RU2221875C2 - Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости - Google Patents

Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости Download PDF

Info

Publication number
RU2221875C2
RU2221875C2 RU2002103712/02A RU2002103712A RU2221875C2 RU 2221875 C2 RU2221875 C2 RU 2221875C2 RU 2002103712/02 A RU2002103712/02 A RU 2002103712/02A RU 2002103712 A RU2002103712 A RU 2002103712A RU 2221875 C2 RU2221875 C2 RU 2221875C2
Authority
RU
Russia
Prior art keywords
steel
content
carbon
manganese
furnace
Prior art date
Application number
RU2002103712/02A
Other languages
English (en)
Other versions
RU2002103712A (ru
Inventor
В.Ю. Кузнецов
И.И. Лубе
В.В. Фролочкин
А.А. Печерица
Е.Я. Кузнецова
В.В. Анищенко
ров В.И. Стол
В.И. Столяров
И.Г. Родионова
О.Н. Бакланова
А.А. Шарапов
И.И. Реформатска
И.И. Реформатская
А.Н. Рыбкин
Original Assignee
Открытое акционерное общество "Волжский трубный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Волжский трубный завод" filed Critical Открытое акционерное общество "Волжский трубный завод"
Priority to RU2002103712/02A priority Critical patent/RU2221875C2/ru
Publication of RU2002103712A publication Critical patent/RU2002103712A/ru
Application granted granted Critical
Publication of RU2221875C2 publication Critical patent/RU2221875C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение относится к области металлургии, а именно к способам изготовления бесшовных труб для трубопроводов, работающих под давлением и в контакте с агрессивными средами. Технический результат: повышение коррозионной стойкости бесшовных стальных труб при сохранении прочности, вязкости, хладостойкости и стоимостных показателей. В способе производства бесшовных труб из углеродистой или низколегированной стали, включающем выплавку стали в электропечи, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и внепечной обработки стали на установке печь-ковш с введением ферросплавов и продувкой аргоном, разливку на трубную заготовку, прокатку труб и их термическую обработку, выплавляют сталь следующего состава, мас.%: углерод 0,05-0,30, марганец 0,35-1,50, кремний 0,15-1,0, хром 0,005-0,500, никель 0,005-0,500, медь 0,005-0,500, сера не более 0,010, фосфор не более 0,020, алюминий 0,01-0,05, железо и неизбежные примеси - остальное, содержание углерода и марганца соответствует условию [С]=(0,29-0,15[Mn])±0,05, где [С] и [Mn] - содержание углерода и марганца, соответственно выраженное в массовых процентах, в процессе внепечной обработки при содержании алюминия не менее 0,015% вводят ферросплавы, затем проводят десульфурацию до достижения требуемого содержания серы, после чего осуществляют разливку стали. В сталь может быть дополнительно введен ниобий для обеспечения его содержания в стали 0,01-0,06 мас.% В процессе внепечной обработки после достижения требуемого содержания серы сталь модифицируют кальцием при температуре не ниже 1600oС, при этом содержание кальция в стали составляет 0,0008-0,0020 мас.% Термическая обработка труб представляет собой закалку и отпуск или нормализацию. 4 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области металлургии, а именно к способам изготовления труб, и может быть использовано при производстве бесшовных труб для нефтепроводов, водоводов и других видов трубопроводов, работающих под давлением, в контакте с агрессивными средами, содержащими ионы хлора, сероводород, углекислый газ, другие агрессивные компоненты, причем как в обычных климатических условиях, так и в районах Крайнего Севера. В таких условиях стальные трубопроводы для обеспечения их длительной безаварийной эксплуатации должны иметь достаточную прочность, вязкость, хладостойкость, а также высокую стойкость против различных видов коррозионного и коррозионно-механического разрушения. Учитывая большие объемы использования таких труб, желательно обеспечивать их сравнительно низкую стоимость, получать требуемое качество на трубах из экономичных углеродистых или низколегированных сталей путем оптимизации химического состава и технологии их производства. При этом технология производства должна обеспечивать высокий уровень чистоты стали труб по неметаллическим включениям и формирование определенной микроструктуры, которые в совокупности с химическим составом стали должны обеспечить рассмотренный выше комплекс свойств.
