RU2194872C2 - Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса - Google Patents

Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса Download PDF

Info

Publication number
RU2194872C2
RU2194872C2 RU2000125901/06A RU2000125901A RU2194872C2 RU 2194872 C2 RU2194872 C2 RU 2194872C2 RU 2000125901/06 A RU2000125901/06 A RU 2000125901/06A RU 2000125901 A RU2000125901 A RU 2000125901A RU 2194872 C2 RU2194872 C2 RU 2194872C2
Authority
RU
Russia
Prior art keywords
flaps
cold
power cylinders
configuration
nozzle according
Prior art date
Application number
RU2000125901/06A
Other languages
English (en)
Other versions
RU2000125901A (ru
Inventor
Жилль Ален ШАРЬЕ
Ксавье Жан-Мишель Андре ГИОННЕ
Жилль Луи РОЛЛЭН
Original Assignee
Снекма Мотер
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма Мотер filed Critical Снекма Мотер
Publication of RU2000125901A publication Critical patent/RU2000125901A/ru
Application granted granted Critical
Publication of RU2194872C2 publication Critical patent/RU2194872C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/56Reversing jet main flow
    • F02K1/60Reversing jet main flow by blocking the rearward discharge by means of pivoted eyelids or clamshells, e.g. target-type reversers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/11Varying effective area of jet pipe or nozzle by means of pivoted eyelids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/80Application in supersonic vehicles excluding hypersonic vehicles or ram, scram or rocket propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Exhaust Silencers (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса тяги включает расположенный в наружном обтекателе канал отвода выхлопных газов, ряд горячих щитков в нижнем конце канала отвода выхлопных газов, ряд холодных щитков в нижнем конце наружного обтекателя и механизм реверсирования тяги. Механизм реверсирования тяги состоит из двух створок, которые могут менять положение, занимая либо активную позицию, то есть позицию реверсирования тяги, когда они образуют выступ в газовой струе, либо неактивную позицию, то есть позицию прямой тяги. Створки могут раздвигаться одна относительно другой при взлетной конфигурации благодаря силовым цилиндрам, оказывающим воздействие на опорные рычаги створок. Изобретение обеспечивает снижение скорости выброса газов на режиме взлета, что позволяет обеспечить нормы шума по соседству с гражданскими аэродромами. 6 з.п.ф-лы, 7 ил.

