RU2226708C2 - Жидкокристаллический дисплей с отражающим поляризатором - Google Patents

Жидкокристаллический дисплей с отражающим поляризатором Download PDF

Info

Publication number
RU2226708C2
RU2226708C2 RU2001125727/28A RU2001125727A RU2226708C2 RU 2226708 C2 RU2226708 C2 RU 2226708C2 RU 2001125727/28 A RU2001125727/28 A RU 2001125727/28A RU 2001125727 A RU2001125727 A RU 2001125727A RU 2226708 C2 RU2226708 C2 RU 2226708C2
Authority
RU
Russia
Prior art keywords
display
polarizer
display according
layer
multilayer structure
Prior art date
Application number
RU2001125727/28A
Other languages
English (en)
Other versions
RU2001125727A (ru
Inventor
П.И. Лазарев (RU)
П.И. Лазарев
М.В. Паукшто (RU)
М.В. Паукшто
Йао-Донг Ма (US)
Йао-Донг Ма
Original Assignee
ОПТИВА, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОПТИВА, Инк. filed Critical ОПТИВА, Инк.
Priority to RU2001125727/28A priority Critical patent/RU2226708C2/ru
Priority to US10/241,068 priority patent/US6847420B2/en
Priority to PCT/US2002/030008 priority patent/WO2003025092A1/en
Priority to CNB028208781A priority patent/CN100403108C/zh
Priority to JP2003529869A priority patent/JP4201267B2/ja
Priority to KR1020047004126A priority patent/KR100589974B1/ko
Priority to EP02761772A priority patent/EP1436359A1/en
Publication of RU2001125727A publication Critical patent/RU2001125727A/ru
Application granted granted Critical
Publication of RU2226708C2 publication Critical patent/RU2226708C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Изобретение относится к устройствам отображения информации. Жидкокристаллический дисплей содержит переднюю и заднюю панели с электродами и поляризаторами и слоем жидкого кристалла между ними. При этом поляризатор задней панели является отражающим поляризатором, по крайней мере, в одной области спектра и содержит, по крайней мере, один элемент, представляющий собой многослойную структуру. Многослойная структура содержит, по крайней мере, два анизотропных слоя, разделенных промежуточным слоем, оптически прозрачным в указанной спектральной области, причем соотношение показателей преломления и толщин указанных слоев многослойной структуры выбрано из условия обеспечения экстремума для отношения прошедшей и отраженной поляризации в указанной области спектра. Жидкокристаллический дисплей по заявленному изобретению имеет яркий, насыщенный цвет, высокий контраст и широкий угол обзора. Техническим результатом изобретения является увеличение яркости дисплея, получение в изображении спектрально чистых цветов, возможность формирования в цветном изображение белой, черной и цветной компонент, что позволяет усилить контраст и насыщенность изображения, а также увеличение угла обзора изображения на дисплее. 13 з.п. ф-лы, 3 ил.

