RU2223138C1 - Генератор азота для создания инертной технологической газовой среды - Google Patents

Генератор азота для создания инертной технологической газовой среды Download PDF

Info

Publication number
RU2223138C1
RU2223138C1 RU2002121803/15A RU2002121803A RU2223138C1 RU 2223138 C1 RU2223138 C1 RU 2223138C1 RU 2002121803/15 A RU2002121803/15 A RU 2002121803/15A RU 2002121803 A RU2002121803 A RU 2002121803A RU 2223138 C1 RU2223138 C1 RU 2223138C1
Authority
RU
Russia
Prior art keywords
nitrogen
unit
gas separation
oxygen
nitrogen generator
Prior art date
Application number
RU2002121803/15A
Other languages
English (en)
Other versions
RU2002121803A (ru
Inventor
нский М.А. Гул
М.А. Гулянский
Е.Г. Крашенинников
А.М. Крюков
Г.И. Мальцев
Original Assignee
Закрытое акционерное общество "Газоразделительные системы"
Открытое акционерное общество "Компрессорный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Газоразделительные системы", Открытое акционерное общество "Компрессорный завод" filed Critical Закрытое акционерное общество "Газоразделительные системы"
Priority to RU2002121803/15A priority Critical patent/RU2223138C1/ru
Application granted granted Critical
Publication of RU2223138C1 publication Critical patent/RU2223138C1/ru
Publication of RU2002121803A publication Critical patent/RU2002121803A/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к системам генерирования инертной газовой среды для различных технологических процессов. Генератор азота использует разделение сжатого охлажденного воздуха на полупроницаемых мембранах с контролем чистоты азота датчиком загрязнения его кислородом. Генератор имеет входной и выходной нагнетательные блоки, подсоединенные к общему приводу, и регулятор расхода охлаждающего агента, управляемый датчиком загрязнения очищенного азота кислородом. Изобретение позволяет упростить согласование работы входного и выходного нагнетательных блоков и обеспечивает автоматическое поддержание концентрации азота на выходе из генератора. 7 з.п.ф-лы, 2 ил.

