает эффективность и соответственно повышает температуру теплопоглощения в котле, что сходно с обычным циклом Ранкина.
Пепел отделяется в циклоне 20. Часть отработавших газов рециркулируется в котле 8 чтобы контролировать температуру сгорания СН2О в чистом О2. Рабочие газы используются в псевдоожиженном слое 8 для испарения воды и перегревания пара до 540°С. В цикле Ранкина перегретый пар направляется в паровую турбину 22, где он расширяется до давления конденсатора 14, а именно до 15 мбар. Питающий насос (не показан) нагнетает воду до 130 бар.
Чтобы улучшить рентабельность электростанций, из водорослей можно проводить отделение высокоорганизованного вещества для производства химических продуктов (фармакологических, пищевых, фураж) с помощью установки разделения топлива.
Фиг.2 графически отображает соотношение между количеством фракции топливной массы и эффективность сгорания. Как видно, когда макроводоросли содержат ~ 20% мас./воды по сравнению с жидкостью, эффективность сгорания ~ 12%. Однако, если количество макроводорослей составляет как минимум 50% мас./воды, эффективность сгорания стабилизируется примерно на уровне 25%. Ввиду данного факта исчезает необходимость существенно осушать органическое вещество перед сожжением.
На фиг.3 макроводоросли 6 пропускаются через установку разделения топлива (УРТ) и поступают в газификатор 24 для частичного сгорания для производства горючих газов СО + Н2, одновременно с небольшим количеством балластного газа СО2. Продукты газификации служат источником энергии для двигателя с газораспределением 26. Как и на электростанции, изображенной на фиг.1, установка воздушной сепарации 10 обеспечивает реакцию сгорания чистым кислородом. Циклон 20 отделяет пепел, получаемый в процессе реакции сгорания, и направляет пепел в бассейн 4 для обогащения его питательными компонентами. Углекислый газ, производимый внутри электростанции, повторно используется в реакции сгорания. Излишки углекислого газа направляются в абсорбер 16, где СО2 поглощается водой, которая возвращается в бассейн 4 для обеспечения процесса фотосинтеза углекислым газом.
Специалистам в той области техники, к которой относится изобретение, будет очевидно, что изобретение не ограничено вышеописанными конструктивными воплощениями и что настоящее изобретение, сохраняя свой дух и сущность, может быть воплощено и в других технических формах. Таким образом, настоящие конструктивные решения приведены в качестве иллюстрации, а не предписания, весь объем изобретения раскрывается не в описании, приведенном выше, а в прилагаемой формуле изобретения, которая также охватывает все изменения, которые могут возникнуть в значении и степени эквивалентности пунктов формулы.

Claims (17)