Description

Изобретение относится к устройствам отображения информации, в частности к жидкокристаллическим (ЖК) дисплеям и может быть использовано в средствах индикаторной техники различного назначения.
Известны ЖК-дисплеи, выполненные в виде плоской кюветы, образованной двумя параллельными стеклянными пластинами, на внутренних поверхностях которых нанесены электроды из оптически прозрачного электропроводящего материала и ориентирующие слои. После сборки кюветы ее заполняют жидким кристаллом, который образует слой толщиной 5-20 мкм, являющийся активной средой, изменяющей свои оптические свойства (угол вращения плоскости поляризации) под действием электрического поля. Изменение оптических свойств регистрируется в скрещенных поляризаторах, которые обычно наклеиваются на внешние поверхности кюветы. При этом участки дисплея, на электроды которых не наложено напряжение, пропускают свет и выглядят светлыми, а участки дисплея под напряжением выглядят как темные области [Л.К.Вистинь. ЖВХО, 1983, том XXVII, вып. 2, с.141-148].
В отражающих дисплеях, позади ЖК ячейки размещается зеркало или отражатель, при этом падающий свет дважды проходит через ЖК ячейку. Формирование изображение происходит аналогично пропускающим дисплеям [Pochi Yeh, Claire Gu, Optics of liquid Crystal Displays, N. - Y., 1999, p.p.233-237].
Основными недостатком традиционных дисплеев является малый угол обзора, так как многослойная конструкция ЖК дисплея эффективно управляется потоком света, распространяющимся к лицевой поверхности дисплея только в пределах ограниченного телесного угла. В качестве поляризаторов в таких дисплеях обычно используют поглощающие поляризаторы на основе полимера, например поливинилового спирта, обладающие оптической анизотропией, получаемой путем одноосного растяжения пленки из этого полимера [US 5007942, 1991] и последующей окраской пленки в парах йода или в органическом красителе. При этом эллипсоиды угловой зависимости действительной и мнимой частей показателя преломления поляризатора имеют вытянутую (игольчатую) форму.
К недостаткам устройств такого типа можно отнести также относительно низкую яркость, контраст изображения и достаточно высокое энергопотребление, что обусловлено большим числом поглощающих слоев.
Цветные дисплеи обычно имеют аналогичную конструкцию, в которой используют цветные фильтры. Каждый пиксель цветного изображения формируется путем смешения трех базовых цветов (красный, синий, зеленый) в соответствующем соотношении [Nikkei Electronics, 1983, 5-23, p.p.102-103]. Использование поглощающих фильтров приводит к дополнительным потерям света в приборе и, как следствие, увеличению энергопотребления.
Известны ЖК дисплеи, в которых слой поляризатора получают из ориентированных надмолекулярных комплексов дихроичного красителя. Такие поляризаторы имеют достаточно высокие оптические характеристики и малую толщину, что позволяет размещать их внутри дисплея. Это упрощает конструкцию и повышает надежность дисплея, кроме того, особенности технологии получения таких слоев позволяют совмещать в одном слое несколько функций (например, функцию поляризатора и ориентирующего ЖК слоя) [RU 2120651, 15.04.96].
В заявке РСТ WO 99/31535 описывается ЖК индикаторный элемент, включающий поляризатор, содержащий двулучепреломляющий анизотропно поглощающий слой, который имеет показатель преломления, возрастающий с увеличением длины волны поляризуемого света. В частности, такой поляризатор может быть получен из ЛЖК дихроичного красителя и иметь толщину, при которой реализуется интерференционный экстремум, по крайней мере, с одной стороны поляризатора. В том числе в этой заявке описывается и отражающий поляризатор.
К недостаткам использования таких поляризаторов для цветных дисплеев можно отнести отражение ими света в широком спектральном диапазоне, что приводит к смазанности цветов. Кроме того, дальнейшее развитие дисплейной техники требует более высоких оптических характеристик от поляризующих элементов и, в частности, увеличения угла обзора, при котором происходит эффективное преобразование света.
Техническим результатом заявленного изобретения является увеличение яркости дисплея, получение в изображении спектрально чистых цветов, возможность формирования в цветном изображение белой, черной и цветной компонент, что позволяет усилить контраст и насыщенность изображения, а также увеличение угла обзора изображения на дисплее.
