RU2210094C1 - Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве - Google Patents

Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве Download PDF

Info

Publication number
RU2210094C1
RU2210094C1 RU2002130658/28A RU2002130658A RU2210094C1 RU 2210094 C1 RU2210094 C1 RU 2210094C1 RU 2002130658/28 A RU2002130658/28 A RU 2002130658/28A RU 2002130658 A RU2002130658 A RU 2002130658A RU 2210094 C1 RU2210094 C1 RU 2210094C1
Authority
RU
Russia
Prior art keywords
spectral
seismic
wells
oil
data
Prior art date
Application number
RU2002130658/28A
Other languages
English (en)
Inventor
Е.А. Копилевич
Е.А. Давыдова
В.С. Славкин
И.А. Мушин
В.А. Мусихин
Original Assignee
Закрытое акционерное общество "Моделирование и мониторинг геологических объектов им.В.А.Двуреченского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Моделирование и мониторинг геологических объектов им.В.А.Двуреченского" filed Critical Закрытое акционерное общество "Моделирование и мониторинг геологических объектов им.В.А.Двуреченского"
Priority to RU2002130658/28A priority Critical patent/RU2210094C1/ru
Application granted granted Critical
Publication of RU2210094C1 publication Critical patent/RU2210094C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: в нефтяной геологии для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте по комплексу данных наземной сейсмической разведки, электрического, радиоактивного, акустического, сейсмического каротажа, изучения керна и испытания скважин. Сущность: проводят сейсморазведочные работы, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротаж, испытание скважин. По данным бурения и геофизических исследований скважин определяют модельные эталонные спектрально-временные образы нефтегазопродуктивных отложений и их спектрально-временные параметры, а по данным сейсморазведки в районе скважин определяют эталонные экспериментальные спектрально-временные образы нефтегазопродуктивных отложений и их спектрально-временные параметры. Проводят последующую взаимную корреляцию величин проницаемости и емкости по данным бурения с эталонными спектрально-временными параметрами по данным сейсморазведки в районе скважин. Выбирают оптимальные спектрально-временные параметры с наибольшими коэффициентами взаимной корреляции. По всем сейсмическим профилям непрерывно в целевом интервале записи проводят спектрально-временной анализ и его количественную спектрально-временную параметризацию по оптимальным параметрам с последующим их пересчетом по корреляционным зависимостям в значения проницаемости и емкости в любой точке межскважинного пространства. Технический результат: повышение надежности и точности обоснования геологических условий заложения разведочных и эксплуатационных скважин.

