RU2525539C1 - Электрофильтр - Google Patents

Электрофильтр Download PDF

Info

Publication number
RU2525539C1
RU2525539C1 RU2013105017/03A RU2013105017A RU2525539C1 RU 2525539 C1 RU2525539 C1 RU 2525539C1 RU 2013105017/03 A RU2013105017/03 A RU 2013105017/03A RU 2013105017 A RU2013105017 A RU 2013105017A RU 2525539 C1 RU2525539 C1 RU 2525539C1
Authority
RU
Russia
Prior art keywords
grounded
particles
outlet
aerosol particles
electrodes
Prior art date
Application number
RU2013105017/03A
Other languages
English (en)
Other versions
RU2013105017A (ru
Inventor
Алексей Алексеевич Палей
Original Assignee
Алексей Алексеевич Палей
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Алексеевич Палей filed Critical Алексей Алексеевич Палей
Priority to RU2013105017/03A priority Critical patent/RU2525539C1/ru
Application granted granted Critical
Publication of RU2013105017A publication Critical patent/RU2013105017A/ru
Publication of RU2525539C1 publication Critical patent/RU2525539C1/ru

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности, энергетики и в быту для очистки газов от содержащихся в нем аэрозольных частиц. Устройство содержит установленные в корпусе с входным и выходным отверстиями коронирующие и осадительные электроды. Сечение выходного отверстия перекрыто дополнительным осадительным электродом, выполненным в виде установленных с зазором не менее 0,1 мкм друг относительно друга электропроводных заземленных элементов конструкции. Очищенный от крупных аэрозольных частиц газовый поток, насыщенный электрически заряженными субмикронными частицами, проходит в искривленном пространстве между элементами конструкции заземленного осадительного электрода. Повышается эффективность очистки газов от аэрозольных частиц. 1 ил.