Технический результат достигается тем, что жидкокристаллический дисплей содержит переднюю и заднюю панели с электродами и поляризаторами и слоем жидкого кристалла между ними. При этом поляризатор задней панели является отражающим поляризатором, по крайней мере, в одной области спектра и содержит, по крайней мере, один элемент, представляющий собой многослойную структуру. Многослойная структура содержит, по крайней мере, два анизотропных слоя, разделенных, по крайней мере, одним промежуточным слоем, оптически прозрачным в указанной спектральной области, причем соотношение показателей преломления и толщин указанных слоев многослойной структуры выбрано из условия обеспечения экстремума для отношения прошедшей и отраженной поляризации в указанной области спектра.
По крайней мере, один анизотропный слой многослойной структуры может быть оптически прозрачным в указанной области спектра для обеих компонент поляризации.
Предпочтительно, чтобы, по крайней мере, один анизотропный слой имел степень анизотропии не ниже 0,4 в указанной области спектра.
По крайней мере, один анизотропный слой многослойной структуры может быть поляризатором Е-типа, по крайней мере, в одной области спектра.
Обычно анизотропные слои получают, по крайней мере, из одного органического красителя, который(-ые) и/или производные которого(-ых) способны к образованию лиотропного жидкого кристалла (ЛЖК).
Предпочтительно, чтобы в дисплее, по крайней мере, один из поляризаторов был расположен между передней и задней панелями.
Обычно за поляризатором задней панели по направлению падающего излучения располагают слой материала, поглощающего, по крайней мере, в указанной области спектра или во всем видимом диапазоне длин волн.
Предпочтительно, чтобы, по крайней мере, один анизотропный слой в дисплее был, по крайней мере, частично кристаллическим.
Для цветного дисплея поляризатор задней панели обычно состоит из матрицы цветных отражающих элементов, каждый из которых отражает, по крайней мере, в одной области спектра. При этом выбор элементов матрицы определен условием обеспечения набора базисных цветов. Обычно базисными цветами являются синий (с длиной волны из диапазона 400-500 нм), зеленый (с длиной волны из диапазона 500-600 нм) и красный (с длиной волны из диапазона 600-700 нм).
Для такого дисплей за поляризатором задней панели, состоящим из матрицы цветных отражающих элементов, предпочтительно располагать слой материала, поглощающего во всем видимом диапазоне длин волн.
Такой дисплей характеризуется наличием белой, черной и цветной компонент в цветном изображении.
ЖК дисплей по заявленному изобретению содержит переднюю и заднюю панели с электродами, поляризаторами и другими функциональными слоями и слой жидкого кристалла между ними. Поляризатор передней панели обычно является нейтральным, пропускающим одну поляризованную компоненту света и эффективно поглощающим другую.
Поляризатор задней панели для монохромного дисплея представляет собой многослойную структуру, содержащую, по крайней мере, два оптически анизотропных слоя, разделенных оптически прозрачным промежуточным слоем. Толщина и коэффициенты преломления всех слоев структуры подобраны таким образом, чтобы поляризатор эффективно отражал излучение одной поляризации в определенной области спектра и пропускал ортогонально поляризованное излучение, которое затем поглощается фильтрами.
Для цветного дисплее поляризатор задней панели представляет собой матрицу цветных отражающих элементов, каждый из которых выполнен аналогично отражающему поляризатору, описанному выше для монохромного дисплея. Выбор элементов матрицы определен обеспечением набора базисных цветов в изображении. Для получения спектрально чистых, контрастных цветных изображений предпочтительно, чтобы каждый элемент матрицы отражал в достаточно узком спектральном диапазоне.
При формировании многослойной структуры, эффективно отражающей свет одной поляризации, необходимо получать однородные слои с высокой степенью анизотропии, высоким значением одного из показателей преломления и предпочтительно тонкие (сравнимые с длиной волны). Для этих целей оптимальными являются кристаллические пленки (слои), полученные методами Optiva Technology [Lazarev P., Paukshto M., Proceeding of the 7th International Display Workshops, Materials and Components, Kobe, Japan, November 29 - December 1 (2000), p.p.1159-1160].
Начальный выбор материала для формирования такого слоя определяется подходящими спектральными характеристиками и наличием развитой системы π-сопряженных связей в ароматических сопряженных циклах и наличием в молекулах групп типа аминных, фенольных, кетонных и т.д., лежащих в плоскости молекулы и являющихся частью ароматической системы связей. Сами молекулы или их фрагменты имеют плоское строение. Например, это могут быть такие органические вещества, как индантрон (Vat Blue 4), или дибензоимидазол 1,4,5,8-нафталинтетракарбоновой кислоты (Vat Red 14), или дибензоимидазол 3,4,9,10-перилентетракарбоновой кислоты, или хинакридон (Pigment Violet 19) и другие, производные которых или их смеси образуют стабильную лиотропную жидкокристаллическую фазу.
