RU2182036C2 - Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток (варианты) - Google Patents

Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток (варианты) Download PDF

Info

Publication number
RU2182036C2
RU2182036C2 RU98108324/12A RU98108324A RU2182036C2 RU 2182036 C2 RU2182036 C2 RU 2182036C2 RU 98108324/12 A RU98108324/12 A RU 98108324/12A RU 98108324 A RU98108324 A RU 98108324A RU 2182036 C2 RU2182036 C2 RU 2182036C2
Authority
RU
Russia
Prior art keywords
gas stream
oxygen
section
membrane
ion transfer
Prior art date
Application number
RU98108324/12A
Other languages
English (en)
Other versions
RU98108324A (ru
Inventor
Кристиан Фридрих ГОТТЗМАНН
Рави Прасад
Original Assignee
Праксайр Текнолоджи, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Праксайр Текнолоджи, Инк. filed Critical Праксайр Текнолоджи, Инк.
Publication of RU98108324A publication Critical patent/RU98108324A/ru
Application granted granted Critical
Publication of RU2182036C2 publication Critical patent/RU2182036C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/0018Controlling or regulating processes controlling the conductivity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Изобретение относится к способу разделения газов в устройстве с ионным проводником из твердого электролита. Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток посредством выделения кислорода из подаваемого газового потока в устройстве включает сжатие подаваемого газового потока, разделение сжатого потока на основную и вспомогательную части, нагрев основной части газового потока с введением в секцию разделения устройства, подачу вспомогательной части газового потока в секцию охлаждения устройства рядом с выходом для кислородного продукта, отвод кислорода из нагретой основной части через мембраны в секции разделения устройства, передачу тепла от обогащенного кислородом газового потока вспомогательной части газового потока. 2 с. и 8 з.п. ф-лы, 9 ил., 1 табл.