Description

Изобретение относится к системам генерирования инертной газовой среды из азота для создания безопасных условий труда и обеспечения технологических процессов в нефтедобывающей, газовой, нефтеперерабатывающей, нефтехимической, лакокрасочной, фармацевтической и пищевой промышленности, а также к системам, используемым для защиты объектов различного назначения от загорания и для подавления очагов открытого огня.
В настоящее время используются различные системы для генерирования инертной среды из азота.
Известен генератор азота, содержащий теплоизолированную емкость с жидким азотом, испаритель жидкого азота и форсунки для формирования газового облака (см. авторское свидетельство СССР 1465601, А 62 С 3/02 от 15.03.1989). Генераторы азота данного типа имеют ограниченные возможности, определяемые запасом азота в криогенной емкости или в ином аккумуляторе. Использование емкости с запасом криогенной жидкости или газа высокого давления делает подобный генератор азота потенциально опасным, так как при внешнем нагреве, например, при наличии близко расположенных очагов пламени давление в емкости может превысить предельно допустимое и емкость разрушится с образованием осколков.
Известен также генератор азота для создания инертной технологической газовой среды непосредственно из атмосферного воздуха, содержащий входной нагнетательный блок и две емкости, заполненные твердым адсорбентом кислорода. Используя электроклапаны, емкости поочередно подключают к нагнетательному блоку. Воздух проходит через адсорбент и выходит из емкости с существенно уменьшенным содержанием кислорода, что позволяет использовать его в качестве инертной газовой среды. Свойства адсорбента восстанавливаются при прекращении подачи воздуха в емкость (см. заявку РСТ WO 02/16009 А2, B 01 D 53/22 от 28.02.2002). Генераторы азота данного типа более безопасны в обращении и могут длительно использоваться для генерирования инертного газа с уменьшенным содержанием кислорода, но требуют значительного количества адсорбента. При работе генератора наблюдается вынос адсорбента, что приводит к ускоренному износу клапанов. Возможно попадание адсорбента в обслуживаемую технологическую систему.
Наиболее близким к предложенному изобретению является генератор азота для создания инертной технологической газовой среды, описанный в заявке РСТ WO 02/26359 А1, B 01 D 53/22 от 04.04.2002. Известный генератор азота содержит входной нагнетательный блок, оснащенный осевым компрессором, к выходу которого через охлаждающий теплообменник и блок фильтрации подключен газоразделительный блок с полупроницаемой мембраной, выходной нагнетательный блок повышения давления очищенного азота, подсоединенный к надмембранной полости газоразделительного блока, и систему управления и контроля, включающую в себя датчики загрязнения очищенного азота кислородом. Выходной нагнетательный блок оснащен поршневым компрессором. Каждый из нагнетательных блоков имеет собственный привод. Генератор азота оснащен двумя датчиками загрязнения очищенного азота кислородом, установленными на линии очищенного азота между газоразделительным блоком и выходным нагнетательным блоком, один из которых управляет приводом входного нагнетательного блока, а другой - приводом выходного нагнетательного блока. Генераторы азота с полупроницаемыми мембранами могут вырабатывать защитную среду сколь угодно долго, что делает их наиболее привлекательными для использования в различных технологических системах. Использование двух нагнетательных блоков и теплообменника на входе в разделительный блок дает возможность снизить силовую нагрузку на полупроницаемую мембрану и оптимизировать работу разделительного блока, подавая в надмембранную полость газ с соответствующими температурой и давлением, и снизить потребление энергии для выработки инертной среды с повышенным давлением, так как заданный уровень давления защитной среды можно получить, сжимая меньший объем газа. Однако наличие раздельных приводов входного и выходного нагнетательных блоков и раздельное регулирование их работы усложняют конструкцию и эксплуатацию генератора азота и удорожают выработку очищенного азота.
Задачей настоящего изобретения является разработка генератора азота для создания инертной технологической газовой среды, обеспечивающего эффективную его работу при выработке инертной среды с требуемой концентрацией азота с широким диапазоном изменения выходных характеристик по давлению и объемному расходу азота при минимальном составе оборудования и минимальной стоимости кубометра чистого азота. Другой задачей изобретения является разработка генератора азота, имеющего высокую степень заводской готовности, чтобы произвести его наладку и испытания в заводских условиях с поставкой потребителю изделия, полностью готового к эксплуатации.
Поставленные задачи достигаются тем, что в генераторе азота для создания инертной технологической газовой среды, содержащем входной нагнетательный блок, к выходу которого через охлаждающий теплообменник и блок фильтрации подключен газоразделительный блок с полупроницаемой мембраной, выходной нагнетательный блок повышения давления очищенного азота, подсоединенный к надмембранной полости газоразделительного блока, и систему управления и контроля, включающую в себя датчик загрязнения очищенного азота кислородом, согласно изобретению входной и выходной нагнетательные блоки подсоединены к общему приводу, а система управления и контроля оснащена регулятором расхода охлаждающего агента, управляемым датчиком загрязнения очищенного азота кислородом.