При растворении такого органического соединения в подходящем растворителе образуется коллоидная система (жидкокристаллический раствор), в котором молекулы объединяются в супрамолекулярные комплексы, являющиеся кинетическими единицами системы. ЖК является предупорядоченным состоянием системы, из которой в процессе ориентации супрамолекулярных комплексов и последующего удаления растворителя образуется анизотропная кристаллическая пленка (или в других терминах пленочный кристалл).
Способ получения тонких анизотропных кристаллических пленок из коллоидной системы с супрамолекулярньгми комплексами предусматривает:
- нанесение этой коллоидной системы на подложку (или изделие, или один из слоев многослойной структуры); коллоидная система должна также обладать свойством тиксотропии, для этого коллоидная система должна находиться при заданной температуре и иметь определенную концентрацию дисперсной фазы;
- приведение нанесенной или наносимой коллоидной системы в состояние повышенной текучести путем любого вида внешнего воздействия, обеспечивающего уменьшение вязкости системы (это может быть нагрев, деформация сдвига и т.д.); внешнее воздействие может продолжаться в течение всего последующего процесса ориентирования или занимать время, необходимое для того, чтобы система не успела релаксировать в состояние с повышенной вязкостью за время ориентирования;
- внешнее ориентирующее воздействие на систему, которое может быть произведено как механическим, так и любым другим способом; степень указанного воздействия должна быть достаточна для того, чтобы кинетические единицы коллоидной системы получили необходимую ориентацию и образовали структуру, которая и будет являться основой будущей кристаллической решетки получаемого слоя;
- перевод ориентированной области получаемого слоя из состояния с уменьшенной вязкостью, которое было достигнуто первоначальным внешним воздействием, в состояние с первоначальной или более высокой вязкостью системы; ее осуществляют таким образом, чтобы не произошла разориентация структуры формируемого слоя и не возникли дефекты на поверхности слоя;
- завершающей операцией является процесс удаление растворителя, в ходе которого и происходит непосредственно образование кристаллической структуры.
В полученном слое плоскости молекул параллельны друг другу и образуют трехмерный кристалл, по крайней мере, в части слоя. При оптимизации способа производства возможно получение монокристаллического слоя. Оптическая ось в таком кристалле будет перпендикулярна плоскости молекул. Такой слой обладает высокой степенью анизотропии и, по крайней мере, для одного направления высоким показателем преломления. Толщина слоя обычно не превышает 1 мкм.
Толщину получаемого слоя можно контролировать по содержанию твердой фазы в исходном ЖК и толщине нанесенного слоя ЛЖК. Кроме того, для получения слоев с промежуточными оптическими характеристиками возможно смешивать коллоидные системы (в этом случае в растворе будут образовываться совместные супрамолекулярные комплексы). В слоях, полученных из смесей коллоидных растворов, поглощение и преломление могут принимать различные значения в пределах, определяемых исходными компонентами. Смешивание различных коллоидных систем с образованием совместных супрамолекулярных комплексов возможно в связи с плоскостностью молекул (или их фрагментов) и совпадением одного из размеров молекул указанных выше органических соединений (3,4А). Во влажном слое молекулы имеют дальний порядок в одном направлении, что связано с ориентацией супрамолекулярных комплексов на подложке. При испарении растворителя молекулам оказывается энергетически выгоднее образовывать трехмерную кристаллическую структуру.
Многослойная структура включает, по крайней мере, два анизотропных слоя, полученных описанным выше способом. При этом оптические оси отдельных анизотропных слоев обычно сонаправленны. Отражение света поляризатором в определенном спектральном диапазоне происходит за счет эффекта интерференции в тонких слоях. Выбор толщины слоев и показателей преломления для каждого направления поляризации осуществляют таким образом, чтобы одна поляризационная компонента света эффективно отражалась такой структурой, а другая проходила без отражения. Для поглощения прошедшего через многослойную структуру света за ней (по ходу падения излучения) обычно располагают слой абсолютно поглощающего материала. Это устраняет блики света от задней панели дисплея и усиливает контраст изображения, кроме того, такая конструкция дисплея позволяет получать черный цвет в изображении.