Description

Изобретение относится к способу разделения газов в устройстве с ионным проводником из твердого электролита. В частности, изобретение относится к системе разделения с ионным проводником из твердого электролита, где функции разделения газов, возможно реакции и охлаждения, объединены в одном устройстве.
Изобретение выполнено при поддержке Правительства Соединенных Штатов Америки по совместному соглашению 70NANB5H1065, выданному Национальным институтом стандартов и технологии. Правительство Соединенных Штатов Америки имеет определенные права на изобретение.
Некриогенные системы выделения объемного кислорода, например мембранные системы из органического полимера, используются для выделения определенных газов из воздуха и других газовых смесей. Воздух представляет собой смесь газов, которая может содержать в переменных количествах водяной пар и над уровнем моря имеет следующий примерный состав по объему: кислород (20,9%), водород (78%), аргон (0,94%) с балансом, состоящим из других рассеянных газов. Однако можно изготавливать мембраны совершенно другого типа из некоторых неорганических оксидов. Эти мембраны из твердого электролита изготавливают из неорганических оксидов, типичными примерами которых могут быть стабилизированные кальцием или иттрием оксиды циркония или аналогичные оксиды, имеющие структуру флюрита или перовскита.
Хотя потенциал этих оксидных керамических материалов в качестве мембран для разделения газов является высоким, при их использовании возникают определенные проблемы. Наиболее очевидная трудность состоит в том, что все известные оксидные керамические материалы обладают заметной проводимостью ионов кислорода только при повышенных температурах. Они обычно должны хорошо работать при температурах выше 500oС, как правило, в диапазоне температур 600-900oС. Это ограничение остается, несмотря на серьезные исследования с целью подбора материалов, которые хорошо работают при более низких температурах. Техника ионных проводников из жесткого электролита более подробно описана в патенте США 5547494, под названием "Ступенчатая электролитная мембрана", который включен в настоящую заявку путем ссылки для более полного описания состояния техники.
Последние разработки привели к созданию твердых оксидов, которые имеют возможность проводить ионы кислорода при повышенных температурах, когда прикладывается химический или электрический раскачивающий потенциал. Эти приводимые в действие давлением мембраны в виде ионных проводников можно использовать в качестве мембран для отделения кислорода из кислородсодержащего газового потока, если для обеспечения химического раскачивающего потенциала прикладывается достаточное парциальное давление кислорода. Поскольку селективность этих материалов в отношении кислорода является неограниченной и можно получать величину потоков кислорода на несколько порядков выше, чем при применении полимерных мембран, для способов получения кислорода, а также для требующих кислород процессов окисления создаются благоприятные возможности их применения, в особенности при повышенных температурах. Бросающийся в глаза пример представляет собой циклы газовых турбин, которые обычно обрабатывают значительное количество избыточного воздуха для поддержания температуры на входе турбины в пределах возможностей, имеющихся материалов и, следовательно, обеспечивают наличие избыточного кислорода для восстановления в виде побочного продукта.
В технической литературе представлены успехи, достигнутые в технике разделения воздуха с использованием ионных проводников из твердого электролита. Например, патент США 5306411 под названием "Твердые многокомпонентные мембраны, электромеханические компоненты реактора, электромеханические реакторы и использование мембран, компонентов реакторов и реакторов для реакции окисления", касается электромеханических реакторов для реагирования кислородсодержащего газа с потребляющим кислород газом, в котором описывается корпусной и трубчатый реактор с кислородсодержащим газом, проходящим по одной стороне мембраны из твердого электролита и потребляющим кислород газом по другой стороне. Однако в этом источнике не рассматриваются вопросы, касающиеся управления теплом для поддержания поверхностей мембран при требующихся постоянных температурах, динамики потока для достижения эффективного переноса массы или необходимости балансирования динамики реакции проводимостью ионов кислорода с целью поддержания надлежащего парциального давления кислорода для обеспечения стойкости материалов.
Патент США 5565017 под названием "Высокотемпературное производство кислорода с вырабатыванием водяного пара и энергии", касается системы, объединяющей мембрану для переноса ионов с газовой турбиной для преобразователя энергии от остаточного газового потока после его нагрева и добавления водяного пара.
В патенте США 5516359 под названием "Объединенный высокотемпературный способ производства кислорода" раскрыто использование водяного пара и инертных газов в качестве газов очистки для мембранных разделителей. Ни в одном из этих патентов не раскрывается конструкция устройства, и они не предполагают использование реакторов переноса ионов, которые посредством исключения азота из газового потока продуктов реакции позволяют использовать их в качестве генераторов газового потока для продувки или очистки разделителей с переносом ионов.
В патенте США 5599383 описан трубчатый модуль с твердой мембраной, имеющий множество трубчатых мембранных блоков, каждый из которых имеет пористую основу без каналов и удерживаемый на ней плотный смешанный проводящий окисный слой. Пористая основа каждого блока находится в связи по потоку с одним или более коллекторами или трубопроводами для выпуска кислорода, который проникает через плотный слой и пористую основу.