Description

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности, энергетики и в быту для очистки газов от содержащихся в них аэрозольных частиц.
Известен электрофильтр (см. Пирумов А.И. «Обеспыливание воздуха», М.; Стройиздат, 1981, стр.148), содержащий установленный в корпусе ионизатор с коронирующими электродами, установленными с зазорами относительно заземленных пластин и осадитель, включающий набор установленных с зазором друг относительно друга параллельно ходу потока пластин, соединенных соответственно с высоковольтными и заземлительными выводами источника высокого напряжения. Подлежащий очистке газ поступает в области ионизации, где аэрозольные частицы в области горения коронного разряда получают электрический заряд. Проходя в области осадителя между пластинами, электрически заряженные аэрозольные частицы попадают в мощное электрическое поле. Под действием электрического поля электрически заряженные частицы осаждаются на поверхности пластин, а очищенный от аэрозолей газ выходит наружу. Как показали экспериментальные исследования, проведенные автором предлагаемого изобретения, в процессе генерации коронного разряда в окружающем пространстве генерируется огромное количество субмикронных аэрозольных частиц размером порядка нескольких нанометров. Сепарировать вновь образованные аэрозольные частицы в электрическом поле очистителя известной конструкции не представляется возможным. В результате в газовом потоке на выходе из очистителя концентрация аэрозольных частиц будет превышать исходную концентрацию. То есть, известный фильтр будет сепарировать от газового потока крупные частицы, более 300 нм. Более мелкие частицы в значительной части будут мало подвержены сепарации и с газовым потоком выйдут из очистителя. И, кроме того, газовый поток в области горения коронного разряда насыщается дополнительными новыми аэрозольными частицами, концентрация которых значительно (практически на порядок) превышает фоновую концентрацию аэрозолей. В результате может даже получиться так, что объемное содержание аэрозолей в очищенном газе превышает объемное содержание аэрозолей в газе до очистки.
Аналогичные процессы происходят практически во всех электрофильтрах (см., например, патент США №3719031, опубликованный в марте 1073 году; патент РФ 2453377, опубликованный 20.06.2012 г; патент РФ 2407548, опубликованный 27.12.2010 г.; патент РФ 2441706, опубликованный 10.02.2012 г.; патенты РФ 2393021, 2393022, опубликованные 27.06.2012 г).
Известен двухзонный электрофильтр по патенту РФ №2144433, опубликованному 30.09.1998 г. Фильтр содержит заключенные в корпус ионизатор, содержащий коронирующие электроды и установленные параллельно воздушному потоку пластинчатые некоронирующие электроды, осадитель и установленную перпендикулярно воздушному потоку металлическую сетку, электрически связанную с некоронирующими электродами. В известной конструкции также как и в вышеописанной конструкции, субмикронные аэрозольные частицы, содержавшиеся в газе и генерируемые коронным разрядом, не улавливаются осадительными электродами и выносятся вместе с очищенным газом наружу.
Наиболее близким техническим решением к предлагаемому является электрофильтр, представленный в описании изобретения SU 1127635 А. Известный электрофильтр содержит корпус с входным и выходным патрубками и ячейками, состоящими из пластинчатых некоронирующих электродов, снабженных жестко прикрепленными к ним цепочками из металлических колец, каждое из которых установлено соосно с противолежащей иглой коронирующего электрода и установленные в выходном патрубке дополнительные осадительные электроды. Коронирующие электроды соседних ячеек в известном фильтре ориентированы зеркально. В известном фильтре возникающие в процессе коронного разряда струи электрического ветра направлены навстречу друг другу, создавая в межъячеечном пространстве тормозной эффект с насыщением этой зоны повышенным содержанием ионов. В результате происходит интенсивная зарядка примесей воздуха и осаждение их на пластинах осадительных электродов, за счет чего и повышается эффективность очистки. Эффект повышения степени очистки достигается за счет повышения электрических сил. Вместе с тем известно, что чем меньше частица, тем меньше вероятность отделения ее от потока электрическими силами. Следовательно, известное техническое решение не сможет обеспечить сепарации субмикронных аэрозольных частиц.
Целью предлагаемого изобретения является повышение эффективности очистки газов от субмикронных аэрозольных частиц.
Для достижения заявленной цели в известном электрофильтре, содержащем установленные в корпусе с входным и выходным отверстиями коронирующие и осадительные электроды, установленный в выходном отверстии дополнительный осадительный электрод выполнен в виде установленных с зазором не менее 0,1 мкм друг относительно друга электропроводных заземленных элементов конструкции, перекрывающих сечение выходного отверстия.