Поскольку получаемые слои являются тонкими (толщиной менее 100 нм), а их количество может быть минимально (например, 3) благодаря высокой степени анизотропии, такая многослойная структура может быть расположена внутри ЖК дисплея.
Поляризатор передней панели может быть также получен по описанной технологии при соответствующем выборе органического вещества, образующего ЛЖК, или смеси веществ, имеющих подходящий спектр поглощения. При этом поляризатор также может быть расположен внутри дисплея.
Внутреннее расположение всех функциональных слоев дисплея позволяет уменьшить его размеры, повысить надежность и упростить технологию производства.
Кроме того, особенности формирования анизотропных слоев приводят к тому, что эллипсоиды угловой зависимости действительной и мнимой частей показателя преломления имеют дискообразную форму. Изменение формы эллипсоида мнимой части показателя преломления существенно сказывается на параметрах поляризатора и в том числе на его угловых характеристиках. Использование таких поляризаторов в дисплее позволяет увеличить угол обзора практически до 180°.
Поляризатор задней панели для цветного дисплея, представляющий собой матрицу цветных отражающих элементов, может быть также получен по описанной выше технологии. Например, с использованием защитных масок для формирования локальных покрытий. При этом слои анизотропного материала наносятся последовательно друг за другом по описанной выше технологии. В местах, где необходимо сохранить покрытие для формирования локального отражающего элемента поляризатора, материал покрытия переводится в нерастворимую форму. В остальных местах он удаляется путем смыва. Сверху наносится слой другого анизотропного материала и процедура повторяется. При необходимости можно использовать дополнительные планаризующие слои. Таким образом, формируется многослойная структура поляризатора, являющаяся матрицей отдельных элементов. Каждый из элементов матрицы отражает свет определенного спектрального диапазона и одной поляризации.
Сущность изобретения поясняется следующими чертежами: на фиг.1 представлена конструкция монохромного дисплея с внутренними поляризаторами; на фиг.2 представлена схема многослойного отражающего поляризатора; на фиг.3 даны спектральные характеристики трехслойного отражающего поляризатора.
Пример реализации
ЖК дисплей (фиг.1) содержит переднюю 1 и заднюю 2 панели со сформированными на них функциональными слоями (системой электродов, планаризующим слоем, адгезионным слоем и т.д.) и слой ЖК 3 между ними. С внутренней стороны передней панели сформирована тонкая кристаллическая пленка 4, выполняющая функцию дихроичного поляризатора. Кристаллическую пленку могут формировать описанным выше способом из ЛЖК, содержащего 12,5% смеси красителей (Vat Blue 4; бис-бензимидазол-[2,1-а:1’2’b’]антра[2,1,9-def:6,5,10-d’e’f’]диизохинолин-6,9-дион; Vat Red 15 в соотношении 5,2: 2: 1) с последующим переводом ее в нерастворимую форму путем обработки ионами Ва. Толщина кристатлической пленки составляет около 100 нм. Поскольку пленка 4 является высокоупорядоченной анизотропной пленкой, она одновременно может выполнять функцию ориентирующего слоя для ЖК.
На внутренней стороне задней панели сформирована многослойная структура отражающего поляризатора 5. На задней панели расположен также поглощающий слой 6.
Отражающий поляризатор 5 состоит из трех слоев (фиг.2): начиная с задней панели дисплея, кристаллического слоя 7, полученный из ЛЖК красителя Vat Red 15, толщиной 60 нм; изотропного, прозрачного слоя 8 поливинилацетата, толщиной 100 нм и кристаллического слоя 9, полученный из ЛЖК красителя Vat Red 15, толщиной 60 нм. Кристаллические слои отличаются высокой степенью анизотропии, в интервале длин волн 570-600 нм она достигает величины 0,8. Слои формируются на задней панели последовательно описанным выше способом. Отражающий поляризатор 5 имеет интегральную эффективность отражения около 44% поляризованного света для необыкновенного направления и около 1% - для обыкновенного. На фиг.3 представлены соответствующие спектральные зависимости отраженного света для разных направлений поляризации.
Описанный дисплей имеет яркий, насыщенный цвет (зеленый), высокий контраст и широкий угол обзора.
Список используемой литературы
Л.К.Вистинь, ЖВХО, 1983, т. XXVII, вып. 2, с.141-148.
Pochi Yeh, Claire Gu, Optics of liquid Crystal Displays, N. - Y., 1999, p.p.233-237.
US 5007942, 1991.
Nikkei Electronics, 1983, 5-23, p.p.102-103.
RU 2120651, 15.04.96.
WO 99/31535.