Известен способ изготовления высокопрочных бесшовных стальных труб, включающий выплавку стали, содержащей, мас.%:
0,1-0,5 углерода,
0,1-0,3 кремния,
0,2-0,8 марганца,
1,0-4,0 хрома,
0,005-0,1 алюминия,
не более 0,05 в сумме серы и фосфора,
не более 0,04 азота,
0,2-1,0 молибдена,
0,01-0,1 ниобия,
0,005-0,1 циркония и/или титана,
горячую обработку давлением и последующее улучшение с регламентированным режимом отпуска. Предел текучести готовых труб составляет 70-120 кгс/мм2 (Акцептованная заявка Японии 2-25969, МПК С 21 D 8/10, С 21 D 9/08, С 21 С 38/00, опубл. 06.06.1990г.). Трубы отличаются высокой стойкостью к сульфидной коррозии под напряжением и высокой пластичностью при низких температурах. Однако стойкость их против локальной коррозии в некоторых средах, в том числе с повышенным содержанием ионов хлора, недостаточна.
Известен способ изготовления бесшовных нефтепроводных напорных труб, включающий выплавку стали следующего состава, мас.%:
Углерод - 0,17-0,23
Кремний - 0,20-0,50
Марганец - 0,40-1,0
Фосфор - Менее 0,02
Сера - Менее 0,01
Алюминий - 0,010-0,35
Хром - 12,0-14,0
Никель - Менее 0,50
Ванадий - Менее 0,1
Азот - 0,060
Железо и неизбежные примеси - Остальное,
многоступенчатую горячую прокатку заготовки, термическую обработку готовых труб путем закалки и высокотемпературного отпуска. Трубы имеют прочность до 95 кг/дюйм2 (Патент ФРГ 3906700, МПК C 21 D 9/08, опубл. 26.07.90г. ). В то же время хромистые стали, содержащие более 12% хрома, в некоторых средах могут быть склонны к питтинговой коррозии. Кроме того, легирование стали в значительном количестве таким дорогостоящим элементом как хром приводит к существенному повышению стоимости металлопродукции.
Известен способ производства стальных бесшовных труб, включающий выплавку стали в электропечи, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и доводки стали на установке печь-ковш введением в расплав алюминия в виде двух порций, марганецсодержащего материала, извести, плавикового шпата в регламентированном количестве и продувку расплава аргоном с заданной интенсивностью. Химический состав выплавляемой стали, мас.%:
Углерод - 0,13
Кремний - 0,21
Марганец - 1,1
Ванадий - 0,08
Фосфор - 0,008
Сера - 0,003,
Алюминий - 0,035
Изготовленные из полученной стали трубы в термообработанном состоянии имеют ударную вязкость при -40oС 270-344 Дж/см2, а также высокое сопротивление водородному охрупчиванию в сероводородсодержащих средах (Патент РФ 2101367, МПК С 21 С 7/076, опубл. 10.01.1998г.). В то же время стойкость такой стали и выполненных из нее труб против общей и локальной коррозии, протекающих по электрохимическому механизму с кислородной деполяризацией, недостаточна.