Description

Изобретение касается реактивного сопла турбореактивного двигателя, установленного на сверхзвуковом гражданском самолете, со встроенным механизмом реверса тяги.
Или точнее, изобретение касается реактивного сопла турбореактивного двигателя, установленного на сверхзвуковом самолете, включающего расположенный в наружном обтекателе канал отвода выхлопных газов, по которому при работе двигателя вытекает газовая струя, несколько горячих поворотных щитков, монтируемых в нижнем конце канала, несколько холодных поворотных щитков, монтируемых в нижнем конце обтекателя, механизм реверса тяги с двумя идентичными поворотными створками, монтируемыми ниже канала отвода с одной и другой стороны относительно аксиальной плоскости симметрии, которые могут занимать либо активную позицию, т.е. реверсирования тяги, образуя выступ поперек газовой струи, ниже щитков, и отклоняя эту струю вперед, либо неактивную, т. е. позицию прямой тяги, являя собой продолжение холодных щитков, средства управления горячими и холодными щитками в соответствии с возможными конфигурациями при полете и средства управления створками из неактивной позиции в активную или, наоборот, из активной позиции в не активную. (см. патент Франции 2153146, опубликованный 4 мая 1973 года.)
В таком сопле створки монтируются по отдельности на неподвижной конструкции таким образом, что они могут поворачиваться вокруг поперечной оси рядом с аксиальной плоскостью симметрии, регулируя сечение на выходе отработанных газов двигателя в зависимости от возможного режима полета. Впрочем это сечение изменяется только в незначительных пределах. Нормы шума по соседству с гражданскими аэродромами вызывают необходимость снижать скорость выброса газов, в частности в режиме взлета.
Эти нормы требуют, следовательно, принятия специальных мер, так как имеют место значительные выбросы газа в режиме взлета, и двигатель в этот момент работает на полных оборотах.
Согласно изобретению эта задача решается благодаря тому, что в сопле предусмотрены средства для раздвигания створок относительно аксиальной плоскости симметрии при взлетной конфигурации.
Кроме того, введены следующие элементы конструкции:
- холодные щитки приводятся в действие для обеспечения безупречного аэродинамического профиля в сочетании с двумя створками при взлетной и маршевой конфигурациях;
- холодные щитки привязаны к горячим щиткам при помощи поводков;
- обе створки имеют шарнирное соединение с концами двух боковых пар опорных рычагов и с концами по меньшей мере пары силовых цилиндров, причем рычаги каждой пары рычагов и силовые цилиндры каждой пары силовых цилиндров расположены симметрично относительно аксиальной плоскости симметрии и имеют шарнирное соединение на другом конце с неподвижной конструкцией; кроме того, силовые цилиндры служат для управления створками;
- средства для раздвигания створок при взлетной конфигурации включают силовой цилиндр, помещенный между рычагами пары рычагов;
- два рычага рычажной пары связаны между собой посредством зубчатых секторов, что обеспечивает симметричное перемещение шарнирных осей створок на рычагах относительно аксиальной и плоскости симметрии;
- силовые цилиндры, служащие средствами управления створками, могут быть задействованы асимметрично один относительно другого при взлетной конфигурации с целью незначительного отклонения струи выбрасываемых газов.
Другие преимущества и характеристики изобретения изложены в дальнейшем описании, которое дается в качестве примера со ссылками на следующие прилагаемые чертежи:
фиг.1 представляет в разрезе в вертикальной плоскости симметрии реактивное газовое сопло турбореактивного двигателя, установленного на сверхзвуковом самолете, при маршевой конфигурации, согласно настоящему изобретению;
фиг. 2 представляет в увеличенном масштабе заднюю часть сопла согласно фиг.1 и положение щитков при маршевой конфигурации;
фиг. 3 представляет в разрезе в вертикальной плоскости симметрии сопло согласно фиг.1 при взлетной конфигурации;
фиг.4 представляет в увеличенном масштабе заднюю часть сопла и положение щитков при взлетной конфигурации;
фиг. 5 представляет в разрезе в вертикальной плоскости симметрии сопло согласно фиг.1 при конфигурации реверсирования тяги;
фиг. 6 представляет в увеличенном масштабе заднюю часть сопла при конфигурации реверсирования тяги;
фиг.7, подобная фиг.4, представляет положение щитков и управляющих силовых цилиндров при взлетной конфигурации с отклонением выбрасываемых газов.
На чертежах представлено реактивное газовое сопло 1 двухвального двухконтурного турбореактивного двигателя, установленного на сверхзвуковом гражданском самолете.
Из турбины 2 турбореактивного двигателя поступает горячий поток Fc в кольцевое пространство 3 вокруг конуса 4 турбины 2. Холодный поток Ff поступает по кольцевому каналу 5 вокруг наружного картера 6 турбины 2. Кольцевой канал 5 ограничен снаружи внутренней стенкой канала отвода выхлопных газов 7, которая простирается в направлении истечения газа за конец конуса 4. Внутренняя стенка канала 7 составляет часть кольцевой неподвижной конструкции 8, которую снаружи ограничивает обтекатель 9 аэродинамического профиля.
Внутренняя стенка канала 7 неподвижной конструкции 8 ограничивает внутреннюю цилиндрическую камеру 11, ось вращения 12 которой совпадает с осью турбореактивного двигателя; в этой камере смешиваются горячий поток Fc, поступающий с турбины, с холодным потоком Ff, поступающим по кольцевому каналу 5, причем это смешивание осуществляется при помощи лопастного смесителя 13, изображенного на фиг. 3 (на фиг.1 лопатки находятся в убранном положении). Полученная газовая смесь может быть обогащена за счет подачи горючего из коллектора топливных форсунок и дополнительного сгорания во внутренней камере 11 для увеличения тяги турбореактивного двигателя, в частности в режиме взлета.
