RU2233695C1 - Способ улавливания капельного аэрозоля и устройство для его осуществления - Google Patents

Способ улавливания капельного аэрозоля и устройство для его осуществления Download PDF

Info

Publication number
RU2233695C1
RU2233695C1 RU2003112073/12A RU2003112073A RU2233695C1 RU 2233695 C1 RU2233695 C1 RU 2233695C1 RU 2003112073/12 A RU2003112073/12 A RU 2003112073/12A RU 2003112073 A RU2003112073 A RU 2003112073A RU 2233695 C1 RU2233695 C1 RU 2233695C1
Authority
RU
Russia
Prior art keywords
housing
precipitator
aerosol
ionizer
droplet
Prior art date
Application number
RU2003112073/12A
Other languages
English (en)
Other versions
RU2003112073A (ru
Inventor
Л.А. Кущев (RU)
Л.А. Кущев
В.Б. Карпман (RU)
В.Б. Карпман
В.А. Минко (RU)
В.А. Минко
М.В. Анфалов (RU)
М.В. Анфалов
В.Г. Шаптала (RU)
В.Г. Шаптала
Г.Л. Окунева (RU)
Г.Л. Окунева
О.Ф. Лапин (RU)
О.Ф. Лапин
С.П. Майоров (RU)
С.П. Майоров
Original Assignee
Белгородский государственный технологический университет им. В.Г.Шухова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Белгородский государственный технологический университет им. В.Г.Шухова filed Critical Белгородский государственный технологический университет им. В.Г.Шухова
Priority to RU2003112073/12A priority Critical patent/RU2233695C1/ru
Application granted granted Critical
Publication of RU2233695C1 publication Critical patent/RU2233695C1/ru
Publication of RU2003112073A publication Critical patent/RU2003112073A/ru