Наиболее близким аналогом изобретения является способ производства бесшовных труб из низколегированных сталей повышенной коррозионной стойкости, включающий выплавку металла в электропечи, отсечку окислительного шлака, выпуск не раскисленного расплава в ковш, рафинирование в процессе выпуска и доводки стали на установке печь-ковш введением в расплав алюминия, шлакообразующих и марганецсодержащих материалов и продувку аргоном, причем при выпуске 5-10% плавки в ковш вводят заданное количество алюминия, в качестве шлакообразующих используют смесь извести, плавикового шпата, глинозема и кокса, взятых в определенном соотношении, смесь вводят под струю металла, в качестве марганецсодержащих материалов вводят силикомарганец в смеси с алюминием и феррованадием или феррониобием, после чего металл обрабатывают кальцием в регламентированных количествах. Затем стали (марки 06Х1, 13ГФА, 20Ф, 20Б, 20ГФ) разливают на трубные заготовки, которые подвергают прокатке. Полученные трубы после термообработки обладают повышенными характеристиками прочности, вязкости, хладостойкости, коррозионной стойкости в некоторых средах, не подвержены водородному растрескиванию (Патент РФ 2148659, МПК С 21 С 7/076, опубл. 10.05.2000г.). В то же время в некоторых средах и, в первую очередь, в водных средах, содержащих ионы хлора, коррозионная стойкость таких сталей и выполненных из них труб недостаточна.
Задача, на решение которой направлено данное изобретение, заключается в получении бесшовных труб для нефтепроводов, водоводов и других назначений с высокими характеристиками коррозионной стойкости, прочности, вязкости и хладостойкости при их низкой стоимости.
Техническим результатом данного изобретения является повышение коррозионной стойкости бесшовных стальных труб при сохранении прочности, вязкости, хладостойкости и стоимостных показателей.
Указанный технический результат достигается тем, что в способе производства бесшовных труб из углеродистой или низколегированной стали, включающем выплавку в электропечи стали, содержащей углерод, марганец, кремний, хром, никель, медь, алюминий, железо, серу, фосфор и неизбежные примеси, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и внепечную обработку стали на установке печь-ковш с рафинированием введением ферросплавов и с продувкой аргоном, разливку на трубную заготовку и прокатку труб, согласно изобретению, выплавляют сталь следующего состава, мас.%:
Углерод - 0,05-0,30
Марганец - 0,35-1,50
Кремний - 0,15-1,00
Хром - 0,005-0,500
Никель - 0,005-0,500
Медь - 0,005-0,500
Сера - Не более 0,010
Фосфор - Не более 0,020
Алюминий - 0,01-0,05,
Железо и неизбежные примеси - Остальное,
причем содержание углерода и марганца соответствует условию
[C]=(0,29-0,15 [Mn])±0,05, (1)
где [С] и [Mn] - содержание углерода и марганца соответственно, выраженное в массовых процентах, в процессе внепечной обработки при содержании алюминия не менее 0,015% вводят ферросплавы, затем проводят десульфурацию до достижения требуемого содержания серы, а после прокатки труб осуществляют их термическую обработку;
также тем, что в сталь дополнительно вводят ниобий для обеспечения его содержания в стали 0,01-0,06 мас.%;
также тем, что в процессе внепечной обработки после достижения требуемого содержания серы сталь модифицируют кальцием при температуре не ниже 1600oС, при этом содержание кальция в стали составляет 0,0008-0,0020 мас.%,
а также тем, что термическая обработка труб представляет собой закалку и отпуск или нормализацию.
Суть изобретения состоит в следующем.
Определенный химический состав стали играет решающую роль в обеспечении требуемого комплекса прочности, вязкости и коррозионной стойкости. Содержание углерода и марганца в заявленных пределах обеспечивает требуемый уровень прочности стали без снижения ее коррозионной стойкости и вязкости.
Содержание кремния и алюминия в предлагаемых пределах обеспечивает необходимую степень раскисленности стали при незначительном количестве оксидов, отрицательно влияющих на коррозионную стойкость стали.
Присутствие в стали хрома, никеля и меди в заявленных пределах положительно влияет на коррозионную стойкость стали в некоторых средах.
Ограничение содержания серы и фосфора необходимо для обеспечения вязкости и хладостойкости стали и труб.
Необходимость дополнительного ограничения содержания углерода в зависимости от содержания марганца связана с тем, что при более низких значениях содержания углерода, чем полученных в соответствии с выражением (1), не будет обеспечен достаточный уровень прочности стали и труб, при более высоких его значениях снижается стойкость против общей коррозии.