Description

Изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте по комплексу данных наземной сейсмической разведки, электрического, радиоактивного, акустического, сейсмического каротажа, изучения керна и испытания скважин.
Проводят сейсморазведочные работы, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротаж, изучение керна, испытание скважин. По совокупности данных бурения и геофизических исследований скважин (ГИС) определяют пористость, эффективную толщину, емкость и проницаемость нефтегазопродуктивных отложений. По данным акустического, сейсмического и радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели в скважинах, рассчитываются синтетические сейсмические трассы, по которым проводят спектрально-временной анализ (СВАН) и определяют эталонные модельные спектрально-временные образы (СВО) нефтегазопродуктивных отложений. По данным сейсморазведки в районе скважин определяют эталоннные экспериментальные спектрально-временные образы нефтегазопродуктивных отложений на основе применения спектрально-временного анализа (СВАН) данных сейсморазведки в целевом интервале записи. Производят количественную оценку модельных и экспериментальных СВО с использованием произведения удельных по частоте и времени спектральных плотностей энергетических спектров на частоту и время их максимумов, а также отношения энергии высоких частот и больших времен к энергии низких частот и меньших времен. Эталонные модельные и экспериментальные сейсмические спектрально-временные параметры (СВП) взаимно коррелируются между собой, с емкостью и проницаемостью нефтегазопродуктивных отложений по данным бурения с построением эталонных корреляционных графиков и оценкой тесноты связей коэффициентом взаимной корреляции (КВК). Выбираются наиболее подходящие (оптимальные) спектрально-временные параметры с наибольшими коэффициентами взаимной корреляции модельных и экспериментальных СВП с данными бурения - емкостью и проницаемостью коллекторов. По всем сейсмическим профилям непрерывно в целевом интервале записи проводят спектрально-временной анализ и наиболее подходящую (оптимальную) спектрально-временную параметризацию его результатов по частоте и времени. Спектрально-временные параметры пересчитываются в значения емкости и проницаемости с использованием эталонных корреляционных зависимостей в любой точке межскважинного пространства.
Способов геофизической разведки для определения проницаемости нефтегазопродуктивных отложений в межскважинном пространстве не существует, поскольку до настоящего времени с целью прогнозирования геологического разреза по данным сейсморазведки использовались в основном скорости, жесткости, временные толщины, не коррелирующиеся с фильтрационными свойствами коллекторов, обусловленные объемами пустотного пространства (емкостью), а не его структурой - системой сообщающихся пор, трещин, каверн (проницаемостью).
Во многих случаях проницаемость корреляционно связана с емкостью, тогда, определив емкость, можно прогнозировать и проницаемость, но эта связь не всегда устойчива и неповсеместна. Наиболее близким прототипом по своей технической сущности к предлагаемому способу геофизической разведки для определения проницаемости нефтегазопродуктивных отложений в межскважинном пространстве по данным сейсморазведки является технология псевдолитологического каротажа (ПЛК), разработанная для установления характера изменения глинистости, пористости и проницаемости в пределах нефтегазопродуктивных объектов (Крылов Д.Н. Комплексный геологический анализ сейсмических отражений и данных ГИС. Разведочная геофизика. Обзор. - М.: МГП "Геоинформмарк", 1992; Крылов Д.Н. К оценке определения литологии и коллекторских свойств по данным сейсморазведки. Геология нефти и газа", 3, М., 1992; Крылов Д.Н., Шилин К. К. Оптимизированные способы интерпретации комплексной геофизической информации. - М.: Наука, 1991).
Способ базируется на оптимизационном сейсмическом моделировании, суть которого сводится к корректировке предварительно оцененных значений литолого-акустических параметров модели среды, определяющих сейсмическое волновое поле, путем многократного расчета синтетических сейсмотрасс и их сопоставления с реальной сейсмической трассой до достижения приемлемого сходства, и на последующем пересчете полученных значений скорости в значения пористости, глинистости, проницаемости на основе комплекса граничных условий и корреляционных зависимостей. При этом определяется не проницаемость, а параметр ПЛК, характеризующий проницаемость.