Claims (14)

1. Жидкокристаллический дисплей, содержащий переднюю и заднюю панели с электродами и поляризаторами и слоем жидкого кристалла между ними, отличающийся тем, что поляризатор задней панели является отражающим поляризатором и содержит, по крайней мере, один элемент, представляющий собой многослойную структуру, содержащую, по крайней мере, два анизотропных слоя, разделенных, по крайней мере, одним оптически прозрачным слоем, причем соотношение показателей преломления и толщин указанных слоев многослойной структуры выбрано из условия обеспечения экстремума для отношения прошедшей и отраженной поляризации.
2. Дисплей по п.1, отличающийся тем, что, по крайней мере, один анизотропный слой многослойной структуры, является оптически прозрачным для обоих компонентов поляризации.
3. Дисплей по пп.1 и 2, отличающийся тем, что, по крайней мере, один анизотропный слой имеет степень анизотропии не ниже 0,4.
4. Дисплей по любому из предыдущих пунктов, отличающийся тем, что, по крайней мере, один анизотропный слой является поляризатором Е-типа.
5. Дисплей по любому из предыдущих пунктов, отличающийся тем, что анизотропный слой получен, по крайней мере, из одного органического красителя, который и/или производные которого способны к образованию лиотропного жидкого кристалла.
6. Дисплей по любому из предыдущих пунктов, отличающийся тем, что, по крайней мере, один из поляризаторов расположен между передней и задней панелями дисплея.
7. Дисплей по любому из предыдущих пунктов, отличающийся тем, что за поляризатором задней панели по направлению падающего излучения расположен слой поглощающего материала.
8. Дисплей по п.7, отличающийся тем, что материал поглощает во всем видимом диапазоне длин волн.
9. Дисплей по любому из предыдущих пунктов, отличающийся тем, что, по крайней мере, один анизотропный слой является, по крайней мере, частично кристаллическим.
10. Дисплей по любому из предыдущих пунктов, отличающийся тем, что поляризатор задней панели состоит из матрицы цветных отражающих элементов.
11. Дисплей по п.10, отличающийся тем, что выбор элементов матрицы определен условием обеспечения набора базисных цветов.
12. Дисплей по п.11, отличающийся тем, что базисными цветами являются синий, с длиной волны из диапазона 400-500 нм; зеленый, с длиной волны из диапазона 500-600 нм и красный, с длиной волны из диапазона 600-700 нм.
13. Дисплей по любому из пп.10-12, отличающийся тем, что за поляризатором задней панели, состоящим из матрицы цветных отражающих элементов, по направлению падающего излучения расположен слой материала, поглощающего во всем видимом диапазоне длин волн.
14. Дисплей по любому из предыдущих пунктов, отличающийся тем, что дисплей характеризуется наличием белой, черной и цветной компоненты в цветном изображении.
RU2001125727/28A 2001-09-21 2001-09-21 Жидкокристаллический дисплей с отражающим поляризатором RU2226708C2 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2001125727/28A RU2226708C2 (ru) 2001-09-21 2001-09-21 Жидкокристаллический дисплей с отражающим поляризатором
US10/241,068 US6847420B2 (en) 2001-09-21 2002-09-10 Liquid crystal display with reflecting polarizer
PCT/US2002/030008 WO2003025092A1 (en) 2001-09-21 2002-09-20 Liquid crystal display with reflecting polarizer
CNB028208781A CN100403108C (zh) 2001-09-21 2002-09-20 具有反射偏振片的液晶显示器
JP2003529869A JP4201267B2 (ja) 2001-09-21 2002-09-20 反射偏光板を有する液晶ディスプレイ
KR1020047004126A KR100589974B1 (ko) 2001-09-21 2002-09-20 반사 편광자를 구비한 액정 디스플레이
EP02761772A EP1436359A1 (en) 2001-09-21 2002-09-20 Liquid crystal display with reflecting polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001125727/28A RU2226708C2 (ru) 2001-09-21 2001-09-21 Жидкокристаллический дисплей с отражающим поляризатором