1. Способ преобразования солнечной энергии, накопленной путем фотосинтеза, в электрическую энергию с применением электростанции замкнутого цикла, включающий а) введение бассейна с водой и размещение в нем макроводорослей для выращивания в данном бассейне и б) введение камеры сгорания с псевдоожиженным слоем для по крайней мере частичного сжигания частично высушенных макроводорослей, содержащих до 60 мас.% воды, причем указанный процесс сгорания проходит в искусственной атмосфере кислорода и углекислого газа.
2. Способ по п.1, отличающийся тем, что средний размер макроводорослей не менее 5 мкм.
3. Способ по п.1, отличающийся тем, что указанная атмосфера существенно лишена азота.
4. Способ по п.1, отличающийся тем, что указанный процесс сгорания проходит при температуре не менее 800°С.
5. Способ по п.1, отличающийся тем, что указанный процесс сгорания проходит при давлении не менее атмосферного давления.
6. Способ по п.1, отличающийся тем, что пепел от указанного процесса сгорания подают в указанный бассейн с водой, где служит в качестве питательной среды для роста указанных макроводорослей.
7. Способ по п.1, отличающийся тем, что вода в бассейне содержит соль.
8. Способ по п.1, отличающийся тем, что углекислый газ, получаемый в результате процесса сгорания, подают в указанный бассейн с водой, чтобы способствовать процессу фотосинтеза.
9. Способ по п.1, отличающийся тем, что перед процессом сжигания воду отделяют от указанных макроводорослей и используют в качестве абсорбера углекислого газа, а затем направляют в указанный бассейн с водой.
10. Способ по п.9, отличающийся тем, что указанную воду используют для охлаждения конденсатора пара.
11. Способ по п.1, отличающийся тем, что указанная искусственная атмосфера производится установкой воздушной сепарации, которая удаляет из атмосферы азот.
12. Способ по п.1, отличающийся тем, что указанные макроводоросли выбирают из группы водорослей Gracillaria и Ulva.
13. Способ по п.1, отличающийся тем, что газы, полученные в результате указанной реакции сгорания, используют как топливные газы в паровой энергетической установке Ранкина.
14. Способ по п.1, отличающийся тем, что газы, полученные в результате указанной реакции сгорания, используются для испарения воды из указанного псевдоожиженного слоя.
15. Способ по п.1, отличающийся тем, что указанная камера сгорания выполнена в виде газификатора с псевдоожиженным слоем, в котором макроводоросли подвергают частичному сгоранию и газификации.
16. Способ по п.15, отличающийся тем, что продукты газификации из указанного газификатора используют в качестве источника энергии для парового двигателя или паровой турбины.
17. Способ по п.1, отличающийся тем, что вода представляет собой сточные воды или загрязненные воды.
RU2001126058/06A 1999-03-22 2000-03-14 Способ преобразования солнечной энергии, накопленной путём фотосинтеза, в электрическую энергию RU2239754C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL12910199A IL129101A (en) 1999-03-22 1999-03-22 Closed cycle power plant
IL129,101 1999-03-22

Publications (2)

Publication Number Publication Date
RU2001126058A RU2001126058A (ru) 2003-05-27
RU2239754C2 true RU2239754C2 (ru) 2004-11-10

Family

ID=11072630

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001126058/06A RU2239754C2 (ru) 1999-03-22 2000-03-14 Способ преобразования солнечной энергии, накопленной путём фотосинтеза, в электрическую энергию

Country Status (5)