Недостатки способа ПЛК следующие:
- акустические параметры модели среды слабо связаны со структурой пустотного пространства (проницаемостью) и практически целиком обязаны его объему (емкости);
- параметр ПЛК, характеризующий проницаемость, может быть далек от ее истинного значения в связи с наличием интервала неопределенности при определении граничных условий и предварительной оценки литолого-акустических параметров модели среды в узловых точках межскважинного пространства.
Известен способ геофизической разведки для определения удельной эффективной емкости нефтегазопродуктивных отложений в межскважинном пространстве, включающий проведение наземных сейсморазведочных работ, бурение скважин с отбором керна, проведение в них электрического, радиоактивного, акустического, сейсмического каротажа, изучение керна, а также последующую обработку полученной информации для определения псевдоакустических скоростей по сейсмическим профилям в целевом интервале, их взаимную корреляцию с акустическими скоростями и значениями удельной эффективной емкости по данным бурения; построения эталонного корреляционного графика зависимости псевдоакустических скоростей от удельной эффективной емкости и пересчета псевдоакустических скоростей в значения удельной эффективной емкости нефтегазопродуктивных отложений в любой точке межскважинного пространства (Копилевич Е.А., Славкин B.C. и др. Определение параметра удельной емкости коллектора в межскважинном пространстве. Геология нефти и газа, 8. - М.: Недра, 1988; Копилевич Е.А. Изменение скоростей распространения продольных волн в связи с емкостными свойствами коллекторов". Геология нефти и газа, 10. - М.: Геоинформмарк, 1995; Копилевич Е.А. Теоретическое обоснование и метод количественного определения емкостных свойств коллекторов в межскважинном пространстве по данным сейсморазведки. Диссертация на соискание ученой степени доктора геолого-минералогических наук. ВНИГНИ, ВНИИГеофизика. - М., 1996).
Основными недостатками известного способа являются:
- недостаточная точность определения интервальных псевдоакустических скоростей, особенно в сейсмогеологических условиях малой толщины нефтегазопродуктивных отложений (<30-50 м);
- недостаточная разрешающая способность и вследствие этого ограниченная возможность применения способа только при значительных перепадах псевдоакустических скоростей (>300 м/с).
В силу указанных недостатков способов-прототипов могут быть допущены ошибки как в определении емкости, так и особенно проницаемости нефтегазопродуктивных отложений и, как следствие, неоптимальное размещение скважин и увеличение затрат на освоение объекта.
Технической задачей, на решение которой направлено данное изобретение, является повышение надежности и точности обоснования геологических условий заложения новых разведочных и эксплуатационных скважин на основе определения фильтрационно-емкостных свойств (ФЕС) нефтегазопродуктивных отложений в межскважинном пространстве.
Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве включает проведение сейсморазведочных работ, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротаж, изучение керна и испытание скважин.
По совокупности данных бурения определяют эталонную пористость, эффективную толщину, удельную эффективную емкость и проницаемость нефтегазопродуктивных отложений.
По данным акустического, сейсмического и радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели в скважинах, рассчитываются синтетические сейсмические трассы, по которым проводят СВАН, определяют эталонные модельные СВО и их СВП.
По данным сейсморазведки на основе СВАН определяют эталонные экспериментальные СВО и их СВП в районе скважин.
Эталонные и модельные СВО и СВП должны быть одинаковыми с КВК >0,75, что свидетельствует об обоснованном и надежном определении СВО и СВП по данным сейсморазведки.
СВО представляют собой результаты СВАН временных разрезов по сейсмическим профилям в виде сван-колонки и ее частотного (по оси частот) и временного (по оси времен) спектров. СВП определяются по спектральным плотностям этих спектров и представляют собой 6 параметров, полностью характеризующих СВАН-колонку, в том числе 3 параметра по оси частот и 3 параметра по оси времен.
K1(f) - отношение энергии высоких частот к энергии низких частот.
Figure 00000001