Publications (2)

Publication Number Publication Date
RU2001125727A RU2001125727A (ru) 2003-08-27
RU2226708C2 true RU2226708C2 (ru) 2004-04-10

Family

ID=20253250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001125727/28A RU2226708C2 (ru) 2001-09-21 2001-09-21 Жидкокристаллический дисплей с отражающим поляризатором

Country Status (3)

Country Link
US (1) US6847420B2 (ru)
KR (1) KR100589974B1 (ru)
RU (1) RU2226708C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443072C1 (ru) * 2008-01-09 2012-02-20 Долби Лэборетериз Лайсенсинг Корпорейшн Подавление блика lcd
RU2446485C2 (ru) * 2007-03-28 2012-03-27 Шарп Кабушики Каиша Жидкокристаллический дисплей и способы управления этим дисплеем
RU2450295C1 (ru) * 2009-12-03 2012-05-10 Шарп Кабусики Кайся Устройство жидкокристаллического дисплея
RU2458411C2 (ru) * 2008-03-11 2012-08-10 Шарп Кабусики Кайся Возбуждающая схема, способ возбуждения, жидкокристаллическая дисплейная панель, жидкокристаллический модуль и жидкокристаллическое дисплейное устройство
RU2491655C2 (ru) * 2008-12-18 2013-08-27 Шарп Кабусики Кайся Способ и устройство адаптивной обработки изображений для сокращения смещения цветов у жидкокристаллических дисплеев

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104027A1 (en) * 2003-10-17 2005-05-19 Lazarev Pavel I. Three-dimensional integrated circuit with integrated heat sinks
US7324181B2 (en) * 2004-04-15 2008-01-29 Nitto Denko Corporation Non-absorbing polarization color filter and liquid crystal display incorporating the same
KR101338680B1 (ko) 2006-11-27 2013-12-06 엘지디스플레이 주식회사 액정표시장치
JP5205747B2 (ja) * 2006-12-08 2013-06-05 ソニー株式会社 液晶表示装置および投射型表示装置
US8792432B2 (en) * 2011-02-14 2014-07-29 Broadcom Corporation Prioritizing RACH message contents
KR101976734B1 (ko) * 2012-11-30 2019-05-09 동우 화인켐 주식회사 반사형 화상 표시 장치 및 이를 구비한 전자 기기
US9360596B2 (en) 2013-04-24 2016-06-07 Light Polymers Holding Depositing polymer solutions to form optical devices
JP2015099362A (ja) * 2013-10-15 2015-05-28 日東電工株式会社 光学積層体及び調光窓
US9829617B2 (en) 2014-11-10 2017-11-28 Light Polymers Holding Polymer-small molecule film or coating having reverse or flat dispersion of retardation
US9856172B2 (en) 2015-08-25 2018-01-02 Light Polymers Holding Concrete formulation and methods of making
US10403435B2 (en) 2017-12-15 2019-09-03 Capacitor Sciences Incorporated Edder compound and capacitor thereof
US10962696B2 (en) 2018-01-31 2021-03-30 Light Polymers Holding Coatable grey polarizer
US11370914B2 (en) 2018-07-24 2022-06-28 Light Polymers Holding Methods of forming polymeric polarizers from lyotropic liquid crystals and polymeric polarizers formed thereby
WO2023086072A1 (en) 2021-11-09 2023-05-19 Light Field Lab, Inc. Energy modulation systems for diffraction based holographic displays