Горячие щитки 14 монтируются шарнирным соединением на нижнем конце 15 внутренней стенки канала 7, а холодные щитки 16 монтируются шарнирным соединением на нижнем конце 17 обтекателя 9, причем нижние концы 15 и 17 находятся в одной и той же поперечной плоскости, перпендикулярной оси 12.
Холодные щитки 16 привязаны к горячим щиткам 14 при помощи поводков 18. Горячие щитки 14 соединены с управляющим кольцом 19 при помощи поводков 20. Управляющее кольцо 19 расположено в кольцевом промежутке, предусмотренном между внутренней стенкой канала 7 и обтекателем 9, и перемещается параллельно оси 12 посредством нескольких синхронно работающих силовых цилиндров 21, монтируемых на неподвижной конструкции 8.
Изменение положения холодных щитков 16 подчинено изменениям положения горячих щитков 14 благодаря поводкам 18, а горячие щитки 14 приводятся в действие силовыми цилиндрами 21 в зависимости от режима полета: от положения максимального сужения при маршевой конфигурации, представленной на фиг.1 и 2, до почти цилиндрического положения при взлетной и посадочной конфигурациях, представленных на фиг.3-7.
При конфигурации в маршевом режиме, как это показано на фиг.1 и 2, холодные щитки 16 слегка сужены и расположены в продолжение концевой части обтекателя 9. При этой конфигурации холодные щитки 16 образуют относительно оси вращения 12 угол, не превышающий 6o. При других конфигурациях холодные щитки 16 отклоняются наружу.
Ниже горячих щитков 14 и холодных щитков 16 предусмотрен механизм реверсирования тяги 30. Этот механизм 30 включает две идентичные створки 31 и 32, симметрично расположенные относительно горизонтальной плоскости, проходящей по оси вращения 12 и перпендикулярной плану фиг.1-7.
Створки 31 и 32 монтируются на неподвижной конструкции 8 при помощи двух рычажных пар 33, 34 и двух пар управляющих силовых цилиндров 35, 36, причем каждая рычажная пара и каждая пара силовых цилиндров расположены сбоку снаружи створок 31 и 32 и внутри бокового продолжения неподвижной конструкции 8.
Или точнее, верхняя створка 31 монтируется шарнирным соединением на нижнем конце 37 верхней рычажной пары 33, верхний конец 38 которой крепится на неподвижной конструкции 8 и имеет шарнирное соединение со свободными концами 39 стержней 40 верхней пары управляющих силовых цилиндров 35, которые в свою очередь крепятся в 41 к неподвижной конструкции 8. Нижняя створка 32 монтируется идентичным способом на двух нижних управляющих рычагах 34 и двух нижних силовых цилиндрах 36.
Рычаги 33 и 34 рычажной пары имеют зубчатые секторы 43, 44 с центром в 38, которые входят в зацепление между собой и обеспечивают симметричность смещения осей поворота 37 обеих створок 31 и 32 относительно аксиальной плоскости симметрии.
Силовой цилиндр 50 помещается между двумя рычагами 33 и 34 рычажной пары. Цилиндрическая оболочка 51 этого силового цилиндра 50 имеет шарнирное соединение в точке 52 с нижним рычагом 34, а его стержень 53 имеет шарнирное соединение в точке 54 с верхним рычагом 33, причем точки 52 и 54 симметричны относительно аксиальной плоскости симметрии створок 31 и 32.
Каждая створка 31, 32 имеют форму дуги треугольного сечения, ограниченную внутренней стенкой 61, наружной стенкой 62 и передней стенкой 63.
При маршевой конфигурации, представленной на фиг.1 и 2, наружная стенка 62 располагается в продолжение холодных щитков 16 и образует с осью вращения 12 угол в 6o. Холодные щитки 16 имеют протяженность назад, превышающую точно в два раза длину горячих щитков 14. Входное сечение створок 31 и 32, ограниченное соединением внутренних стенок 61 с передними стенками 63, больше выходного сечения горячих щитков 14. Внутренние стенки 61 образуют сужающееся сопло при маршевой конфигурации. При этой конфигурации силовой цилиндр 50 и управляющие силовые цилиндры 35 и 36 задвинуты внутрь.
При взлетной конфигурации, представленной на фиг.3 и 4, силовой цилиндр 50 выдвинут, а управляющие силовые цилиндры 35 и 36 задвинуты внутрь. Кроме того, горячие щитки 14 расположены в одну линию с внутренней стенкой канала 7. Шарнирные оси 37 рычагов 35 и 36 и шарнирные оси 39 управляющих силовых цилиндров 35 и 36 на створках 31 и 32 при взлетной конфигурации расположены таким образом, что внутренние стенки 61 створок 31 и 32 также являются продолжением внутренней стенки канала 7 неподвижной конструкции 8. Холодные щитки 16 занимают раздвинутое положение и идеально обеспечивают аэродинамическую форму обтекателя 9 с наружной стенкой 62 створок 31 и 32.
Исходя из взлетной конфигурации согласно фиг.3 и 4, можно несколько больше задвинуть нижний управляющий силовой цилиндр 36 и слегка выдвинуть верхний стержень управляющего силового цилиндра 35, чтобы наклонить внутренние стенки 61 створок 31 и 32 примерно на 5o относительно оси вращения 12, как это представлено на фиг.7. Благодаря такому расположению газовая струя во время взлета направлена к земле под наклоном 5o. Такая конфигурация позволяет в основном уменьшить поверхности киля и руля самолета, заданные на случай аварии двигателя крыла в режиме взлета.
Назначением створок 31 и 32 является осуществление функции реверсирования тяги при посадке. Для этого обе створки 31 и 32 могут поворачиваться вокруг шарнирных осей 37 выдвижением стержней управляющих цилиндров 35 и 36, причем вертикальные силовые цилиндры 50 задвинуты. При такой конфигурации реверсирования тяги, представленной на фиг.5 и 6, внутренние стенки 61 обеих створок 31 и 32 сдвигаются в аксиальной плоскости симметрии и отклоняют газовую струю, поступающую из камеры 11, вперед и наружу, что обеспечивает торможение самолета, через боковые отверстия 70 и 71, которые открываются между холодными щитками 16 и створками 31 и 32. При такой конфигурации горячие щитки 14 образуют продолжение внутренней стенки канала 7 неподвижной конструкции 8, а холодные щитки 16 раздвинуты.