Предлагаемое техническое решение предусматривает прохождение очищенного от крупных аэрозольных частиц газового потока, насыщенного электрически заряженными субмикронными частицами, в искривленном пространстве между элементами конструкции заземленного осадительного электрода. Увеличивается вероятность столкновения электрически заряженных аэрозольных частиц с заземленной поверхностью. Кроме того, учитывая малый зазор между заземленными элементами конструкции, уменьшается путь движения сепарируемых аэрозолей из газового потока к элементу заземленной конструкции, увеличивается вероятность их осаждения электрическим полем. Субмикронные частицы осаждаются на элементах заземленной поверхности дополнительного электрода и сепарируются от газового потока, что позволяет обеспечить достижение поставленной цели изобретения.
На фиг.1 представлена условная схема предлагаемого электрофильтра. Электрофильтр содержит коронирующие электроды 1, установленные электрически изолированно в корпусе 2, содержащем входное 3 и выходное отверстия 4. Коронирующие электроды могут быть выполнены из тонкой проволоки (диаметром порядка 0,1-0,8 мм), либо в виде специальных устройств, конструкции которых достаточно полно описаны в литературе по электрофильтрам. См., например, Г.М.А. Алиев, А.Е. Гоник. Электрооборудование и режимы питания электрофильтров. Энергия. Москва. 1971. Стр.42-44. С зазором относительно коронирующих электродов 1 в корпусе 2 смонтированы осадительные электроды 5. Осадительные электроды 5 могут быть выполнены в виде пластин, как показано на фиг.1. Для увеличения эффективности работы осадительные электроды могут быть выполнены также и в виде пластин с утолщением, как представлено в техническом решении по патенту РФ №2453377, патенту РФ 2393031, патенту РФ №2393032, в том числе и с пористой поверхностью, как показано в патенте РФ 2453377 (на фиг.1 не показано). Осадительные электроды 5 заземлены. В выходном отверстии 4 корпуса 2 установлен дополнительный осадительный электрод 6, поверхность которого заземлена. Дополнительный осадительный электрод 6 может быть выполнен в виде конструкции, например, из пористого материала. Материалы, размеры пор которых составляют порядка 15 мкм, известны из литературы, капиллярно-пористые материалы (см., например, http://itp.uran.ru/kpm.htm, http://www.pmi.basnet.by/structure/branch2-27.php), пористая металлокерамика, см., например, http://resti.udmnet.ru/f_gazez.htm и прочие материалы с открытыми порами, т.е. порами, выходящими на внутреннюю поверхность конструкции. Как отмечено в отмеченных источниках, известны различные методы изготовления пористых материалов с заранее заданной пористостью. Что позволяет выполнить заземленную конструкцию предлагаемого устройства на основе известных методов из известных материалов. На фиг.1 дополнительный осадительный электрод 6, выполненный из пористого материала, перекрывающего сечение выходного отверстия 4. Для снижения аэродинамического сопротивления дополнительный осадительный электрод 6, выполненный из пористого материала, может быть выполненным в виде конического стакана, основание конуса которого также перекрывает сечение выходного отверстия 4, либо другой конструкции с развитой поверхностью для прохождения очищаемого газового потока. Кроме того, дополнительный осадительный электрод 6 может быть выполнен из сложенной в несколько слоев обычной электропроводной сетки, либо в виде решетчатой конструкции, представляющей собой набор нескольких рядов установленных с зазором друг относительно друга электропроводных стержней (на фиг.1 не показаны). Основное требование к конструкции дополнительного осадительного электрода 6 - это обеспечение беспрепятственного прохождения через него очищаемого газового потока и наличие в нем различных конструктивных элементов, искривляющих и удлиняющих линии тока очищаемого газового потока относительно его заземленной поверхности. Размер пор пористого материала дополнительного осадительного электрода 6, либо размер ячеек сетки, количество ее слоев, либо зазор между стержнями решетчатой конструкции составляет не менее 0,1 мкм и выбирается на стадии проектирования, исходя из задаваемых требований очистки газа и частоты обслуживания фильтра.
Для увеличения производительности электрофильтра в его конструкции может быть предусмотрена свободная для прохождения очищаемого газового потока заземленная электропроводная конструкция 7, которая может быть выполнена из обычной электропроводной сетки, либо в виде установленных с зазором друг относительно друга электропроводных стержней. Заземленная электропроводная конструкция 7 может быть выполнена как в виде прямолинейной поверхности, так и в виде поверхности, равноудаленной от коронирующего электрода 2 (на фиг.1 не показана). Коронирующие электроды электрически соединены с высоковольтным источником питания 8. В случае использования заземленной электропроводной конструкции 7 один электрод из пары осадительных электродов 5, например 5a, может быть также соединен с высоковольтным источником питания 8 (на фиг.1 не показано). В этом случае необходимо обеспечить соответствующий зазор между заземленной электропроводной конструкцией и осадительным электродом 5a, чтобы избежать электрического пробоя.