где Аi - амплитуды спектра на частоте fi;f1 и f2 - начальная и конечная частоты спектра на уровне 0.1 его максимума, fср - средняя частота спектра
Figure 00000002

K2(f) - произведение удельной спектральной плотности энергетического частотного спектра на средневзвешенную частоту спектра
Figure 00000003

где Аi - амплитуды спектра на частоте fi; Δf=f2-f1; f1 - начальная, f2 - конечная частоты спектра на уровне 0,1 его максимума, fi - частота для Аi.
К3(f) - то же, что и К2, умноженное на максимальную частоту спектра на уровне 0,7 его максимума.
Figure 00000004

СВП временного спектра - К4, К5, К6 - то же, что К1(f), К2(f), К3(f), только по оси времен.
Приведенные СВП могут быть изначально классифицированы по их структуре в соответствии с принципами структурно-формационной интерпретации (Структурно-формационная интерпретация сейсмических данных. Мушин И.А., Бродов Л.Ю, Козлов Е.А., Хатьянов Ф.И. - М.: Недра, 1990).
Структура СВП K1 такова, что главное его назначение состоит в выявлении и фиксации интегрального признака количества рангов в анализируемом интервале разреза и оценке их соотношений по динамической выразительности, т.е. форме сигнала, а следовательно, его спектра и СВП, как следствие структуры пустотного пространства или иначе - величины площади сечения каналов пористой среды, по которым происходит фильтрация флюида, что, как известно, характеризует проницаемость коллекторов. Структура симметричного K1 СВП - К4 - позволяет рассчитывать на выявление направленности седиментации, т.е. оценивать степень прогрессивности или регрессивности анализируемого интервала разреза, а следовательно, и характер изменения проницаемости по глубине.
СВП К2 и К3 характеризуют анализируемый интервал разреза, главным образом, по интегральным типам слоистости, степени ее выраженности, т.е. степени макро-, миди-, тонкослоистости, что прямо связано с объемом пустотного пространства или емкостью.
СВП K5 и К6, имеющие ту же структуру, что и К2, К3, но определяемые по оси времен, могут характеризовать особенности распределения слоистости (емкости) по анализируемому интервалу разреза.
Эталонные экспериментальные СВП взаимно коррелируются с эталонными значениями удельной эффективной емкости и проницаемости нефтегазопродуктивных отложений с определением КВК и построением корреляционных графиков.
Для дальнейшего использования выбираются наиболее подходящие (оптимальные) СВП, которые коррелируются со значениями емкости и проницаемости с наибольшими КВК.
Эти оптимальные СВП определяются по всем сейсмическим профилям исследуемой территории и затем пересчитываются в значения удельной эффективной емкости и проницаемости с использованием корреляционных графиков.
Таким образом, данное предложение позволяет определить фильтрационно-емкостные свойства нефтегазопродуктивных отложений в любой точке межскважинного пространства непрерывно, количественно, с модельным обоснованием по данным наземной сейсмической разведки, увязанным с результатами скважинных исследований.
Это обеспечивает резкое снижение затрат на бурение последующих разведочных и эксплуатационных скважин.

Claims (1)

  1. Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве, включающий проведение сейсморазведочных работ, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротаж, испытание скважин и суждение по полученным данным о фильтрационно-емкостных свойствах нефтегазопродуктивных отложений по величинам проницаемости и емкости, отличающийся тем, что по данным бурения и геофизических исследований скважин определяют модельные эталонные спектрально-временные образы нефтегазопродуктивных отложений и их спектрально-временные параметры, а по данным сейсморазведки в районе скважин определяют эталонные экспериментальные спектрально-временные образы нефтегазопродуктивных отложений и их спектрально-временные параметры на основе применения спектрально-временного анализа данных сейсморазведки и количественной оценки его результатов, определяемой отношением энергии спектров высоких частот и больших времен к энергии спектров низких частот и малых времен, а также произведением удельных по частоте и времени спектральных плотностей энергетических спектров на частоту и время их максимумов, с последующей взаимной корреляцией величин проницаемости и емкости по данным бурения с эталонными спектрально-временными параметрами по данным сейсморазведки в районе скважин, выбором оптимальных спектрально-временных параметров с наибольшими коэффициентами взаимной корреляции и построением корреляционных зависимостей оптимальных спектрально-временных параметров с величинами проницаемости и емкости по данным бурения, затем по всем сейсмическим профилям непрерывно в целевом интервале записи проводят спектрально-временной анализ и его количественную спектрально-временную параметризацию по оптимальным параметрам с последующим их пересчетом по корреляционным зависимостям в значения проницаемости и емкости в любой точке межскважинного пространства.
RU2002130658/28A 2002-11-18 2002-11-18 Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве RU2210094C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002130658/28A RU2210094C1 (ru) 2002-11-18 2002-11-18 Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002130658/28A RU2210094C1 (ru) 2002-11-18 2002-11-18 Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве

Publications (1)

Publication Number Publication Date
RU2210094C1 true RU2210094C1 (ru) 2003-08-10

Family

ID=29246896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002130658/28A RU2210094C1 (ru) 2002-11-18 2002-11-18 Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве

Country Status (1)