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Изобретение относится к технике очистки газов от пыли электрическими фильтрами и может быть использовано на предприятиях черной и цветной металлургии, строительных материалов, энергетики и т.д., где имеют место промышленные выбросы в виде капельной аэрозоли. Задачей изобретения является обеспечение возможности использования электрофильтра в системах мокрого пылеулавливания при больших объемах газов (сотни тысяч м3/ч) за счет увеличения удельной производительности и снижения габаритных размеров электрофильтра. Для достижения поставленной задачи осуществляют подачу газового потока, насыщенного капельной аэрозолью, в каплеуловитель со скоростью 5-8 м/с, электростатическую ионизацию капель аэрозоля, осаждение и выход очищенного газа. Осаждение осуществляют за счет сил инерции, возникающих в скоростном жалюзийном каплеуловителе при скорости движения газового потока 10-14 м/с. Устройство содержит корпус с патрубками входа и выхода, в полости которого последовательно установлены высоковольтный ионизатор, выполненный в виде пакета коронирующих электродов, который штангами жестко прикреплен к корпусу, и пакета осадительных электродов, который жестко прикреплен к корпусу, и осадитель. Корпус фильтра выполнен с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя, который выполнен в виде скоростного жалюзийного каплеуловителя, жестко соединенного с корпусом фильтра, площадь рабочей поверхности которого должна составлять 0,5-0,8 площади рабочей поверхности ионизатора. Полости ионизатора и осадителя снабжены отстойниками. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к технике очистки газов от пыли электрическими фильтрами и может быть использовано на предприятиях черной и цветной металлургии, промышленности строительных материалов, химической промышленности, энергетики и т.д., где имеют место промышленные выбросы в виде капельных аэрозолей.
Известен способ улавливания капельного аэрозоля, включающий подачу газового потока, электрическую коагуляцию и электрическое осаждение капельного аэрозоля и выход чистого газа, который осуществлен в мокром инерционном электростатическом фильтре, содержащем коронирующие и осадительные электроды.
В поле коронного разряда происходит зарядка частиц аэрозолей и их выделение из газового потока за счет движения заряженных частиц под действием поля в направлении, перпендикулярном потоку газа (см. книгу С.Б.Старк "Газоочистные аппараты и установки в металлургическом производстве", М., Металлургия, 1990 г., с.166, рис.12.11) - аналог.
Для обеспечения осаждения частиц необходимо, чтобы время их дрейфа к осадительному электроду было меньше времени пребывания аэрозолей в электрическом поле электрофильтра. Выполнение этого условия приводит к необходимости снижения скорости подачи газового потока в уловитель до минимальных значений (не более 1-1,5 м/с), вследствие чего использование данного способа в устройстве для его осуществления приводит к большим габаритным размерам и низкой удельной производительности устройства.
Наиболее близким решением по технической сущности и достигаемому эффекту к предлагаемому является способ улавливания капельного аэрозоля, включающий следующие стадии: подачу газового потока, насыщенного капельным аэрозолем, в устройство, электростатическую ионизацию содержащихся в нем капель аэрозоля, осаждение капельного аэрозоля и выход очищенного газа, используемый в двухзонном электрофильтре, содержащем корпус с патрубками входа и выхода, в полости которого последовательно установлены ионизатор, выполненный в виде пакета коронирующих электродов, который штангами жестко прикреплен к корпусу, и пакета осадительных электродов, который жестко прикреплен к корпусу, и осадитель, представляющий собой чередование заземленных (отрицательно заряженных) пластин и пластин, присоединенных к положительному полюсу выпрямителя (см. книгу С.Б.Старк "Газоочистные аппараты и установки в металлургическом производстве", М., Металлургия, 1990 г., с.167, рис.12.12).
Известный способ, используемый в двухзонных электрофильтрах, позволяет увеличивать скорость подачи газового потока в уловитель до 2-3 м/с, однако удельная производительность устройства остается низкой, а габариты большими, что не позволяет применять эти устройства в системах мокрого пылеулавливания при больших объемах газов (сотни тысяч м3/ч).
Задачей изобретения является обеспечение возможности использования электрической очистки в системах мокрого пылеулавливания при больших объемах газов (сотни тысяч м3/ч) за счет увеличения удельной производительности и снижения габаритных размеров электрофильтра.
Для достижения поставленной задачи в известном способе, включающем следующие стадии: подачу газового потока, насыщенного капельной аэрозолью, в устройство, электростатическую ионизацию содержащихся в нем капель аэрозоля, осаждение и выход очищенного газа, согласно предлагаемому решению скорость подачи газового потока, насыщенного капельной аэрозолью, составляет 5-8 м/с, осаждение происходит за счет сил инерции, возникающих в скоростном жалюзийном каплеуловителе при скорости движения газового потока 10-14 м/с.
В двухзонном электрофильтре, содержащем корпус с патрубками входа и выхода, в полости которого последовательно установлены высоковольтный ионизатор, выполненный в виде пакета коронирующих электродов, который штангами жестко прикреплен к корпусу, и пакета осадительных электродов, который жестко прикреплен к корпусу и осадитель.