Обеспечение определенной последовательности операций при рафинировании в процессе внепечной обработки позволяет получить высокий уровень чистоты стали по неметаллическим включениям, в том числе по алюминатам кальция, оказывающих отрицательное влияние на стойкость против локальной коррозии во многих средах.
Введение в сталь ниобия и кальция в заявленных пределах позволяет повысить вязкость стали, в том числе после нормализации, а также стойкость против некоторых видов коррозионного разрушения.
Проведение термической обработки труб в виде закалки с отпуском приводит к существенному повышению характеристик прочности и вязкости стали, что требуется для некоторых условий эксплуатации трубопроводов.
Проведение термической обработки труб в виде нормализации обеспечивает достаточно высокий комплекс механических свойств и коррозионной стойкости при их умеренной стоимости.
Примеры конкретного выполнения способа
Бесшовные трубы из шести углеродистых или низколегированных сталей были получены при использовании различных технологических режимов. Стали были выплавлены в 150-тонной электропечи ОАО "Волжский трубный завод". Нераскисленный расплав выпускали в ковш с отсечкой окислительного шлака. В процессе выпуска и доводки стали на установке печь-ковш осуществляли рафинирование стали с продувкой аргоном и введением требуемых компонентов. После завершения внепечной обработки стали были разлиты в трубные заготовки диаметром 196 мм, которые затем прокатывали на бесшовные трубы размерами 114 х 9 мм. Трубы подвергали нормализации при температуре 900-930oС или закалке от той же температуры с последующим отпуском при температуре 650oС.
Были опробованы следующие варианты.
Вариант 1 - бесшовные трубы были изготовлены из углеродистой стали, содержащей 0,20% углерода, 0,32% кремния, 0,52% марганца, 0,009% фосфора, 0,004% серы, 0,09% хрома, 0,10% никеля, 0,10% меди, 0,02% алюминия, при содержании углерода, попадающего в интервал значений в соответствии с выражением (1): 0,16-0,26% (для конкретного содержания марганца - 0,52%), в процессе рафинирования при внепечной обработке при содержании алюминия в стали 0,025% в сталь были введены ферросплавы в количестве, необходимом для получения требуемого содержания марганца и кремния, затем проводили десульфурацию до получения содержания серы в стали 0,004%, после чего осуществляли разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде закалки и отпуска (соответствует п.п. 1 и 4 формулы изобретения).
Вариант 2 - бесшовные трубы были изготовлены из углеродистой стали, содержащей 0,21% углерода, 0,36% кремния, 0,49% марганца, 0,010% фосфора, 0,005% серы, 0,13% хрома, 0,10% никеля, 0,11% меди, 0,03% алюминия, кроме того, в сталь вводили ниобий в количестве 0,04%; содержание углерода соответствовало интервалу значений, полученному по выражению (1): 0,17-0,27% (для содержания марганца 0,49%); при рафинировании в процессе внепечной обработки при содержании алюминия 0,04% в сталь были введены ферросплавы в количестве, необходимом для получения требуемого содержания марганца, кремния и ниобия, затем проводили десульфурацию до содержания серы 0,005%, после чего осуществляли разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде нормализации (соответствует п.п. 2 и 5 формулы изобретения).
Вариант 3 - бесшовные трубы были изготовлены из углеродистой стали, содержащей 0,18% углерода, 0,33% кремния, 0,60% марганца, 0,008% фосфора, 0,004% серы, 0,15% хрома, 0,08% никеля, 0,11% меди, 0,015% алюминия, кроме того, в сталь вводили ниобий для обеспечения его содержания в стали 0,05% и кальций для обеспечения его содержания в стали 0,001%; содержание углерода соответствовало интервалу значений, полученному по выражению (1): 0,15-0,25% (для содержания марганца 0,6%), при рафинировании в процессе внепечной обработки при содержании алюминия 0,02% в сталь вводили ферросплавы в количестве, необходимом для получения требуемого содержания марганца, кремния и ниобия, затем проводили десульфурацию до содержания серы 0,004%, модифицирование кальцием, после чего осуществляли разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде нормализации (соответствует п.п. 3 и 5 формулы изобретения).