Claims (7)

1. Реактивное сопло турбореактивного двигателя, установленного на сверхзвуковом самолете, включающее расположенный в наружном обтекателе 9 канал 7 отвода выхлопных газов, по которому при работе двигателя вытекает газовая струя, несколько горячих поворотных щитков 14, монтируемых в нижнем конце 15 канала 7, несколько холодных поворотных щитков 16, монтируемых в нижнем конце 17 обтекателя 9, механизм реверса тяги 30 с двумя идентичными поворотными створками 31, 32, монтируемыми ниже канала отвода 7 с одной и с другой стороны относительно аксиальной плоскости симметрии, которые могут занимать либо активную позицию, т. е. реверсирования тяги, образуя выступ поперек газовой струи, ниже щитков, и отклоняя эту струю вперед, либо неактивную, т. е. прямоточную позицию, образуя продолжение холодных щитков 16, средства управления горячими и холодными щитками в соответствии с возможными конфигурациями при полете и силовые цилиндры 35, 36, управления створками 31, 32 из неактивной позиции в активную позицию или, наоборот, из активной позиции в неактивную позицию, отличающееся тем, что включает также силовой цилиндр 50 для раздвигания двух створок 31, 32 относительно аксиальной плоскости симметрии при взлетной конфигурации.
2. Сопло по п. 1, отличающееся тем, что холодные щитки 16 приводятся в действие для обеспечения целостного аэродинамического профиля с указанными двумя створками 31, 32 при взлетной и маршевой конфигурации.
3. Сопло по п. 2, отличающееся тем, что холодные щитки 16 присоединены к горячим щиткам 14 при помощи поводков 18.
4. Сопло по любому из пп. 1-3, отличающееся тем, что обе створки 31, 32 имеют шарнирное соединение с концами двух пар боковых опорных рычагов 33, 34 и с концами, по меньшей мере, одной пары силовых цилиндров 35, 36, причем рычаги 33, 34 каждой рычажной пары и силовые цилиндры 35, 36 каждой пары силовых цилиндров расположены симметрично относительно аксиальной плоскости симметрии и имеют шарнирное соединение на другом конце 38 с неподвижной конструкцией 8, и силовые цилиндры 35, 36 составляют средства управления створками 31, 32.
5. Сопло по п. 4, отличающееся тем, что средства для раздвижения створок 31, 32 при взлетной конфигурации включают силовой цилиндр 50, помещенный между рычагами 33, 34 рычажной пары.
6. Сопло по п. 4 или 5, отличающееся тем, что оба рычага 33, 34 опорной рычажной пары связаны между собой посредством зубчатых секторов 43, 44 для обеспечения симметричного смещения шарнирных осей 38 створок 31, 32 на указанных рычагах 33, 34 относительно аксиальной плоскости симметрии.
7. Сопло по любому из пп. 4-6, отличающееся тем, что силовые цилиндры 35, 36, служащие средствами управления створками 31, 32, могут быть задействованы асимметрично один относительно другого при взлетной конфигурации с целью незначительного отклонения струи выбрасываемых газов.
RU2000125901/06A 1999-01-14 2000-01-12 Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса RU2194872C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9900293A FR2788564B1 (fr) 1999-01-14 1999-01-14 Tuyere d'ejection de turboreacteur a reverse integree
FR9900293 1999-01-14