Согласно предлагаемому решению корпус фильтра выполнен с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя, при этом осадитель выполнен в виде скоростного жалюзийного каплеуловителя, жестко соединенного с корпусом фильтра, площадь рабочей поверхности осадителя составляет 0,5-0,8 площади рабочей поверхности ионизатора, полости ионизатора и осадителя снабжены отстойниками.
Подача газового потока со скоростью 5-8 м/с позволяет увеличить удельную производительность аппарата. Подача газового потока со скоростью меньше 5 м/с значительно снижает удельную производительность и увеличивает габариты фильтра. Подача газового потока со скоростью больше 8 м/с незначительно увеличивает удельную производительность и уменьшает габариты аппарата, но резко снижает эффективность очистки.
Выполнение корпуса фильтра с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя, и соблюдение соотношения рабочей поверхности осадителя (аih) и ионизатора (а·Н), равного 0,5-0,8, позволяют осаждение капельного аэрозоля производить при скорости газового потока 10-14 м/с, если осаждение капельного аэрозоля в осадителе производить при скорости газового потока меньше 10 м/с, то резко снижается эффективность инерционного каплеулавливания и неоправданно увеличиваются габариты фильтра. Если осаждение капельного аэрозоля производить при скорости газового потока больше 14 м/с, то это приведет к неоправданному увеличению гидравлического сопротивления (ΔP=f(υ2)) каплеуловителя и вторичному каплеуносу с поверхности жалюзи.
Выполнение осадителя в виде скоростного жалюзийного каплеуловителя позволяет осаждение укрупненного капельного аэрозоля производить за счет инерционных сил.
Сопоставительный анализ с прототипом показывает, что заявляемый способ улавливания капельного аэрозоля отличается от прототипа тем, что скорость подачи газового потока составляет 5-8 м/с, осаждение осуществляется за счет сил инерции, возникающих в скоростном жалюзийном каплеуловителе при скорости движения газового потока 10-14 м/с, а заявляемое устройство для его осуществления отличается от прототипа тем, что корпус фильтра выполнен с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя, осадитель выполнен в виде скоростного жалюзийного каплеуловителя, жестко соединенного с корпусом, площадь рабочей поверхности осадителя составляет 0,5-0,8 площади рабочей поверхности ионизатора, а полости ионизатора и осадителя снабжены отстойниками, следовательно, заявляемые решения соответствуют критерию "новизна".
Признаки, отличающие заявляемые решения от прототипа, при изучении патентно-технической литературы не выявлены, за исключением осадителя, выполненного в виде скоростного жалюзийного каплеуловителя (см. книгу С.Б.Старк "Газоочистные аппараты и установки в металлургическом производстве", М., Металлургия, 1990 г., с.130), что позволяет сделать вывод о соответствии заявляемых решений критерию "изобретательский уровень".
Устройство для осуществления предлагаемого способа улавливания капельного аэрозоля, показано на чертежах. На фиг.1 показан общий вид устройства. На фиг.2 - разрез А-А на фиг.1. Устройство содержит корпус 1, выполненный с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя 2, с патрубками входа 3 и выхода 4, в полости которого последовательно установлены высоковольтный ионизатор 5 (типового изготовления, см. книгу С.Б.Старк "Газоочистные аппараты и установки в металлургическом производстве", М., Металлургия, 1990 г., с.166), выполненный в виде пакета коронирующих электродов 6, который штангами 7 жестко прикреплен к корпусу 1, и осадительных электродов 8, которые жестко прикреплены к корпусу 1 (например, сваркой), и осадитель 2, выполненный в виде скоростного жалюзийного каплеуловителя (типового изготовления, см. книгу С.Б.Старк "Газоочистные аппараты и установки в металлургическом производстве", М., Металлургия, 1990 г., с.130), жестко соединенного с корпусом 1 (например, сваркой), причем площадь рабочей поверхности осадителя 2 составляет 0,5-0,8 площади рабочей поверхности ионизатора 5. В предлагаемом устройстве это соотношение составляет 0,6. Полости ионизатора 5 и осадителя 2 снабжены отстойниками 9.
Заявляемое устройство работает следующим образом: газовый поток, насыщенный капельным аэрозолем, например сернистым ангидридом, через патрубок 3 подают в высоковольтный ионизатор 5 со скоростью 7 м/с, где происходит электростатическая коагуляция капельного аэрозоля электрическим полем высокой напряженности, за счет прохождения газового потока через пакеты коронирующих 6 и осадительных 8 электродов. В ионизаторе 5 осуществляется зарядка капельного аэрозоля и его интенсивная коагуляция, вызванная электрическим полем высокой напряженности (10 кВ).
Выйдя из ионизатора 5, газовый поток с укрупненными каплями аэрозоля проходит через осадитель 2, выполненный в виде скоростного жалюзийного каплеуловителя, где под действием инерционных сил (υ=12 м/с) происходит отделение капель аэрозоля из газового потока. Выделенные капли аэрозоля выпадают в отстойники 8. Очищенный газ через выходной патрубок 4 выбрасывается в атмосферу. После чего цикл повторяется.
Предлагаемый способ и устройство для его осуществления позволяют увеличить скорость подачи газового потока в 2,5 раза, уменьшить габаритные размеры устройства за счет использования осадителя с малыми размерами в 4 раза и, соответственно, снизить металлоемкость аппарата ≈ в 10 раз по сравнению с прототипом. Предлагаемое устройство может быть установлено в любую систему мокрого пылеулавливания.