Вариант 4 - бесшовные трубы были изготовлены из углеродистой стали, содержащей 0,17% углерода, 0,30% кремния, 0,35% марганца, 0,009% фосфора, 0,004% серы, 0,10% хрома, 0,12% никеля, 0,10% меди, 0,018% алюминия, содержание углерода было ниже, чем требовалось в соответствии с выражением (1): 0,19-0,29% (для содержания марганца 0,35%), при рафинировании в процессе внепечной обработки при содержании алюминия 0,020% проводили десульфурацию до содержания серы 0,004%, затем вводили ферросплавы в количестве, необходимом для получения требуемого содержания марганца и кремния в смеси с алюминием, после чего осуществляли разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде нормализации (не соответствует формуле изобретения по содержанию углерода для конкретного содержания марганца, а также по способу введения компонентов при рафинировании, в частности введению ферросплавов в смеси с алюминием при внепечной обработке - соответствует прототипу).
Вариант 5 - бесшовные трубы изготовлены из низколегированной стали, содержащей 0,13% углерода, 0,61% кремния, 1,5% марганца, 0,010% фосфора, 0,003% серы, 0,11% хрома, 0,10% никеля, 0,14% меди, 0,005% алюминия; содержание углерода было выше, чем требовалось в соответствии с выражением (1): 0,02-0,12% для содержания марганца 1,5%; при рафинировании в процессе внепечной обработки при содержании алюминия 0,015% вводили ферросплавы в количестве, необходимом для получения требуемого содержания марганца и кремния, затем проводили десульфурацию до содержания серы 0,003%, после чего осуществляли разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде закалки и отпуска (не соответствует формуле изобретения по содержанию алюминия и содержанию углерода для конкретного содержания марганца).
Вариант 6 - бесшовные трубы изготовлены из низколегированной стали, содержащей 0,09% углерода, 0,60% кремния, 1,4% марганца, 0,008% фосфора, 0,004% серы, 0,14% хрома, 0,10% никеля, 0,12% меди, 0,02% алюминия, 0,0015% кальция, содержание углерода соответствовало выражению (1): 0,03-0,13% для содержания марганца 1,4%; при рафинировании в процессе внепечной обработки при содержании алюминия 0,027% вводили ферросплавы в количестве, необходимом для получения требуемого содержания марганца и кремния, затем проводили десульфурацию до содержания серы 0,004%, после чего осуществляли модифицирование кальцием и разливку на трубную заготовку; после прокатки труб проводили их термическую обработку в виде нормализации (соответствует п.п. 3 и 5 формулы изобретения).
От полученных вариантов труб отбирали образцы для проведения комплексных механических и коррозионных испытаний - на растяжение по ГОСТ 10066, на ударную вязкость при температуре - минус 20oС на образцах с острым надрезом (тип "Шарпи") и при минус 60oС на образцах с круглым надрезом (тип "Менаже") по ГОСТ 9454, а также специальные коррозионные испытания по методикам, разработанным НИФХИ им. Л.Я. Карпова.
Методика 1 испытаний на стойкость против локальной коррозии - определяли скорость развития питтингов в горячей воде (паре) при температуре 135±15oС, содержащей 50 мг/л хлор-иона, 50 мг/л сульфат-иона и 20 мг/л кислорода, рН 8,5-9,5, длительность натурных испытаний - 10 месяцев (использовали методику определения скорости локальной коррозии, предложенную в работах Липовских В. М. , Кашинского В.И., Реформатской И.И., Флорианович Г.М., Подобаева А.Н. и Ащеуловой И. И. Зависимость коррозионной стойкости теплопроводов из углеродистой стали от водного режима теплосети. Защита металлов. 1999. Т.35, 6, с. 653-655).