Country Link
US (1) US6477841B1 (ru)
AU (1) AU3188500A (ru)
IL (1) IL129101A (ru)
RU (1) RU2239754C2 (ru)
WO (1) WO2000057105A1 (ru)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973789B2 (en) * 1998-11-10 2005-12-13 Ormat Technologies, Inc. Method of and apparatus for producing power in remote locations
US7191736B2 (en) * 2003-01-21 2007-03-20 Los Angeles Advisory Services, Inc. Low emission energy source
US7331178B2 (en) * 2003-01-21 2008-02-19 Los Angeles Advisory Services Inc Hybrid generation with alternative fuel sources
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
US7674226B2 (en) * 2006-01-27 2010-03-09 Gary Nadeau Method for enhanced performance training
WO2007118223A2 (en) * 2006-04-06 2007-10-18 Brightsource Energy, Inc. Solar plant employing cultivation of organisms
ES2308893B2 (es) * 2006-06-09 2010-04-21 Bernard A.J. Stroiazzo-Mougin Procedimiento de obtencion de compuestos energeticos mediante energia electromagnetica.
IL184971A0 (en) * 2006-08-01 2008-12-29 Brightsource Energy Inc High density bioreactor system, devices and methods
US7736508B2 (en) * 2006-09-18 2010-06-15 Christopher A. Limcaco System and method for biological wastewater treatment and for using the byproduct thereof
US7850848B2 (en) * 2006-09-18 2010-12-14 Limcaco Christopher A Apparatus and process for biological wastewater treatment
US7776211B2 (en) * 2006-09-18 2010-08-17 Algaewheel, Inc. System and method for biological wastewater treatment and for using the byproduct thereof
AT504863B1 (de) * 2007-01-15 2012-07-15 Siemens Vai Metals Tech Gmbh Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
US20080250791A1 (en) * 2007-04-13 2008-10-16 Fromson Howard A Electric power station with CO2 sink and production of industrial chemicals
US20080250780A1 (en) * 2007-04-13 2008-10-16 Fromson Howard A Aquatic sink for carbon dioxide emissions with biomass fuel production
DE102007018675B4 (de) * 2007-04-18 2009-03-26 Seyfried, Ralf, Dr. Biomassezuchtanlage und Verfahren zur Züchtung von Biomasse
WO2009034365A1 (en) * 2007-09-10 2009-03-19 Peter Anthony Miller Systems of total capture and recycling of used organic and inorganic matter of selfsustainable human habitations
US7905049B2 (en) 2007-11-01 2011-03-15 Independence Bio-Products, Inc. Algae production
US20090155864A1 (en) * 2007-12-14 2009-06-18 Alan Joseph Bauer Systems, methods, and devices for employing solar energy to produce biofuels
GB0808740D0 (en) * 2008-05-14 2008-06-18 Univ Aston Biomass processing
US20100003741A1 (en) * 2008-07-01 2010-01-07 Fromson Howard A Integrated power plant, sewage treatment, and aquatic biomass fuel production system
US20100173375A1 (en) * 2008-07-03 2010-07-08 Oyler James R Closed-loop system for growth of aquatic biomass and gasification thereof
US8510985B2 (en) 2008-07-22 2013-08-20 Eliezer Halachmi Katchanov Energy production from algae in photo bioreactors enriched with carbon dioxide
US20100018214A1 (en) * 2008-07-22 2010-01-28 Eliezer Halachmi Katchanov Energy Production from Algae in Photo Bioreactors Enriched with Carbon Dioxide
WO2010107914A2 (en) 2009-03-18 2010-09-23 Palmer Labs, Llc Biomass production and processing and methods of use thereof
WO2010132107A1 (en) * 2009-05-11 2010-11-18 James Charles Juranitch Large scale energy efficient co2 sequestration and processing
US20110126883A1 (en) * 2009-11-27 2011-06-02 Brightsource Industries (Israel) Ltd. Method and apparatus for extracting energy from insolation
US11512278B2 (en) 2010-05-20 2022-11-29 Pond Technologies Inc. Biomass production
US20120156669A1 (en) 2010-05-20 2012-06-21 Pond Biofuels Inc. Biomass Production
US8969067B2 (en) 2010-05-20 2015-03-03 Pond Biofuels Inc. Process for growing biomass by modulating supply of gas to reaction zone
US8940520B2 (en) 2010-05-20 2015-01-27 Pond Biofuels Inc. Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US8889400B2 (en) 2010-05-20 2014-11-18 Pond Biofuels Inc. Diluting exhaust gas being supplied to bioreactor
DK2606105T3 (da) 2010-08-16 2023-01-23 Singularity Energy Tech Llc Sandwich-gasificeringsproces for højeffektiv konvertering af kulstofholdige brændstoffer med henblik på rensning af en syntesegas med nul restkulstofudladning
US20120276633A1 (en) 2011-04-27 2012-11-01 Pond Biofuels Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
US20130118171A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
US20130118169A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
EP2594622A1 (de) * 2011-11-15 2013-05-22 Dr. Pley Environmental GmbH Verfahren zur Energieerzeugung mit geschlossenem Kohlendioxid-Kreislauf
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
US10577248B2 (en) 2016-05-24 2020-03-03 Harper Biotech LLC Methods and systems for large scale carbon dioxide utilization from Lake Kivu via a CO2 industrial utilization hub integrated with electric power production and optional cryo-energy storage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209943A (en) * 1977-09-02 1980-07-01 Hunt James P Process and apparatus for commercial farming of marine and freshwater hydrophytes
US4311014A (en) * 1978-04-27 1982-01-19 Terry Lynn E Power cycles based upon cyclical hydriding and dehydriding of a material
US4334026A (en) * 1980-01-18 1982-06-08 Institute Of Gas Technology Hybrid bio-thermal liquefaction
US4377071A (en) * 1980-08-04 1983-03-22 Solmat Systems, Ltd. Solar energy power station
US4333263A (en) * 1980-10-07 1982-06-08 The Smithsonian Institution Algal turf scrubber
JPH03154616A (ja) * 1989-11-10 1991-07-02 Mitsubishi Heavy Ind Ltd 炭酸ガスの回収及び固定化方法
GB2254858B (en) * 1991-04-08 1995-04-12 David Paul Jenkins Power generation system
AU1855495A (en) * 1994-03-10 1995-09-25 Cgm Partners Limited Internal combustion utilizing algae as fuel and improved fuel induction system