Claims (2)

1. Способ улавливания капельного аэрозоля, включающий следующие стадии: подача газового потока, насыщенного капельной аэрозолью, в двухзонный электрофильтр, электростатическая ионизация, осаждение и выход очищенного газа, отличающийся тем, что скорость подачи газового потока, насыщенного капельной аэрозолью, составляет 5-8 м/с, осаждение происходит за счет сил инерции, возникающих в скоростном жалюзийном каплеуловителе при скорости движения газового потока 10-14 м/с.
2. Двухзонный электрофильтр, содержащий корпус с патрубками входа и выхода, в полости которого последовательно установлены высоковольтный ионизатор, выполненный в виде пакета коронирующих электродов, который штангами жестко прикреплен к корпусу, и пакета осадительных электродов, которые жестко прикреплены к корпусу, и осадитель, отличающийся тем, что корпус фильтра выполнен с переменным сечением, ступенчато уменьшающимся в зоне установки осадителя, при этом осадитель выполнен в виде скоростного жалюзийного каплеуловителя, жестко соединенного с корпусом, площадь рабочей поверхности осадителя составляет 0,5-0,8 площади рабочей поверхности ионизатора, полости ионизатора и осадителя снабжены отстойниками.
RU2003112073/12A 2003-04-24 2003-04-24 Способ улавливания капельного аэрозоля и устройство для его осуществления RU2233695C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003112073/12A RU2233695C1 (ru) 2003-04-24 2003-04-24 Способ улавливания капельного аэрозоля и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003112073/12A RU2233695C1 (ru) 2003-04-24 2003-04-24 Способ улавливания капельного аэрозоля и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2233695C1 true RU2233695C1 (ru) 2004-08-10
RU2003112073A RU2003112073A (ru) 2004-12-27

Family

ID=33414364

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003112073/12A RU2233695C1 (ru) 2003-04-24 2003-04-24 Способ улавливания капельного аэрозоля и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2233695C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11235276B2 (en) 2017-08-08 2022-02-01 Haldor Topsøe A/S Process for removal of aerosol droplets
RU2772288C2 (ru) * 2017-08-08 2022-05-18 Хальдор Топсёэ А/С Способ удаления капель аэрозоля

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СТАРК С.Б. Газоочистительные аппараты и установки в металлургическом производстве. - М.: Металлургия, 1990, с.166 и 167. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11235276B2 (en) 2017-08-08 2022-02-01 Haldor Topsøe A/S Process for removal of aerosol droplets
RU2772288C2 (ru) * 2017-08-08 2022-05-18 Хальдор Топсёэ А/С Способ удаления капель аэрозоля
RU2804180C1 (ru) * 2022-12-20 2023-09-26 Мороз Максим Николаевич Устройство и способ электростатической фильтрации газов

Similar Documents

Publication Publication Date Title
Jaworek et al. Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission
US5183480A (en) Apparatus and method for collecting particulates by electrostatic precipitation
US3958958A (en) Method for electrostatic removal of particulate from a gas stream
US7527675B2 (en) Electrostatic particulate separation system and device
WO2014014090A1 (ja) 湿式電気集塵装置及び除塵方法
KR100710697B1 (ko) 가스 흐름으로부터 입자 및/또는 소적 형태의 물질을분리시키는 방법 및 장치
US4293319A (en) Electrostatic precipitator apparatus using liquid collection electrodes
US7267708B2 (en) Rigid electrode ionization for packed bed scrubbers
KR101852163B1 (ko) 정전분무 시스템과 전기집진기가 결합된 미세먼지 제거장치
EP2868384B1 (en) Wet electric dust-collecting device and exhaust gas treatment method
RU2233695C1 (ru) Способ улавливания капельного аэрозоля и устройство для его осуществления
RU170489U1 (ru) Электрофильтр
US11673147B2 (en) Air purification system
RU2331481C1 (ru) Циклон
RU2525539C1 (ru) Электрофильтр
RU2303487C1 (ru) Способ очистки газов и электрофильтр для его реализации
RU2636488C2 (ru) Способ очистки газов от пыли и электрофильтр для его осуществления
WO2008130267A1 (fr) Filtre électrique
RU2330727C1 (ru) Электрофильтр
CN216419784U (zh) 一种四电极的静电除尘装置
EP0162826B1 (en) A device for additional cleaning of dustladen medium, which to some extent has already been cleaned in an electrostatic presipitator
SU776640A1 (ru) Устройство дл выделени частиц из потоков газа
SU187732A1 (ru)
RU2003112073A (ru) Способ улавливания капельного аэрозоля и устройство для его осуществления
SU1063437A1 (ru) Центробежный трубчатый электрофильтр

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060425