Country Link
RU (1) RU2210094C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8898018B2 (en) 2007-03-06 2014-11-25 Schlumberger Technology Corporation Methods and systems for hydrocarbon production
RU2567434C2 (ru) * 2014-05-08 2015-11-10 Алексей Алексеевич Никитин Способ обработки и интерпретаций сейсмических данных
RU2658592C1 (ru) * 2017-07-31 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук (ИГФ УрО РАН) Устройство для исследования в скважинах динамического состояния горных пород
RU2718137C1 (ru) * 2018-12-05 2020-03-30 Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") Способ оценки параметра затухания волнового поля для определения углеводородного насыщения пласта в межскважинном пространстве при построении геологической модели

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8898018B2 (en) 2007-03-06 2014-11-25 Schlumberger Technology Corporation Methods and systems for hydrocarbon production
RU2567434C2 (ru) * 2014-05-08 2015-11-10 Алексей Алексеевич Никитин Способ обработки и интерпретаций сейсмических данных
RU2658592C1 (ru) * 2017-07-31 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук (ИГФ УрО РАН) Устройство для исследования в скважинах динамического состояния горных пород
RU2718137C1 (ru) * 2018-12-05 2020-03-30 Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") Способ оценки параметра затухания волнового поля для определения углеводородного насыщения пласта в межскважинном пространстве при построении геологической модели

Similar Documents

Publication Publication Date Title
CN113759425B (zh) 井震联合评价深层古岩溶储层充填特征的方法与系统
CN113759424B (zh) 基于频谱分解和机器学习的岩溶储层充填分析方法和系统
CN1040364C (zh) 采用统计校准技术导出地质特性的地震记录曲线分析方法
US7974785B2 (en) Method for quantitative evaluation of fluid pressures and detection of overpressures in an underground medium
US11480698B2 (en) Fluid saturation model for petrophysical inversion
CN114114459B (zh) 一种相控约束下的深层-超深层碳酸盐岩薄储层预测方法
KR102111207B1 (ko) 셰일가스 스윗 스팟 도출 방법
CN114994758B (zh) 碳酸盐岩断控储层的波阻抗提取与结构表征方法和系统
RU2289829C1 (ru) Способ геофизической разведки для выявления нефтегазовых объектов
RU2598979C1 (ru) Способ прогноза параметров газовых залежей
CN112505754B (zh) 基于高精度层序格架模型的井震协同划分沉积微相的方法
RU2253886C1 (ru) Способ геофизической разведки для определения нефтепродуктивности трещинных карбонатных коллекторов в трехмерном межскважинном пространстве
RU2210094C1 (ru) Способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве
CN111077578B (zh) 岩层分布预测方法和装置
CN113589365B (zh) 基于时频域信息的储层尖灭线描述方法
CN116559953A (zh) I类储层连续厚度的确定方法、装置、设备及存储介质
RU2253885C1 (ru) Способ определения нефтепродуктивности пористых коллекторов в трехмерном межскважинном пространстве
CN114859407A (zh) 火山岩储层声学特征参数的确定方法及装置
RU2255358C1 (ru) Способ геофизической разведки для выявления нефтегазопродуктивных типов геологического разреза в трехмерном межскважинном пространстве
RU2300126C1 (ru) Способ геофизической разведки для выявления малоамплитудных тектонических нарушений нефтегазопродуктивных горных пород в трехмерном межскважинном пространстве
RU2236030C1 (ru) Способ геофизической разведки для определения нефтепродуктивности пористых коллекторов в межскважинном пространстве
RU2255359C1 (ru) Способ определения нефтегазопродуктивности трещинных глинистых коллекторов в трехмерном межскважинном пространстве
RU2225020C1 (ru) Способ геофизической разведки для определения нефтепродуктивности трещинных глинистых коллекторов в межскважинном пространстве
RU2205434C1 (ru) Способ геофизической разведки для определения нефтегазопродуктивных типов геологического разреза переменной толщины
RU2314554C1 (ru) Способ размещения наклонных и горизонтальных нефтегазовых скважин на основе спектральной декомпозиции геофизических данных

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181119