Электрофильтр работает следующим образом. При подаче высокого напряжения на коронирующие электроды 1 зажигается коронный разряд между коронирующими электродами 1 и заземленными осадительными электродами 5. Либо, в случае использования заземленной электропроводной конструкции 7, между коронирующими электродами 1 и заземленной конструкцией 7. Коронный разряд создает в корпусе 2 ионный ветер по направлению А-В, от входного отверстия к выходному. См., например, Ватажин А.Б., Лихтер В.А., Улыбышев К.Е. Газодинамическое течение - ионный ветер в коронном разряде и его взаимодействие с внешним потоком. В журнале «Известия Российской академии наук. Механика жидкости и газа». Изд. «Наука», №2, 2012 год, стр.78-86. Ионный ветер вовлекает очищаемый газ через входное отверстие 3 в корпусе 2 электрофильтра в область коронного разряда, где аэрозольные частицы получают электрический заряд. Далее очищаемый газ попадает в пространство между осадительными электродами 5, и под действием электростатических сил электрически заряженные аэрозольные частицы устремляются к заземленному осадительному электроду 5 и осаждаются на его поверхности. Для повышения эффективности очистки в электрофильтре предусмотрено несколько каскадов очистки, где описанные процессы повторяются. Как известно, (см., например, «Процессы химической технологии») скорость движения аэрозольных частиц к осадительному электроду в электрическом поле пропорциональна размеру частицы
Figure 00000001
, где r - радиус частицы, E - напряженность электрического поля. См. http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/10_protsessy_i_apparaty_khimicheskikh_tekhnologiy_chast_II/7037. При уменьшении размера частицы скорость движения частицы к осадительному электроду, отстоящему от заряженной частицы на расстояниях, превышающих размер частицы на несколько порядков, уменьшается и для субмикронных частиц практически равно нулю. Следовательно, субмикронные частицы, содержащиеся в очищаемом газе и частицы, генерируемые коронным разрядом, свободно проходят мимо осадительных электродов и выносятся вместе с потоком очищаемого газа к выходному отверстию 4, перекрытому дополнительным осадительным электродом 6. Проходя же по порам дополнительного осадительного электрода 6, вследствие незначительности величины проходного сечения пор, соизмеримой со значением размеров электрически заряженных частиц (примерно на порядок больше размера частиц), значительно возрастает роль действующего на частицы электрического поля, и субмикронные частицы осаждаются (скорость дрейфа частицы пропорциональна квадрату напряженности поля). Очищенный от субмикронных аэрозольных частиц газ выходит из пор дополнительного осадительного электрода 6 наружу. Применение в качестве дополнительного осадительного электрода 6 для очистки газа от аэрозолей, установленных с зазором друг относительно друга электропроводных заземленных элементов конструкции, перекрывающих поперечное сечение выходного отверстия, в какой-то мере сравнимо в определенной степени с использованием метода фильтрования для разделения неоднородных систем. См., например, А.Г. Касткин. Основные процессы и аппараты химической технологии. Химия. 1971 г., стр.194-222. Отличие состоит в том, что в предлагаемой конструкции размер пространства между элементами заземленной поверхности для прохождения очищаемого потока превышает практически на порядок значения размера частиц. Сепарация частиц в предлагаемом техническом решении осуществляется не за счет механического закупоривания пор частицами, размер которых больше размера поры, а за счет электростатического осаждения частиц на элементах заземленной поверхности дополнительного осадительного электрода. Как показали экспериментальные исследования, размер аэрозольных частиц, генерируемых коронным разрядом имеет нанометровый диапазон (порядка нескольких нм). Поэтому размер пор порядка 100 нм достаточный для свободного прохождения газового потока в течение длительного времени эксплуатации. При желании увеличить продолжительность непрерывной эксплуатации можно увеличить размер пор, одновременно увеличив толщину дополнительного заземленного осадительного электрода, удлинив тем самым длину пор и, соответственно, время прохождения частиц в пространстве между заземленными элементами конструкции.
В экспериментальных исследованиях в обычном электроочистителе воздуха Супер Плюс выходное отверстие было перекрыто шестью слоями металлической сетки из проволоки диаметром 0,5 мм, с размером ячейки 5 мм, электрически соединенной с последним рядом осадительных электродов. В результате работы очистителя в контролируемом пространстве частицы размером более 100 нм не были обнаружены, объемная концентрация аэрозолей в контролируемом пространстве по сравнению с работой очистителя в штатном варианте исполнения уменьшилась примерно в 2 раза.
Таким образом, предложенное техническое решение позволяет повысить эффективность сепарации субмикронных аэрозольных частиц и достичь цели предлагаемого изобретения.