Also Published As

Publication number Publication date
AU3188500A (en) 2000-10-09
IL129101A (en) 2002-09-12
WO2000057105A1 (en) 2000-09-28
IL129101A0 (en) 2000-02-17
US6477841B1 (en) 2002-11-12

Similar Documents

Publication Publication Date Title
RU2239754C2 (ru) Способ преобразования солнечной энергии, накопленной путём фотосинтеза, в электрическую энергию
US7789026B2 (en) Cultivated biomass power system
KR100819505B1 (ko) 타르 및 그을음 제거를 위한 합체형 고압스팀 개질기 및이를 이용한 바이오매스 가스화를 통한 열병합발전시스템
RU2001126058A (ru) Электростанция замкнутого цикла
WO2009104820A1 (ja) 太陽熱エネルギー貯蔵方法
CN105948039A (zh) 一种芦竹生产活性炭联产发电的系统和方法
JP2012520166A (ja) バイオマスの利用方法および利用システムおよびブロック型熱発電プラント
CN101498291A (zh) 生物质高温热解气化发电系统
WO2009104813A1 (ja) 太陽熱エネルギー変換方法
Hani et al. Oil palm biomass utilization as an energy source and its possibility use for polygeneration scenarios in Langsa City, Aceh Province, Indonesia
CN103194246B (zh) 一种大型海藻生物质干馏能量自平衡制油系统及其方法
JP2004076968A (ja) バイオマスを燃料とする燃焼方法および同燃焼システム、並びに発電方法および同発電システム
CN205709880U (zh) 一种芦竹生产活性炭联产发电的系统
CN107829825A (zh) 联产水的燃气轮机系统及燃气轮机联产水的方法
Eldredge et al. ENHANCING THE POTENTIAL OF SOLAR-ASSISTED PYROLYSIS OF SEWER SLUDGE FOR CO 2 EMISSION REDUCTION AND ENERGY SAVING
Yantovski Seaweed Ulva photosynthesis and zero emissions power generation
US20240102403A1 (en) Process for utilizing waste heat and carbon dioxide from the production of low, neutral, and/or negative carbon intensity hydrogen from electrolysis
CN205372508U (zh) 一种生物质全密封控制系统
LT5861B (lt) Integruota sistema, susidedanti iš šilumos jėgainės, elektrinės bei pirolizės būdu gaminamų produktų linijios modulių, šios sistemos modulių patobulinimas ir jos panaudojimo būdas
CN115433603B (zh) 一种光热水合生物质清洁利用系统
RU2065039C1 (ru) Способ подземной газификации полезных ископаемых
CN216130974U (zh) 基于生物质能的气炭联产与热电联产相结合的装置
RU2812312C1 (ru) Способ переработки твердого топлива с использованием солнечной энергии
JP2004239187A (ja) 草木を燃料にし木炭を副産物とする発電システム
CN107725191A (zh) 动力与水联合供应装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110315