Publications (2)

Publication Number Publication Date
RU2000125901A RU2000125901A (ru) 2002-09-20
RU2194872C2 true RU2194872C2 (ru) 2002-12-20

Family

ID=9540820

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000125901/06A RU2194872C2 (ru) 1999-01-14 2000-01-12 Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса

Country Status (10)

Country Link
US (1) US6289670B1 (ru)
EP (1) EP1020631B1 (ru)
JP (1) JP4128714B2 (ru)
CA (1) CA2296047C (ru)
DE (1) DE60016052T2 (ru)
ES (1) ES2228420T3 (ru)
FR (1) FR2788564B1 (ru)
RU (1) RU2194872C2 (ru)
UA (1) UA46171C2 (ru)
WO (1) WO2000042308A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482031C2 (ru) * 2007-11-29 2013-05-20 Астриум Сас Устройство уменьшения аэродинамического сопротивления

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174704B2 (en) * 2004-07-23 2007-02-13 General Electric Company Split shroud exhaust nozzle
US7837141B2 (en) * 2006-03-22 2010-11-23 The Boeing Company Reaction drive rotor/wing variable area nozzle
US8015797B2 (en) * 2006-09-21 2011-09-13 Jean-Pierre Lair Thrust reverser nozzle for a turbofan gas turbine engine
US20100006697A1 (en) * 2007-01-30 2010-01-14 Japan Aerospace Exploration Agency Low noise aircraft
US8127529B2 (en) * 2007-03-29 2012-03-06 United Technologies Corporation Variable area fan nozzle and thrust reverser
US8127532B2 (en) * 2008-11-26 2012-03-06 The Boeing Company Pivoting fan nozzle nacelle
US8959889B2 (en) 2008-11-26 2015-02-24 The Boeing Company Method of varying a fan duct nozzle throat area of a gas turbine engine
KR101660759B1 (ko) * 2015-06-29 2016-09-28 한국항공대학교산학협력단 측판을 이용한 추력편향 제어 장치
JP5890575B1 (ja) * 2015-10-01 2016-03-22 増山 征男 熱機関の排気促進装置
RU2674848C1 (ru) * 2017-11-17 2018-12-13 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК - УМПО") Двухконтурный турбореактивный двигатель
US11346304B2 (en) 2018-09-06 2022-05-31 Rohr, Inc. Thrust reverser single degree of freedom actuator mechanism systems and methods
US11333102B2 (en) 2018-09-06 2022-05-17 Rohr, Inc. Thrust reverser actuation arrangement and deployable fairing systems and methods
US11300077B2 (en) * 2018-10-02 2022-04-12 Rohr, Inc. Deployable fairing for door reversers systems and methods
CN114687884B (zh) * 2022-04-14 2023-08-18 中国航发沈阳发动机研究所 一种二元喷管的外调节片结构