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610729A (en) * 1969-06-18 1971-10-05 Polaroid Corp Multilayered light polarizer
EP1156362A1 (en) 1986-05-19 2001-11-21 Seiko Epson Corporation A liquid crystal display device
EP0374655B1 (de) * 1988-12-23 1993-09-15 Bayer Ag Lichtpolarisierende Filme oder Folien enthaltende Stilbenfarbstoffe
JPH04161978A (ja) 1990-10-24 1992-06-05 Nippon Paint Co Ltd カラー液晶表示装置
EP0736187B1 (en) 1993-12-21 2002-04-03 Minnesota Mining And Manufacturing Company Optical polarizer
JP3044681B2 (ja) * 1994-06-08 2000-05-22 富士写真フイルム株式会社 液晶表示装置
US6573961B2 (en) * 1994-06-27 2003-06-03 Reveo, Inc. High-brightness color liquid crystal display panel employing light recycling therein
US5686979A (en) * 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
US6399166B1 (en) * 1996-04-15 2002-06-04 Optiva, Inc. Liquid crystal display and method
RU2120651C1 (ru) 1996-04-15 1998-10-20 Поларайзер Интернэшнл, ЛЛСи Жидкокристаллический индикаторный элемент
US5808794A (en) * 1996-07-31 1998-09-15 Weber; Michael F. Reflective polarizers having extended red band edge for controlled off axis color
US6122079A (en) * 1997-02-28 2000-09-19 Polaroid Corporation Chromatically-adjusted holographically illuminated image-providing display element
RU2124746C1 (ru) 1997-08-11 1999-01-10 Закрытое акционерное общество "Кванта Инвест" Дихроичный поляризатор
KR100607739B1 (ko) 1997-12-16 2006-08-01 고수다르스체니 노크니 첸트르 로시스코이 페데라치 편광기와 액정디스플레이
US6207260B1 (en) * 1998-01-13 2001-03-27 3M Innovative Properties Company Multicomponent optical body
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
TW394852B (en) * 1998-08-26 2000-06-21 Merck Patent Gmbh Reflective film
US6466297B1 (en) * 1999-07-02 2002-10-15 Merck Patent Geselleschaft Mit Beschrankter Haftung Method of preparing a broadband reflective polarizer
US6574044B1 (en) * 1999-10-25 2003-06-03 3M Innovative Properties Company Polarizer constructions and display devices exhibiting unique color effects
WO2003025092A1 (en) 2001-09-21 2003-03-27 Optiva, Inc. Liquid crystal display with reflecting polarizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446485C2 (ru) * 2007-03-28 2012-03-27 Шарп Кабушики Каиша Жидкокристаллический дисплей и способы управления этим дисплеем
US8760476B2 (en) 2007-03-28 2014-06-24 Sharp Kabushiki Kaisha Liquid crystal display devices and methods for driving the same
RU2443072C1 (ru) * 2008-01-09 2012-02-20 Долби Лэборетериз Лайсенсинг Корпорейшн Подавление блика lcd
US8698729B2 (en) 2008-01-09 2014-04-15 Dolby Laboratories Licensing Corporation Mitigation of LCD flare
RU2458411C2 (ru) * 2008-03-11 2012-08-10 Шарп Кабусики Кайся Возбуждающая схема, способ возбуждения, жидкокристаллическая дисплейная панель, жидкокристаллический модуль и жидкокристаллическое дисплейное устройство
RU2491655C2 (ru) * 2008-12-18 2013-08-27 Шарп Кабусики Кайся Способ и устройство адаптивной обработки изображений для сокращения смещения цветов у жидкокристаллических дисплеев
RU2450295C1 (ru) * 2009-12-03 2012-05-10 Шарп Кабусики Кайся Устройство жидкокристаллического дисплея

Also Published As

Publication number Publication date
KR20040051592A (ko) 2004-06-18
US20030071939A1 (en) 2003-04-17
KR100589974B1 (ko) 2006-06-19
US6847420B2 (en) 2005-01-25

Similar Documents

Publication Publication Date Title
RU2226708C2 (ru) Жидкокристаллический дисплей с отражающим поляризатором
US7453640B2 (en) Liquid crystal display including O-type and E-type polarizer
TWI245937B (en) Polarization rotators, articles containing the polarization rotators, and methods of making and using the same
TWI314230B (en) Liquid crystal display
JP4415334B2 (ja) 非吸収性偏光カラーフィルター及びそれを組み込んだ液晶表示装置
US20040201795A1 (en) Liquid crystal display with internal polarizer
KR20040094811A (ko) 편광 미러
JP3791905B2 (ja) O型偏光子およびe型偏光子を含む液晶ディスプレー
JP2005504333A (ja) 偏光回転子および偏光回転子を含有する物品の製造方法
US7079207B2 (en) Liquid crystal display
RU2225025C2 (ru) Жидкокристаллическое устройство отображения информации
JP2006503324A (ja) カラーフィルタ及びかかるフィルタを有する液晶ディスプレイ装置
JPH11160538A (ja) 偏光素子とその製造方法及び表示装置
JP4201267B2 (ja) 反射偏光板を有する液晶ディスプレイ
JPH08106087A (ja) 反射型液晶表示装置
US20050057707A1 (en) Super white cholesteric display employing backside circular polarizer
JPH08278408A (ja) 偏光素子とその製造方法およびそれを用いた液晶表示装置
JPH11352519A (ja) 液晶表示装置
JP2003161938A (ja) 液晶表示素子及びその製造方法
JPH10319442A (ja) 反射型ゲストホスト液晶表示装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030922