Кроме того, в генераторе азота система управления и контроля оснащена задатчиком уровня загрязнения очищенного азота кислородом и блоком сравнения, при этом входы блока сравнения подключены к выходам указанного задатчика и датчика загрязнения очищенного азота кислородом, а к выходу блока сравнения подключен регулятор расхода охлаждающего агента.
При этом в генераторе азота газоразделительный блок собран из параллельно установленных модульных сборок, каждая из которых оснащена газоразделительной камерой с размещенной в ней полупроницаемой мембраной и запорными устройствами на входе в надмембранную полость и на выходе из нее.
Газоразделительные камеры целесообразно оснастить или полупроницаемыми половолоконными мембранами, или полупроницаемыми плоскими полимерными мембранами.
Кроме того, входной нагнетательный блок оснащен одноступенчатым или многоступенчатым винтовым компрессором, а выходной нагнетательный блок - многоступенчатым винтовым компрессором.
При этом входной и выходной нагнетательные блоки, общий привод указанных блоков, газоразделительный блок и теплообменник целесообразно разместить на общем основании.
Сущность изобретения заключается в прямом механическом согласовании пропорционального изменения объемных расходов воздуха во входном нагнетательном блоке и чистого азота в выходном нагнетательном за счет подсоединения их к общему приводу, что приведет к синхронному изменению оборотов в обоих блоках. Это исключает использование каких-либо автоматических согласующих устройств или вмешательство обслуживающего персонала при изменении режима потребления азота технологической системой, что снижает стоимость оборудования и затраты на эксплуатацию генератора азота и, соответственно, уменьшает стоимость кубометра чистого азота. Требуемая концентрация азота (уровень загрязнения азота кислородом) и производительность генератора азота обеспечиваются режимом работы нагнетательных блоков и регулированием проницаемости мембраны в газоразделительном блоке за счет изменения температуры воздуха, поступающего в газоразделительный блок из входного нагнетательного блока. Увеличение температуры воздуха, поступающего в газоразделительный блок, приводит к увеличению проницаемости мембраны для кислорода, возрастанию сброса кислорода в подмембранную полость и снижению парциального давления кислорода на выходе из надмембранной полости. Одновременно возрастает сброс в подмембранную полость азота, но парциальное давление кислорода падает быстрее, что приводит к повышению чистоты азота на выходе из надмембранной полости. Изменение температуры воздуха достигается изменением расхода охлаждающего агента через теплообменник с помощью регулятора расхода, управляемого датчиком загрязнения очищенного азота кислородом. Для снижения загрязнения очищенного азота кислородом уменьшают расход охлаждающего агента через теплообменник и увеличивают температуру воздуха на входе в газоразделительный блок. Производительность генератора азота обеспечивается соответствующим побором площади полупроницаемой мембраны. Наличие блока фильтрации обеспечивает стабильную работу газоразделительного блока.
Наличие в системе управления и контроля задатчика уровня загрязнения очищенного азота кислородом и блока сравнения, при этом входы блока сравнения подключены к выходам указанного задатчика и датчика загрязнения очищенного азота кислородом, а к выходу блока сравнения подключен регулятор расхода охлаждающего агента, дает возможность выпускать унифицированные генераторы азота и быстро перенастраивать генератор азота на выработку очищенного азота с иным уровнем загрязненности его кислородом на месте в соответствии с требованиями потребителя, не внося изменений в оборудование генератора, и снизить тем самым стоимость кубометра очищенного азота.
Наличие в генераторе азота газоразделительного блока, собранного из параллельно установленных модульных сборок, каждая из которых оснащена газоразделительной камерой с размещенной в ней полупроницаемой мембраной и запорными устройствами на входе в надмембранную полость и на выходе из нее, обеспечивает оптимальное использование полупроницаемых мембран в соответствии с производительностью генератора и увеличивает срок службы мембран, исключая загрязнение мембраны в отключенной газоразделительной камере.
Использование полупроницаемых половолоконных мембран или полупроницаемых плоских полимерных мембран в наибольшей степени соответствует низкотемпературному процессу диффузионного разделения воздуха.
Оснащение входного нагнетательного блока одноступенчатым или многоступенчатым винтовым компрессором расширяет диапазон регулирования производительности генератора и увеличивает срок службы блока фильтрации и полупроницаемых мембран.
Оснащение выходного нагнетательного блока многоступенчатым винтовым компрессором упрощает согласование работы входного и выходного нагнетательных блоков и снижает загрязнение очищенного азота посторонними примесями, в частности парами масла.
Размещение на общем основании входного и выходного нагнетательных блоков, общего привода указанных блоков, газоразделительного блока и теплообменника дает возможность собрать генератор азота на предприятии-изготовителе как единую сборочную единицу, провести все испытания и проверки сборочной единицы в условиях предприятия-изготовителя с последующей его поставкой потребителю отработанной сборочной единицей.
На фиг.1 изображена блок-схема генератора азота, реализующая предложенное изобретение; на фиг.2 схематически показано размещение агрегатов генератора азота на общем основании.
Генератор азота содержит входной нагнетательный блок 1, к выходу которого через охлаждающий теплообменник 2 и блок 3 фильтрации подключен газоразделительный блок 4. Линия 5 очищенного азота соединяет выход газоразделительного блока 4 с выходным нагнетательным блоком 6 повышения давления очищенного азота. Входной 1 и выходной 6 нагнетательные блоки подсоединены к общему приводу 7.