Методика 2 испытаний на стойкость против общей коррозии - определяли потери массы образцов в результате коррозионных натурных испытаний в водной среде, содержащей 0,17 моль/л NaCl, 0,13 моль/л КСl, 8 ммоль/л NaHCО3 и 0,8 ммоль/л Na24 в течение 90 суток. Результаты определения предела текучести, временного сопротивления, ударной вязкости при минус 20 и минус 60oС, а также скорости локальной и общей коррозии (методики 1 и 2 соответственно) для рассмотренных шести вариантов способа производства представлены в таблице.
Видно, что использование способов по вариантам 1, 2, 3 и 6, соответствующим формуле изобретения, обеспечивает высокие механические характеристики и коррозионную стойкость бесшовных труб: скорость общей коррозии - не более 0,15 г м2/ч, скорость локальной коррозии - не более 0,4 мм/год. При использовании способа по варианту 4 пониженное значение углерода для данного содержания марганца приводит к пониженным характеристикам прочности. Кроме того, изменение регламента операций при рафинировании в процессе выпуска и внепечной обработки по сравнению с предложенным в формуле изобретения (в частности совместное введение ферросплавов и алюминия во время внепечной обработки) приводит к повышенному содержанию в стали алюминатов кальция, что является причиной повышенной скорости локальной коррозии.
Пониженное содержание алюминия в стали труб, полученных по варианту 5, является причиной недостаточного раскисления стали и соответственно повышенного содержания кислорода, который в определенных условиях может быть ускорителем и общей и локальной коррозии, что и проявилось при испытаниях по методикам 1 и 2. К дополнительному снижению стойкости против общей коррозии является повышенное содержание углерода при данном содержании марганца.
Таким образом, использование настоящего предложения существенно повышает коррозионную стойкость труб из углеродистых и низколегированных сталей при сохранении их прочности, вязкости, хладостойкости и стоимостных показателей.

Claims (5)

1. Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости, включающий выплавку в электропечи стали, содержащей углерод, марганец, кремний, хром, никель, медь, алюминий, железо, серу, фосфор и неизбежные примеси, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и внепечную обработку стали на установке печь-ковш с рафинированием, введением ферросплавов и с продувкой аргоном, разливку на трубную заготовку и прокатку труб, отличающийся тем, что выплавляют сталь следующего состава, мас.%:
углерод 0,05-0,30
марганец 0,35-1,50
кремний 0,15-1,00
хром 0,005-0,500
никель 0,005-0,500
медь 0,005-0,500
сера не более 0,010
фосфор не более 0,020
алюминий 0,01-0,05
железо и неизбежные примеси Остальное
причем содержание углерода и марганца соответствует условию
Figure 00000002
где [С] и [Mn] - содержание углерода и марганца соответственно, выраженное в мас.% в процессе внепечной обработки при содержании алюминия в стали не менее 0,015% вводят ферросплавы, затем проводят десульфурацию до достижения требуемого содержания серы, а после прокатки труб осуществляют их термическую обработку.
2. Способ по п.1, отличающийся тем, что в сталь дополнительно вводят ниобий для обеспечения его содержания в стали 0,01-0,06 мас.%.
3. Способ по п.1 или 2, отличающийся тем, что в процессе внепечной обработки после достижения требуемого содержания серы сталь модифицируют кальцием при температуре не ниже 1600°С, при этом содержание кальция в стали составляет 0,0008-0,0020 мас.%.
4. Способ по любому из пп.1-3, отличающийся тем, что термообработка представляет собой закалку и отпуск.
5. Способ по любому из пп.1-3, отличающийся тем, что термообработка представляет собой нормализацию.