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944394A (en) * 1954-05-21 1960-07-12 Bristol Aero Engines Ltd Jet engine thrust reverser
US3068646A (en) * 1959-01-28 1962-12-18 Rolls Royce Improvements in by-pass type gas turbine engines
GB2155552B (en) * 1981-02-24 1986-02-26 Rolls Royce Adjustable jet propulsion nozzle
US4790495A (en) * 1984-12-06 1988-12-13 Grumman Aerospace Corporation Cascade thrust reverser
FR2621082A1 (fr) * 1987-09-30 1989-03-31 Hispano Suiza Sa Inverseur de poussee de turboreacteur a portes munies d'une plaque au profil de veine
US5050803A (en) * 1989-10-12 1991-09-24 General Electric Company Actuation system for positioning a vectoring exhaust nozzle
US5201800A (en) * 1990-02-26 1993-04-13 General Electric Company Method for discharging combustion gases from an exhaust nozzle
FR2678026B1 (fr) * 1991-06-24 1993-10-15 Hurel Dubois Avions Perfectionnement aux inverseurs de poussee de moteur a reaction.
IT1257222B (it) * 1992-06-09 1996-01-10 Alenia Aeritalia & Selenia Dispositivo inversore di spinta per motori aeronautici a getto.
FR2727468B1 (fr) * 1994-11-30 1996-12-27 Hispano Suiza Sa Inverseur de poussee de turboreacteur a obstacles aval
CA2181963A1 (en) * 1995-08-29 1997-03-01 Kenneth R. Mcguire Turbofan engine with reduced noise
WO1997048600A1 (en) * 1996-06-21 1997-12-24 The Boeing Company Supersonic airplane with subsonic boost engine means and method of operating the same
US5915651A (en) * 1997-07-10 1999-06-29 Mcdonnell Douglas Corporation Reverse thrust inlet vortex inhibitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482031C2 (ru) * 2007-11-29 2013-05-20 Астриум Сас Устройство уменьшения аэродинамического сопротивления

Also Published As

Publication number Publication date
DE60016052T2 (de) 2006-03-02
DE60016052D1 (de) 2004-12-30
US6289670B1 (en) 2001-09-18
WO2000042308A1 (fr) 2000-07-20
UA46171C2 (uk) 2002-05-15
FR2788564B1 (fr) 2001-02-16
EP1020631B1 (fr) 2004-11-24
JP2000205045A (ja) 2000-07-25
ES2228420T3 (es) 2005-04-16
CA2296047C (fr) 2006-07-04
FR2788564A1 (fr) 2000-07-21
EP1020631A1 (fr) 2000-07-19
CA2296047A1 (fr) 2000-07-14
JP4128714B2 (ja) 2008-07-30

Similar Documents

Publication Publication Date Title
RU2194872C2 (ru) Реактивное сопло турбореактивного двигателя со встроенным механизмом реверса
EP1399661B1 (en) Pivot fairing thrust reverser
CA2660001C (en) Thrust reverser nozzle for a turbofan gas turbine engine
RU2145390C1 (ru) Устройство реверсирования тяги турбореактивного двигателя с поворотными створками, содержащее отклоняющие лопатки, связанные с неподвижной конструкцией
US4147027A (en) Thrust reverser nozzle
US6983588B2 (en) Turbofan variable fan nozzle
US5655360A (en) Thrust reverser with variable nozzle
RU2101534C1 (ru) Реверсор тяги турбореактивного двигателя
RU2140558C1 (ru) Устройство реверсирования тяги двухконтурного турбореактивного двигателя с отклоняющими поток препятствиями, связанными с первичным кожухом
US5203164A (en) Method and apparatus for quieting a turbojet engine
US4790495A (en) Cascade thrust reverser
US20180094605A1 (en) Turbofan engine for a civil supersonic aircraft
BRPI0800373B1 (pt) sistema de motor de turbina a gás
US3824785A (en) Gas turbine ducted fan engines
RU2162537C2 (ru) Устройство реверсирования тяги турбореактивного двигателя со створками, образующими ковши, связанные с передним по потоку подвижным обтекателем
CN107923342B (zh) 包括推力反向装置的飞行器推进组件
EP0592526B1 (en) Apparatus and method for suppressing sound in a gas turbine engine powerplant
JPH0861147A (ja) 障害部材を有するターボファンエンジン逆推力装置
US4050631A (en) Jet engine nozzle for controlling the direction of thrust
RU2184260C2 (ru) Осесимметричное поворотное сверхзвуковое реактивное сопло
US4382551A (en) Flap-type nozzle with built-in reverser
RU2153591C2 (ru) Плоское сопло с центральным телом
US3837578A (en) Turbojet engines with pivoting jet pipe and thrust reversing means
CN114893321B (zh) 一种自适应变循环发动机轴对称排气结构
RU2239079C1 (ru) Силовая установка для летательного аппарата

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner