RU2183199C1 - Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления - Google Patents

Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления Download PDF

Info

Publication number
RU2183199C1
RU2183199C1 RU2001121337A RU2001121337A RU2183199C1 RU 2183199 C1 RU2183199 C1 RU 2183199C1 RU 2001121337 A RU2001121337 A RU 2001121337A RU 2001121337 A RU2001121337 A RU 2001121337A RU 2183199 C1 RU2183199 C1 RU 2183199C1
Authority
RU
Russia
Prior art keywords
water
desalination
block
filter
iron
Prior art date
Application number
RU2001121337A
Other languages
English (en)
Inventor
В.М. Тюрин
А.С. Рябинков
М.Ю. Абрамов
А.В. Чураев
Е.А. Федоров
О.Г. Викторов
Original Assignee
Тюрин Вадим Михайлович
Рябинков Андрей Сергеевич
Абрамов Михаил Юрьевич
Чураев Александр Викторович
Федоров Евгений Александрович
Викторов Олег Геннадьевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тюрин Вадим Михайлович, Рябинков Андрей Сергеевич, Абрамов Михаил Юрьевич, Чураев Александр Викторович, Федоров Евгений Александрович, Викторов Олег Геннадьевич filed Critical Тюрин Вадим Михайлович
Priority to RU2001121337A priority Critical patent/RU2183199C1/ru
Application granted granted Critical
Publication of RU2183199C1 publication Critical patent/RU2183199C1/ru

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Способ очистки и обессоливания поверхностных и подземных вод для повышения качества очистки заключается в том, что используют мелкодисперсный пузырьковый режим аэрации в блоке газового насыщения, создаваемый насосом высокого давления, водовоздушным эжектором или компрессором и диспергатором. А модульная установка для осуществления способа для повышения эффективности в эксплуатации содержит фильтр механической очистки с сеткой саржевого плетения из нержавеющей стали с размером ячеек 5 мкм. 2 с. и 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к водоснабжению, в частности к средствам и безреагентным способам получения питьевой воды из поверхностных и подземных вод повышенной минерализации (до 3000 мг/л и более) с высокой жесткостью (до 15 мг-экв/л) и большим содержанием железа (до 15 мг/л ) и ряд других примесей.
Железо в поверхностных и подземных водах присутствует в формах, зависящих от величины pH и окислительно-восстановительного потенциала. Оно может находиться в формах двух- и трехвалентных ионов, органических и неорганических коллоидов, комплексных соединений с гуматами и фульвокислотами, гидроксидов железа и др. Гумусовые вещества в природных водах, обуславливающие цветность воды, находятся во взвешенном (нерастворимые вещества почвы), в коллоидном и в растворимом состояниях (фульвовые и гуминовые кислоты в виде солей щелочных и щелочноземельных металлов). При нейтральном значении pH воды гуминовые кислоты присутствуют в воде в виде коллоидов, а фульвовые кислоты - в растворимом виде) (Николадзе Г.И. "Технология очистки природных вод": Учебн. для вузов. - М.: Высш. шк. - 1987. - с. 20-27).
Очистка и обезжелезивание воды необходимо для улучшения органолептических свойств воды, а также для кондиционирования минерального состава в соответствии с требованиями, предъявляемыми к качеству воды.
Известен способ очистки подземных вод от железа аэрированием с последующим фильтрованием через два слоя фильтрующего материала, причем фильтрующие слои разделены между собой, при этом в первом фильтрующем слое происходит окисление железа до гидроксида, а во втором фильтрующем слое - удержание образовавшегося гидроксида железа, между фильтрующими слоями размещен коагулятор для укрупнения частиц гидроксида железа (см., например, патент РФ 2085512, С 02 F 1/64, публ. 27.07.97, Бюл. 21).
Недостатком способа является громоздкость предфильтра: высота фильтрующего слоя из крупнозернистой (7-10 мм) объемной загрузки (дробленый керамзит, антрацит, фарфор, керамика и т.п.) 1 м и довольно слабое отделение от воды взвешенной гидроокиси железа в фильтре тонкой очистки (крупностью всего выше 60 мкм), что обязательно приведет к проскокам железа, например, в питьевую воду, несмотря на наличие в схеме очистки коагулятора для укрупнения частиц гидроокиси железа.
Известен способ очистки воды от гумусовых веществ и железа последовательным пропусканием ее в две стадии через фильтрующую загрузку из гидрофобных сорбционных материалов с регулированием pH очищаемой воды на каждой стадии, согласно чему на первую стадию фильтрации подают воду с pH 3-4 для извлечения гумусовых веществ, а на вторую стадию фильтрации подают воду с pH 6,5-9 для извлечения железа с регенерацией фильтрующей загрузки первой стадии регенерационными водами с pH 11-13, а второй стадии фильтрации - с pH 0-2 (см., например, патент РФ 2158231, С 02 F 1/28, публ. 27.10.2000, Бюл. 30).
Недостатком способа является сложность технологического процесса водоподготовки, требующего многократной коррекции pH как при приготовлении регенерационных растворов, так и при установлении pH очищаемой воды, а также большое количество применяемых для этих целей и для регенерации ионообменных смол химических реагентов (кислоты и щелочи) или использование специального электролизера для коррекции pH, что значительно удорожает процесс очистки питьевой воды.
Известно также устройство для очистки подаваемой водопроводной воды через высокоградиентный магнитный сепаратор для выделения суспензированных в нем мелких магнитных частиц из присутствующих в воде ионов железа, патронный фильтр и емкость с большим количеством фильтрующих элементов, состоящих из тонких ферромагнитных проволок, расположенных в радиальном направлении, для удаления из воды этих частиц под воздействием магнитных сил торроидальных постоянных магнитов, с постепенно замедляющейся скоростью воды в системе фильтрации, с целью повышения качественных показателей питьевой воды (см., например, JP А, заявка 2-265688, С 02 F 1/48, публ. 90. 10. 30).
Недостатком устройства является использование для выделения суспензированных мелких магнитных частиц в обрабатываемой водопроводной воде высокоградиентного магнитного сепаратора с высокой общей напряженностью магнитного поля и при этом с обязательной необходимостью более частой обратной промывки совместно с отключением магнитного поля в системе фильтрации, включающей элементы из тонких ферромагнитных проволок, от постоянно налипающих на них мелких магнитных частиц, что значительно ограничивает возможности способа и повышает его конечную себестоимость.
Известен способ обессоливания природных вод, содержащих ионы жесткости, который ведут электродиализом с подачей анолита в катодную камеру электродиализатора, с целью повышения надежности способа за счет более полного предотвращения осадкообразования. Электродиализ ведут при циркуляции анолита через катодную и анодную камеры и соотношении катодной и анодной плотностей тока (7,5-15): 1 (см., например, авт. св. СССР 1430055, B 01 D 61/42, публ. 15.10.88, Бюл. 38).
К недостаткам данного способа следует отнести образование осадка, который, накапливась при повторении, например, кратковременных задержек циркуляции анолита через катодную и анодную камеры, который и приведет к остановке процесса.
Известен также способ обессоливания воды путем электродиализа в электродиализаторе с чередующимися камерами концентрирования и обессоливания, с подпиткой камер обессоливания, в котором, с целью снижения напряжения на электродиализаторе за счет предотвращения осадкообразования на мембранах, в камеры обессоливания через одну, начиная от электродных камер, подают раствор электролита, содержащий осадкообразующие ионы в количестве меньшем, чем соответствующее их произведение растворимости в камерах концентрирования (см. , например, авт. св. СССР 698632, В 01 D 61/44, публ. 25.11.79, Бюл. 43).
Недостатком способа является высокая себестоимость обессоливания воды с применением электролита с осадкообразующими ионами, не устраняющего полностью причину осадкообразования на мембранах электродиализатора.
Известна станция очистки и обессоливания воды, содержащая последовательно соединенные подводящую магистраль, блок параллельных фильтров, снабженный коллекторами подвода исходной воды и вывода очищенной воды, а также подводящим и отводящим коллекторами регенерационной воды, насос высокого давления и обратноосмотический аппарат с линиями вывода концентрата и обессоленной воды (см., например, патент РФ 2058273, С 02 F 9/00, публ. 20.04.96, Бюл. 11).
Недостатком станции очистки и обессоливания воды является отсутствие в ней предварительной аэрации воды с целью перевода растворимого железа в гидроксид и предотвращения попадания его на обратноосмотические мембраны и вывода их из строя. Введение в процесс очистки воды предварительной аэрации приведет к снижению затрат на поддержание производительности станции и соответственно к снижению себестоимости производства питьевой воды.
Известна мембранная установка по получению обессоленной воды, содержащая 3-и пары песчаных фильтров и промежуточных емкостей, снабженных микрофильтрами, насос высокого давления, 2-е пары мембранных фильтров, соединенных через соответствующие вентили со сборником пермеата, дроссель, емкость для хранения химических реагентов, соединенная с насосом подачи исходной воды через насос-дозатор (см., например, патент РФ 2139755, В 01 D 63/00, публ. 20.10.98, Бюл. 29).
Недостатком мембранной установки является отсутствие предварительной аэрации воды перед песчаными фильтрами с целью перевода растворимого железа в гидроксид и предотвращения попадания его на микрофильтры. Проскоки ионов железа на микрофильтры, частая их регенерация или замена нарушат непрерывность функционирования мембранной установки, увеличат затраты на регламентное обслуживание и при этом увеличится себестоимость производства питьевой воды.
Известна также установка для очистки и осветления воды, относящаяся к установкам предварительной очистки поверхностных и подземных вод с высокой жесткостью (до 300-400 мг-экв/л) и большим содержанием железа, для использования в комплексе с системами обессоливания при получении воды хозяйственно-питьевого назначения, состоящая из аэратора-эжектора, осветлителя, песчаного фильтра с дополнительным осветлителем и насосом отвода воды на песчаный фильтр, 2-х фильтров-прессов с насосами подачи осадка для получения его сухим (см. , например, патент РФ 2151744, C 02 F 1/52, 9/00, публ. 27.06.2000).
К недостаткам известного изобретения следует отнести громоздкость предложенного средства очистки, использование химических реагентов - щелочи и соды, требующих обязательной коррекции pH в случае его использования при получении питьевой воды, что значительно увеличит ее себестоимость.
Наиболее близким к заявляемому способу очистки и обессоливания поверхностных и подземных вод и модульной установки для его осуществления, по назначению и технической сущности, является способ очистки подземных вод от железа и других примесей, взятый авторами в качестве прототипа, включающий: насос высокого давления, фильтр механической очистки (предфильтр), блок газового насыщения со слоем окислителя, блок-очиститель (фильтр тонкой очистки), накопительную емкость для очищенной воды. Причем в предфильтре происходит отделение механических взвесей, железоорганики и других примесей, в блоке газового насыщения со слоем окислителя, выполненным в виде плавающей зернистой загрузки, происходит окисление железа и других металлов до нерастворимой фазы, в фильтре тонкой очистки происходит удержание образовавшихся нерастворимых окислов железа и других металлов, причем перед окислителем на водовоздушную смесь накладывают колебания для организации колебательного режима (см. , например, патент РФ 2142432, С 02 F 1/64, публ. 10.12.99, Бюл. 34).
Недостатком известного способа очистки подземных вод от железа и других примесей является отсутствие автоматизации процесса очистки и громоздкость установки - фильтрующий слой (предфильтр) представляет собой многокомпонентный фильтрующий материал из полиэфирных волокон толщиной 7 мм, диаметром 70 мм и высотой 1500 мм; окислитель - с высотой слоя загрузки 1500 мм и диаметром 150 мм, а фильтр тонкой очистки - металлокерамический фильтрующий материал высотой 1500 мм и диаметром 80 мм. К тому же, фильтрующий слой (предфильтр), несущий основную нагрузку по очистке воды от механических примесей, органических веществ и частично от трехвалентных ионов железа, будет быстро загрязняться и выходить из строя, что значительно повысит затраты на поддержание производительности установки из-за частой регенерации или его замены, что значительно увеличивает себестоимость питьевой воды
Целью предлагаемого изобретения является автоматизация процесса очистки и обессоливания поверхностных и подземных вод, а также промывки фильтрующих элементов, уменьшение габаритных размеров модульной установки, снижение себестоимости производства питьевой воды, повышение степени очистки и улучшение качественных показателей питьевой воды.
Указанная цель достигается тем, что способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления, включающий предочистку, аэрирование, центробежное отделение взвешенных частиц и фильтрование, обессоливание и обеззараживание, отличающийся тем, что используется мелкодисперсный пузырьковый режим аэрации в блоке газового насыщения, создаваемый насосом высокого давления, водовоздушным эжектором или компрессором и диспергатором, установленным на дне аэрационной колонки с автоматическим клапаном сброса избыточного воздуха, и обеспечивающий окисление железа до нерастворимой фазы и превращение окислов железа в магнетиты, которые при прохождении через блок из постоянных магнитов превращаются в центры кристаллизации с размером частиц 1-3 мкм и далее мгновенно удаляются центробежными силами и фильтрованием в напорном фильтре-гидроциклоне, а оставшиеся в воде мелкие магнитные частицы с размером менее 1 мкм доочищаются зарядной фильтрацией в блоке-очистителе из полимерного материала с пространственно-глобулярной структурой (ПГС), меняющей электрический заряд в зависимости от физического состояния частиц (+) или (-), затем вода обессоливается в электродиализном аппарате, регулируется ее общее солесодержание с помощью блока ротаметров и финишно осуществляется обеззараживание воды ультрафиолетовым стерилизатором и подается в накопительную емкость для очищенной воды, при этом между блоком газового насыщения блоком-очистителем последовательно расположены блок из постоянных магнитов и напорный фильтр-гидроциклон, а за блоком-очистителем последовательно расположены электродиализный аппарат с блоком ротаметров, ультрафиолетовый стерилизатор и накопительная емкость для очищенной воды.
Заданный мелкодисперсный пузырьковый режим позволяет аэрировать воду воздухом с диаметром пузырьков 0,2-0,6 мм при давлении 1,3-2,0 ати.
Блок из постоянных магнитов набран из отдельных сердечников магнитных элементов с напряженностью магнитного поля 1000-2000 Э на трубопроводе из нержавеющей стали.
Процесс обессоливания "омагниченной" воды, в электродиализном аппарате с чередующимися камерами концентрирования и обессоливания, осуществляется без применения мер по предотвращению осадкообразования на мембранах.
Модульная установка для очистки и обессоливания поверхностных и подземных вод использует для отделения механических взвесей, железоорганики и других примесей фильтр механической очистки с сеткой саржевого плетения из нержавеющей стали с размером ячеек 5 мкм и системой обратной промывки и дополнительно содержит гидравлически соединенные блок газового насыщения с насосом высокого давления через фильтр механической очистки и диспергатором, блок из постоянных магнитов, фильтр-гидроциклон, электродиализный аппарат, блок ротаметров и ультрафиолетовый стерилизатор.
На чертеже представлена принципиальная схема модульной установки для очистки и обессоливания поверхностных и подземных вод.
Модульная установка для очистки и обессоливания поверхностных и подземных вод работает следующим образом.
Исходная вода из приемной емкости, в которую погружным насосом у потребителя вода по подводящей магистрали подается из поверхностных или подземных источников, насосом высокого давления 1 подается на фильтр механической очистки 2 с системой обратной промывки, где отделяются сеткой саржевого плетения из нержавеющей стали механические взвеси, железоорганика и другие примеси с размером частиц более 5 мкм, а шлам из шламовой камеры сбрасывается в дренажную систему. Время регенерации обратным током воды не более 1 мин.
Очищенная от механических взвесей, железоорганики и других примесей вода далее поступает в блок газового насыщения 3 для аэрации мелкодисперсным воздухом, с диаметром пузырьков 0,2-0,6 мм при давлении 1,3-2 ати, с помощью водовоздушного эжектора 12 и диспергатора 13 с целью окисления растворимого и частично гидролизованного железа в гидроксид и превращения его в магнетиты - Fe2O3 и Fе3O4 в диапазоне 6,5<рН>9,7 (Радовенчик В.М., Гомеля Н.Д., Лукяник С. И. "Измерение окислительно-восстановительного потенциала при аэрации желесодержащих растворов". ISSN 0204-3556. Химия и технология воды, 1997, т. 19, 4, с.339-344). Для большинства природных вод коррекции pH не требуется. В случае необходимости коррекции pH природных вод на этой стадии обработки, с целью ускорения процесса осуществления реакции ферритизации с образованием кристаллического осадка с магнитными характеристиками и размерами частиц порядка 0,1 мкм, анолит или католит берется из рабочих камер электродиализного аппарата 8.
Далее вода поступает в блок из постоянных магнитов 6, с напряженностью магнитного поля 1000-2000 Э, в котором мельчайшие частицы оксидов железа приобретают свойства постоянных магнитиков, благодаря чему они растут и, поступая в напорный фильтр-гидроциклон 7, превращаются уже в грубодисперсные частицы твердой фазы (ассоциаты) с размером порядка 1-3 мкм, к которым присоединяются и частицы солей жесткости. Эти частицы, прижимаясь центробежными силами к конической части напорного фильтра-гидроциклона 7, мгновенно попадают уже с размерами от 10 до 60 мкм в его шламовую камеру с автоматическим сбросом накопившегося шлама. Время сброса шлама - 30-40 с. Осадок, после предварительной его осушки, можно использовать в специальных технологиях получения красок в виде добавок пигментов.
Формирование крупных ассоциатов в напорном фильтре-гидроциклоне 7 является одной из основных функций этого устройства, обуславливающей его высокие сепарирующие качества, а получение на нем максимально возможного перепада давления позволяет, как правило, получить высокую скорость поступления воды в напорный фильтр-гидроциклон 7 и обеспечить более интенсивное из воды шламоотделение.
Более мелкие частицы (менее 1 мкм), проходя через сетку саржевого плетения из нержавеющей стали фильтра-патрона напорного фильтра-гидроциклона 7 с размером ячеек 1 мкм, будут выноситься потоком чистой воды для последующего их удаления в блоке-очистителе 4 с помощью полимерного материала с пространственно-глобулярной структурой (ПГС), работающего за счет зарядной фильтрации, проявляющейся при взаимодействии электромагнитных заряженных частиц с микроглобулами ПГС, которые меняют электрический заряд в зависимости от физического состояния этих частиц (+) или (-). Взвешенные вещества и соли жесткости в блоке-очистителе 4 не будут проникать в полимерный материал, а будут от него отталкиваться и стекать по поверхности очистителя в камеру для шлама, из которой он сбрасывается в дренажную систему. Блок-очиститель 4 регенерируется обратной продувкой воздухом, с использованием, например, компрессора, в течение 30-40 с или обратной промывкой водой в течение 1-2 мин.
Далее вода сначала поступает в электродиализный аппарат 8 для обессоливания воды повышенной минерализации с регулированием ее солесодержания на выходе с помощью блока ротаметров 9 (при необходимости, рассол, образовавшийся в рабочих камерах концентрирования, сбрасывается в дренажную систему), затем в ультрафиолетовый стерилизатор 10 для ее обеззараживания и, соответственно, в накопительную емкость для очищенной воды 5 для ее запаса в случае пикового расхода потребителем.
При обессоливании воды путем электродиализа, в электродиализном аппарате 8 с чередующимися рабочими камерами концентрирования и обессоливания, после удаления при водоподготовке из воды железоорганики и других примесей с применением предварительной аэрации, "омагничивания" и мгновенным удалением образовавшегося мелкокристаллического шлама в напорном фильтре-гидроциклоне 7 и блоке-очистителе 4, практически не образуются осадки на мембранах в камерах обессоливания и концентрирования из-за изменения структуры присутствующих в воде карбонатов кальция и магния, повышается проницаемость воды через мембраны, улучшается процесс очистки и промывки электродных камер от продуктов электродиализа, улучшается качество питьевой воды по сравнению с прототипом и другими известными способами.
При обеззараживании питьевой воды УФ-облучением с длиной волны 254 нм разрушаются молекулы ДНК в клетках бактерий и микроорганизмов, препятствуя их размножению.
Пример. По приведенному выше описанию и предложенному способу очистки и обессоливания поверхностных и подземных вод на модульной установке для его осуществления, производительностью 2 м3/час, проводилась очистка, обессоливание и обеззараживание модельного раствора следующего химического и микробиологического состава: железо общее - 10 мг/л, мутность - 23,1 ЕМ/л, марганец - 0,74 мг/л, сухой остаток - 2950 мг/л, жесткость общая - 4,1 ммоль/л, ОМЧ - 1200 КОЕ/л, Коли-индекс - 10 КОЕ/л.
После очистки, обессоливания и обеззараживания модельного раствора получены следующие результаты: железо общее - 0,02 мг/л, мутность - 0,5 ЕМ/л, марганец < 0,01 мг/л, сухой остаток - 60 мг/л, жесткость общая < 0,2 ммоль/л, ОМЧ - 10 КОЕ/л, Коли-индекс < 3 КОЕ/л.
Гигиенический норматив (СанПиН, МДУ, ПДК и т.д.): железо общее - 0,3 мг/л, мутность - 2,6 ЕМ/л, марганец - 0,1 мг/л, сухой остаток - 1000 мг/л, жесткость общая - 7 мг-экв/л, ОМЧ - 50 КОЕ/л, Коли-индекс - 3 КОЕ/л.

Claims (5)

1. Способ очистки и обессоливания поверхностных и подземных вод, включающий предочистку, аэрирование, центробежное отделение взвешенных частиц и фильтрование, обессоливание и обеззараживание, отличающийся тем, что используется мелкодисперсный пузырьковый режим аэрации в блоке газового насыщения, создаваемый насосом высокого давления, водовоздушным эжектором или компрессором и диспергатором, установленным на дне аэрационной колонки с автоматическим клапаном сброса избыточного воздуха, и обеспечивающий окисление железа до нерастворимой фазы и превращение окислов железа в магнетиты, которые при прохождении через блок из постоянных магнитов превращаются в центры кристаллизации с размером частиц 1-3 мкм и далее мгновенно удаляются центробежными силами и фильтрованием в напорном фильтре-гидроциклоне, а оставшиеся в воде мелкие магнитные частицы с размером менее 1 мкм доочищаются зарядной фильтрацией в блоке-очистителе из полимерного материала с пространственно-глобулярной структурой (ПГС), меняющей электрический заряд в зависимости от физического состояния частиц (+) или (-), затем вода обессоливается в электродиализном аппарате, регулируется ее общее солесодержание с помощью блока ротаметров и финишно осуществляется обеззараживание воды ультрафиолетовым стерилизатором и подается в накопительную емкость для очищенной воды, при этом между блоком газового насыщения, блоком-очистителем последовательно расположены блок из постоянных магнитов и напорный фильтр-гидроциклон, а за блоком-очистителем последовательно расположены электродиализный аппарат с блоком ротаметров, ультрафиолетовый стерилизатор и накопительная емкость для очищенной воды.
2. Способ очистки и обессоливания поверхностных и подземных вод по п. 1, отличающийся тем, что заданный мелкодисперсный пузырьковый режим позволяет аэрировать воду с воздухом с диаметром пузырьков 0,2-0,6 мм при давлении 1,3-2,0 ати.
3. Способ очистки и обессоливания поверхностных и подземных вод по п. 1, отличающийся тем, что блок из постоянных магнитов набран из отдельных сердечников магнитных элементов с напряженностью магнитного поля 1000-2000 Э на трубопроводе из нержавеющей стали.
4. Способ очистки и обессоливания поверхностных и подземных вод по п. 1, отличающийся тем, что процесс обессоливания "омагниченной" воды, в элекродиализном аппарате с чередующимися камерами концентрирования и обессоливания, осуществляется без применения мер по предотвращению осадкообразования на мембранах.
5. Модульная установка для очистки и обессоливания поверхностных и подземных вод, включающая предфильтр, аэратор и окислитель, фильтр тонкой очистки, емкость для очищенной воды, отличающаяся тем, что для отделения механических взвесей, железоорганики и других примесей используется фильтр механической очистки с сеткой саржевого плетения из нержавеющей стали с размером ячеек 5 мкм, модульная установка дополнительно содержит гидравлически соединенные блок газового насыщения с насосом высокого давления через фильтр механической очистки и диспергатором, блок из постоянных магнитов, фильтр-гидроциклон, электродиализный аппарат, блок ротаметров и ультрафиолетовый стерилизатор.
RU2001121337A 2001-07-31 2001-07-31 Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления RU2183199C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001121337A RU2183199C1 (ru) 2001-07-31 2001-07-31 Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001121337A RU2183199C1 (ru) 2001-07-31 2001-07-31 Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления

Publications (1)

Publication Number Publication Date
RU2183199C1 true RU2183199C1 (ru) 2002-06-10

Family

ID=20252188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001121337A RU2183199C1 (ru) 2001-07-31 2001-07-31 Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления

Country Status (1)

Country Link
RU (1) RU2183199C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443638C1 (ru) * 2010-10-12 2012-02-27 Юрий Олегович Бобылев Способ комплексной очистки питьевой воды и установка для комплексной очистки питьевой воды
RU2457226C1 (ru) * 2011-01-11 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) Способ получения неорганического хроматического пигмента
RU2590543C1 (ru) * 2015-02-25 2016-07-10 Общество с ограниченной ответственностью "Газпром трансгаз Санкт-Петербург" Блочно-модульная станция очистки воды для систем водоснабжения
RU2784446C1 (ru) * 2019-07-02 2022-11-24 Свобода Франтишек Четырехступенчатая модульная очистная установка для поверхностных вод

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 5096580 A, I7.03.1992. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443638C1 (ru) * 2010-10-12 2012-02-27 Юрий Олегович Бобылев Способ комплексной очистки питьевой воды и установка для комплексной очистки питьевой воды
RU2457226C1 (ru) * 2011-01-11 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) Способ получения неорганического хроматического пигмента
RU2590543C1 (ru) * 2015-02-25 2016-07-10 Общество с ограниченной ответственностью "Газпром трансгаз Санкт-Петербург" Блочно-модульная станция очистки воды для систем водоснабжения
RU2784446C1 (ru) * 2019-07-02 2022-11-24 Свобода Франтишек Четырехступенчатая модульная очистная установка для поверхностных вод

Similar Documents

Publication Publication Date Title
US6416668B1 (en) Water treatment process for membranes
Lebeau et al. Immersed membrane filtration for the production of drinking water: combination with PAC for NOM and SOCs removal
US6582605B2 (en) Method of treating industrial waste waters
US20120205313A1 (en) Sulfate removal from aqueous waste streams with recycle
Vigneswaran et al. Physicochemical treatment processes for water reuse
CN101921029B (zh) 纳米催化微电解水净化消毒装置及其方法
EP2421798A2 (en) Water treatment
KR20080045166A (ko) 물 정수 장치 및 방법
WO2013055659A1 (en) Produced water treatment process
CA2737356A1 (en) High recovery sulfate removal process
WO2012104684A1 (en) Chemical free and energy efficient desalination system
CN113003846B (zh) 高含盐量和高cod的污水的零排放处理工艺和系统
WO2009119300A1 (ja) 被処理水の逆浸透膜による分離のための前処理方法
CN103936202A (zh) 一种苦咸水淡化方法及其装置
CN104529018A (zh) 电絮凝在印染废水处理及回用工艺
CN109095692A (zh) 一种电镀废水生化出水的处理系统及处理方法
Pouet et al. Intensive treatment by electrocoagulation-flotation-tangential flow microfiltration in areas of high seasonal population
CN102656122B (zh) 增强型高水回收率膜工艺
CN102020390B (zh) 磁电纳滤污水净化系统和净化工艺
CN206437968U (zh) 一种高盐废水处理回用的系统
KR20020040690A (ko) 역삼투막을 이용한 하·폐수 재이용 중수처리 시스템
RU2183199C1 (ru) Способ очистки и обессоливания поверхностных и подземных вод и модульная установка для его осуществления
US20080029456A1 (en) Method and apparatus for removing minerals from a water source
CN215559437U (zh) 一种废水处理系统
KR100918373B1 (ko) 전자석과 막을 이용한 하이브리드 수처리 장치 및 방법