RU2002103712/02A 2002-02-08 2002-02-08 Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости RU2221875C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002103712/02A RU2221875C2 (ru) 2002-02-08 2002-02-08 Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002103712/02A RU2221875C2 (ru) 2002-02-08 2002-02-08 Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости

Publications (2)

Publication Number Publication Date
RU2002103712A RU2002103712A (ru) 2003-08-27
RU2221875C2 true RU2221875C2 (ru) 2004-01-20

Family

ID=32090705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002103712/02A RU2221875C2 (ru) 2002-02-08 2002-02-08 Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости

Country Status (1)

Country Link
RU (1) RU2221875C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121385A1 (fr) * 2004-06-07 2005-12-22 Zakrytoye Aktsyonernoye Obschestvo Nauchno-Proizvodstvennoe Ob'edinenie 'polimetall' Canalisation pour oleoducs et gazoducs, et procede de fabrication associe
RU2447187C1 (ru) * 2010-11-10 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Сталь повышенной коррозионной стойкости и хладостойкости
RU2680457C1 (ru) * 2018-04-25 2019-02-21 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Труба нефтяного сортамента высокопрочная в хладостойком исполнении (варианты)
RU2758739C1 (ru) * 2019-12-02 2021-11-01 Цзые ЧЖАН Бесшовная стальная труба для многоступенчатого масляного цилиндра и способ его изготовления
CN114657322A (zh) * 2022-04-20 2022-06-24 德新钢管(中国)有限公司 一种大口径双相不锈钢无缝钢管及其制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121385A1 (fr) * 2004-06-07 2005-12-22 Zakrytoye Aktsyonernoye Obschestvo Nauchno-Proizvodstvennoe Ob'edinenie 'polimetall' Canalisation pour oleoducs et gazoducs, et procede de fabrication associe
RU2447187C1 (ru) * 2010-11-10 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Сталь повышенной коррозионной стойкости и хладостойкости
RU2680457C1 (ru) * 2018-04-25 2019-02-21 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Труба нефтяного сортамента высокопрочная в хладостойком исполнении (варианты)
RU2758739C1 (ru) * 2019-12-02 2021-11-01 Цзые ЧЖАН Бесшовная стальная труба для многоступенчатого масляного цилиндра и способ его изготовления
CN114657322A (zh) * 2022-04-20 2022-06-24 德新钢管(中国)有限公司 一种大口径双相不锈钢无缝钢管及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN100587098C (zh) 一种微合金化油气输送无缝管线用钢及其制造方法
JP6229640B2 (ja) 継目無鋼管およびその製造方法
CN110343954B (zh) 一种汽车发动机连杆用钢及其制造方法
US7396421B2 (en) Duplex stainless steel and manufacturing method thereof
WO2008018242A1 (ja) 二相ステンレス鋼
MX2014009157A (es) Metodo para producir material de acero de alta resistencia, excelente en resistencia a agrietamiento por tension de sulfuro.
CN103320713A (zh) 一种高强度耐候钢及制备方法
MX2012014433A (es) Acero para tubo de acero con excelente resistencia al fractura por tension azufrosa.
JP7364962B2 (ja) 鋼材
CN107557683A (zh) 一种高磷铁水生产厚壁大口径抗酸耐蚀管线钢的方法
EP1561834A1 (en) Duplex stainless steel and method for production thereof
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
RU2221875C2 (ru) Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости
CN108374121A (zh) 一种含稀土c110钢级石油套管及其生产方法
WO2019131035A1 (ja) 油井用低合金高強度継目無鋼管
JP3156523B2 (ja) 耐水素誘起割れ用鋼材の製造方法
RU2330895C2 (ru) Трубная заготовка из низкоуглеродистой микролегированной стали
RU2333968C1 (ru) Трубная заготовка из легированной стали
RU2747083C1 (ru) Способ производства электросварной трубы из низкоуглеродистой стали, стойкой против водородного растрескивания (варианты)
RU2238334C1 (ru) Способ производства из непрерывнолитой заготовки сортового проката со сфероидизованной структурой из борсодержащей стали для холодной объемной штамповки высокопрочных крепежных деталей
RU2333970C1 (ru) Трубная заготовка из низколегированной стали
RU2184155C2 (ru) Способ производства углеродистой или низколегированной стали для электросварных труб повышенной коррозионной стойкости
RU2330894C2 (ru) Трубная заготовка из среднеуглеродистой легированной стали
RU2338796C2 (ru) Трубная заготовка из низкоуглеродистой теплостойкой стали
RU2484173C1 (ru) Автоматная свинецсодержащая сталь

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080209