Claims (1)

  1. Электрофильтр, содержащий установленные в корпусе с входным и выходным отверстиями коронирующие и осадительные электроды, установленный в выходном отверстии дополнительный осадительный электрод, отличающийся тем, что дополнительный осадительный электрод выполнен в виде установленных с зазором не менее 0,1 мкм друг относительно друга электропроводных заземленных элементов конструкции, перекрывающих сечение выходного отверстия.
RU2013105017/03A 2013-02-07 2013-02-07 Электрофильтр RU2525539C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013105017/03A RU2525539C1 (ru) 2013-02-07 2013-02-07 Электрофильтр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013105017/03A RU2525539C1 (ru) 2013-02-07 2013-02-07 Электрофильтр

Publications (2)

Publication Number Publication Date
RU2013105017A RU2013105017A (ru) 2014-08-20
RU2525539C1 true RU2525539C1 (ru) 2014-08-20

Family

ID=51384059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013105017/03A RU2525539C1 (ru) 2013-02-07 2013-02-07 Электрофильтр

Country Status (1)

Country Link
RU (1) RU2525539C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621386C1 (ru) * 2016-05-04 2017-06-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Способ увеличения скорости электрического ветра и устройство для его осуществления
RU172524U1 (ru) * 2016-08-23 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Устройство для увеличения скорости электрического ветра

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264343A (en) * 1979-05-18 1981-04-28 Monsanto Company Electrostatic particle collecting apparatus
SU1127635A1 (ru) * 1983-06-10 1984-12-07 Новосибирский Институт Инженеров Железнодорожного Транспорта Электрофильтр
RU2144433C1 (ru) * 1998-09-30 2000-01-20 Челябинский государственный агроинженерный университет Двухзонный электрофильтр
RU2293597C2 (ru) * 2005-04-26 2007-02-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
RU2356632C1 (ru) * 2008-02-20 2009-05-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
US7597750B1 (en) * 2008-05-12 2009-10-06 Henry Krigmont Hybrid wet electrostatic collector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264343A (en) * 1979-05-18 1981-04-28 Monsanto Company Electrostatic particle collecting apparatus
SU1127635A1 (ru) * 1983-06-10 1984-12-07 Новосибирский Институт Инженеров Железнодорожного Транспорта Электрофильтр
RU2144433C1 (ru) * 1998-09-30 2000-01-20 Челябинский государственный агроинженерный университет Двухзонный электрофильтр
RU2293597C2 (ru) * 2005-04-26 2007-02-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
RU2356632C1 (ru) * 2008-02-20 2009-05-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
US7597750B1 (en) * 2008-05-12 2009-10-06 Henry Krigmont Hybrid wet electrostatic collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621386C1 (ru) * 2016-05-04 2017-06-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Способ увеличения скорости электрического ветра и устройство для его осуществления
RU172524U1 (ru) * 2016-08-23 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Устройство для увеличения скорости электрического ветра

Also Published As

Publication number Publication date
RU2013105017A (ru) 2014-08-20

Similar Documents

Publication Publication Date Title
Jaworek et al. Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission
US20170354979A1 (en) Electrostatic air cleaner
US6524369B1 (en) Multi-stage particulate matter collector
CN107921444B (zh) 根据颗粒尺寸实现选择性气溶胶颗粒收集的方法和装置
US20140020558A1 (en) Apparatus and method for removal of particulate matter from a gas
JP2005076497A (ja) 排ガス処理方法及び排ガス処理装置
US6932857B1 (en) Multi-stage collector and method of operation
US10799883B2 (en) Method for the selective purification of aerosols
PH12014000396B1 (en) Composite dust collector
US9259742B2 (en) Electrostatic collecting system for suspended particles in a gaseous medium
RU2525539C1 (ru) Электрофильтр
US20160288138A1 (en) Electrostatic precipitator structure
Muzafarov et al. The research results of cleaning air stream process from aerosol particles in electric fields of corona discharge stream form
US11123750B2 (en) Electrode array air cleaner
RU2344882C1 (ru) Устройство для инактивации и тонкой фильтрации вирусов и микроорганизмов в воздушном потоке
US20030177901A1 (en) Multi-stage collector
CN112512695B (zh) 电集尘装置
Niewulis et al. Collection efficiency in narrow electrostatic precipitators with a longitudinal or transverse wire electrode
RU2181466C1 (ru) Ионный вентилятор-фильтр
US20180345295A1 (en) Device and method for separating materials
RU2333041C1 (ru) Электрофильтр
CN110753584B (zh) 用于分离材料的装置和方法
RU81655U1 (ru) Устройство для очистки газов от аэрозольных частиц
Fei et al. Electrostatic Capture of PM 2.5 Emitted from Coal-fired Power Plant by Pulsed Corona Discharge Combined with DC Agglomeration
Krigmont Multi-Stage Collector Design and Applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160208