Входной нагнетательный блок 1 оснащен одноступенчатым или многоступенчатым компрессором, например винтовым.
Охлаждающий теплообменник 2 имеет контур 8 охлаждения. В линии 9 подвода охлаждающего агента установлен регулятор расхода 10 системы управления и контроля за работой генератора азота. Блок 3 фильтрации включает последовательно установленные влаго-маслоотделитель 11, фильтр 12 тонкой очистки и адсорбционный поглотитель 13.
Газоразделительный блок 4 собран из параллельно установленных модульных сборок, каждая из которых оснащена газоразделительной камерой 14 с размещенной в ней полупроницаемой мембраной 15, разделяющей камеру 14 на подмембранную 16 и надмембранную 17 полости. На входе в надмембранную полость 17 и на выходе из нее установлены запорные устройства 18. Полупроницаемые мембраны 15 могут быть изготовлены из половолоконных мембран, например на основе полисульфонов, или из плоских полимерных мембран, например на основе поливинилтриметилсилана. Возможно использование и других подобных материалов, освоенных промышленностью. Надмембранные полости 17 соединены с выходом из блока 3 фильтрации и через линию 5 очищенного азота с выходным нагнетательным блоком 6. Подмембранные полости 16 соединены с атмосферой для сброса из нее газа, обогащенного кислородом.
К линии 5 очищенного азота подключен датчик 19 загрязнения очищенного азота кислородом системы управления и контроля, которая дополнительно оснащена задатчиком 20 уровня загрязнения очищенного азота кислородом и блоком 21 сравнения текущего уровня загрязнения очищенного азота с заданным (предельно допустимым) уровнем загрязнения. Сигналы с датчика 19 и задатчика 20 поступают на входы блока 21 сравнения. Выход блока 21 сравнения подключен к регулятору 10 расхода охлаждающего агента для управления расходом охлаждающего компонента по показаниям датчика 19.
Выходной нагнетательный блок 6 оснащен многоступенчатым компрессором, преимущественно двухступенчатым или трехступенчатым винтовым компрессором, производительность которого ниже производительности винтового компрессора входного нагнетательного блока на величину сброса обогащенного кислородом газа из подмембранной полости в атмосферу. За выходным нагнетательным блоком установлен щит 22 раздачи очищенного азота потребителю.
Все агрегаты генератора азота смонтированы на общем основании 23. Вариант схемы компоновки показан на фиг.2. Приведенная схема компоновки не является единственно возможной, и генератор азота может быть смонтирован на основании 23 в любой иной компоновке.
Атмосферный воздух поступает после предварительной фильтрации в компрессор входного нагнетательного блока 1 и сжимается в нем до 0,2-6 МПа (2-60 атм). Сжатый воздух поступает в охлаждающий теплообменник 2 и охлаждается в нем до 5-65oC. Охлажденный воздух последовательно проходит через водо-маслоотделитель 11, фильтр тонкой очистки 12 и адсорбционный поглотитель 13 блока фильтрации. Чистый воздух поступает в надмембранные полости 17 газоразделительных камер 14 блока 4. Парциальные давления кислорода, азота и углекислого газа в надмембранной полости 17 выше, чем в подмембранной полости 16. Кислород, водяные пары, углекислый газ и часть азота через полупроницаемую мембрану 15 диффундируют в подмембранную полость 16 и сбрасываются в атмосферу. Очищенный азот из надмембранной полости 17 по линии 5 подается в компрессор выходного нагнетательного блока 6 и сжимается в нем до рабочего давления 15-25 МПа (150-250 атм). Очищенный азот подается потребителю через щит 22 раздачи непосредственно после выхода из блока 6, либо после охлаждения его до соответствующей температуры.
Чистота азота на выходе из газоразделительного блока 4 контролируется датчиком 19 загрязнения очищенного азота кислородом. Показания датчика 19 сравниваются с допустимыми значениями загрязнения чистого азота кислородом. При превышении заданного уровня загрязнения подается сигнал на регулятор 10 и уменьшается расход охлаждающего агента через теплообменник 2, что приводит к повышению температуры поступающего в газоразделительный блок 4 воздуха. Поток воздуха, диффундирующий через полупроницаемую мембрану в подмембранную полость, возрастает, что приводит к снижению парциального давления кислорода на выходе из надмембранной полости и повышает чистоту азота на выходе из газоразделительного блока.
Для достижения высокой концентрации азота (до 99,9%) подключают две - три газоразделительные камеры 14 и работают при повышенной температуре воздуха на входе в газоразделительный блок 4 и низких степенях отбора инертной технологической газовой среды. При низких концентрациях азота (80-90%) подключают одну газоразделительную камеру 14 и работают при высоких степенях отбора инертной технологической газовой среды.
Оборудование генератора азота смонтировано на общем основании, что позволяет перемещать его к месту эксплуатации любым видом транспорта, в том числе с помощью авиации, например вертолетом, и приводить в действие с минимальными затратами времени на развертывание установки.
В предлагаемом генераторе азота используются узлы и агрегаты, освоенные отечественной и зарубежной промышленностью. При реализации изобретения могут использоваться различные конструктивные исполнения и компоновка агрегатов, отличающиеся от описанных в данной заявке и приведенных на чертежах, иллюстрирующих изобретение, без отхода от духа и рамок настоящего изобретения, определяемых объемом притязаний, изложенных в формуле изобретения.

Claims (8)

1. Генератор азота для создания инертной технологической газовой среды, содержащий входной нагнетательный блок, к выходу которого через охлаждающий теплообменник и блок фильтрации подключен газоразделительный блок с полупроницаемой мембраной, выходной нагнетательный блок повышения давления очищенного азота, подсоединенный к надмембранной полости газоразделительного блока, и систему управления и контроля, включающую в себя датчик загрязнения очищенного азота кислородом, отличающийся тем, что входной и выходной нагнетательные блоки подсоединены к общему приводу, а система управления и контроля оснащена регулятором расхода охлаждающего агента, управляемым датчиком загрязнения очищенного азота кислородом.
2. Генератор азота по п.1, отличающийся тем, что система управления и контроля оснащена задатчиком уровня загрязнения очищенного азота кислородом и блоком сравнения, при этом входы блока сравнения подключены к выходам указанного задатчика и датчика загрязнения очищенного азота кислородом, а к выходу блока сравнения подключен регулятор расхода охлаждающего агента.
3. Генератор азота по п.1, отличающийся тем, что газоразделительный блок собран из параллельно установленных модульных сборок, каждая из которых оснащена газоразделительной камерой с размещенной в ней полупроницаемой мембраной и запорными устройствами на входе в надмембранную полость и на выходе из нее.
4. Генератор азота по п.3, отличающийся тем, что газоразделительные камеры оснащены полупроницаемыми половолоконными мембранами.
5. Генератор азота по п.3, отличающийся тем, что газоразделительные камеры оснащены полупроницаемыми плоскими полимерными мембранами.
6. Генератор азота по любому из пп.1-5, отличающийся тем, что входной нагнетательный блок оснащен одноступенчатым или многоступенчатым винтовым компрессором.
7. Генератор азота по любому из пп.1-5, отличающийся тем, что выходной нагнетательный блок оснащен многоступенчатым винтовым компрессором.
8. Генератор азота по любому из пп.1-7, отличающийся тем, что входной и выходной нагнетательные блоки, общий привод указанных блоков, газоразделительный блок и теплообменник размещены на общем основании.
RU2002121803/15A 2002-08-15 2002-08-15 Генератор азота для создания инертной технологической газовой среды RU2223138C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002121803/15A RU2223138C1 (ru) 2002-08-15 2002-08-15 Генератор азота для создания инертной технологической газовой среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002121803/15A RU2223138C1 (ru) 2002-08-15 2002-08-15 Генератор азота для создания инертной технологической газовой среды

Publications (2)

Publication Number Publication Date
RU2223138C1 true RU2223138C1 (ru) 2004-02-10
RU2002121803A RU2002121803A (ru) 2004-03-27

Family

ID=32173146

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002121803/15A RU2223138C1 (ru) 2002-08-15 2002-08-15 Генератор азота для создания инертной технологической газовой среды

Country Status (1)

Country Link
RU (1) RU2223138C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010413B1 (ru) * 2005-01-03 2008-08-29 Эр Продактс Энд Кемикалз, Инк. Удаление загрязнителей из питающего газа в мембранных системах ионного транспорта
EA030712B1 (ru) * 2014-11-11 2018-09-28 Общество с ограниченной ответственностью "Тегас" Генератор азота

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010413B1 (ru) * 2005-01-03 2008-08-29 Эр Продактс Энд Кемикалз, Инк. Удаление загрязнителей из питающего газа в мембранных системах ионного транспорта
EA030712B1 (ru) * 2014-11-11 2018-09-28 Общество с ограниченной ответственностью "Тегас" Генератор азота

Also Published As

Publication number Publication date
RU2002121803A (ru) 2004-03-27

Similar Documents

Publication Publication Date Title
US5281253A (en) Multistage membrane control system and process
RU2497572C2 (ru) Способ и система мембранного газоразделения с регулируемым количеством пермеата, рециркулируемым в подачу
US9347677B2 (en) Inerting method for preventing and/or extinguishing fire as well as inerting system to realize the method
CA2879510C (en) Inerting method and system for reducing oxygen
CN102410173A (zh) 低温泵系统及其控制方法
GB2487790A (en) Gas compressor using liquid
CN102176949A (zh) 用于防火和/或灭火的惰性化方法以及实施该方法的惰性化系统
US11978935B2 (en) Apparatus and system for generating nitrogen gas through dehumidifying and filtering fuel cell exhaust gas
KR101410020B1 (ko) 질소 발생기
US7387659B2 (en) Pneumatically operated automatic shutoff circuit for controlling the generation of gas
JPH1015067A (ja) 分子ふるいオンボード酸素生成装置のための制御手段
RU2223138C1 (ru) Генератор азота для создания инертной технологической газовой среды
RU180075U1 (ru) Азотная компрессорная установка
CA2189611C (en) Gas manufacture
CN104676242A (zh) 一种移动式的压缩空气快速充气方法及装置
RU41262U1 (ru) Генератор азота для создания инертной технологической газовой среды
CN112498712A (zh) 一种联合中空纤维膜和分子筛机载油箱惰化装置
JP3951569B2 (ja) ガス分離膜の運転方法
JP4976704B2 (ja) 圧縮空気の圧力切替システム
KR100565210B1 (ko) 기체 분리 장치
CN204611335U (zh) 一种移动式的压缩空气快速充气装置
CN103894036B (zh) 基于psa技术的高纯、高压制气设备
RU206404U1 (ru) Судовая компрессорная установка для получения газообразного азота высокого давления
KR20220170365A (ko) 해양 및 근해 멤브레인 응용에 대한 에너지 소비 감소
CN113842717A (zh) 纯水系统密封气体制备装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070816

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140816

NF4A Reinstatement of patent

Effective date: 20160110

PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20160729

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20160922

PD4A Correction of name of patent owner