В корпорации Вестингауз разработаны твердые окисные топливные элементы, имеющие трубчатую конструкцию, типа описанной в публикации, представленной на конференции "Пауэджен 1955 - Эмерикес" в Анахайме, штат Калифорния, 5-7 декабря 1995 г. Франком П. Бвеком и Уолтером Г. Паркером, под названием "Объединенные энергетические установки с твердыми окисными топливными элементами Сьюрсел (товарный знак) для применений распределенных энергий". Эта публикация касается трубчатых топливных систем из твердых оксидов с конфигурациями, которые имеют поверхностное сходство с некоторыми из конфигураций настоящего изобретения, однако конфигурация не касается функций, выполняемых соответствующими настоящему изобретению реакторами на твердых электролитах. Бвек и Паркер описали топливный элемент с закрытым концом, где воздух подается к внутренней катодной стороне мембраны из твердого электролита по коаксиальной внутренней трубе, которая подает воздух, подогреваемый перед вводом в катодный канал, где происходит перенос кислорода. Однако Бвек и Паркер не рассматривали вопрос динамики управления теплом и потоком.
Кроме того, устройство корпорации Вестингауз в отличие от настоящего изобретения представляет собой не реактор для производства тепла или требуемого продукта анодной стороны, а топливный элемент для производства электрической энергии и, следовательно, не может использовать смешанные или двухфазные проводники в качестве электролита. Более того, конструкцию твердых топливных элементов корпорации Вестингауз (фиг.4) представляют также устройства низкого давления, тогда как соответствующие настоящему изобретению реакторы обычно имеют повышенное давление, по меньшей мере, на одной стороне мембраны из твердого электролита. Поскольку перепад давления между двумя сторонами невысок, вопрос уплотнения не является целью, хотя он занимает значительную часть настоящего изобретения. Конструкция топливного элемента корпорации Вестингауз отличается также концентрической внутренней трубой для подачи воздуха, однако без учета практических проблем конструкции устройства, встречающихся в отделителе кислорода переносом ионов.
Следовательно, целью настоящего изобретения является создать эффективный способ с использованием системы ионных проводников из твердого электролита, где функции разделения газов, возможно химической реакции, и охлаждения объединены в одном устройстве для доведения до максимума использования обычных материалов и обычных конструктивных способов.
Целью изобретения является также получение соответствующих изобретению систем переноса ионов на твердом электролите, способных объединяться в высокотемпературном цикле типа газовых турбин.
Следующей целью настоящего изобретения является обеспечить возможность использования продувочного потока для стороны отвода или анода разделителя с переносом ионов для повышения восстановления кислорода, не воздействуя на ранее упомянутые преимущества.
Еще одной целью изобретения является объединить секцию реакции с устройством, создающим поток, состоящий из продуктов реакции, в одном и том же трубчатом канале выше по потоку от секции разделения с целью продувки стороны отвода, то есть анодной стороны разделителя, для повышения восстановления кислорода, не оказывая влияния на ранее описанные преимущества, и благодаря этому объединить большинство операций блока, требуемых для разделения газа посредством мембраны для переноса ионов в одном устройстве, с целью значительного упрощения операций процесса.
Изобретение относится к способу разделения кислородного газового потока на обогащенный кислородом газовый поток в качестве проникающего потока и обедненный кислородом газового потока в качестве остающегося потока посредством выделения кислорода из подаваемого газового потока, содержащего элементарный кислород и после этого охлаждения кислородного газового потока или полученного из него обогащенного кислородом газового потока, в одном разделительно-охлаждающем устройстве. Разделительно-охлаждающее устройство имеет секцию разделения и секцию охлаждения и выход кислородного продукта, в котором секция разделения включает в себя мембрану для переноса ионов, имеющую сторону подвода и сторону отвода. Способ содержит следующие операции: (а) сжатие подаваемого газового потока, (в) разделение сжатого газового подаваемого потока на основную часть газового потока и вспомогательную часть газового потока, (с) нагрев основной части газового потока, (d) введение нагретого основного газового потока в секцию разделения устройства, (е) введение второстепенной части газового потока в секцию охлаждения рядом с выходом кислородного продукта, (f) удаление кислорода из нагретой основной части газового потока через мембрану для переноса ионов секции разделения с целью получения горячего, обогащенного кислородом газового потока на стороне отвода мембраны и обедненного кислородом газового потока на стороне подвода мембраны и (g) передача тепла от обогащенного кислородом газового потока вспомогательной части газового потока, с целью получения кислородного газового потока или газового потока, обогащенного кислородом продукта, и нагретой вспомогательной части газового потока, в котором вспомогательная часть газового потока либо выходит из устройства, либо объединяется с нагретой основной частью газового потока перед вводом нагретой части основного газового потока в секцию разделения устройства и в котором обедненный кислородом газовый поток выходит из устройства.
В предпочтительном варианте осуществления изобретения разделительно-охлаждающее устройство дополнительно содержит секцию реактора, включающую в себя мембрану для переноса ионов, имеющую сторону подвода и сторону отвода для создания единого устройства -"реактор-охладитель" или единого устройства - "реактор-разделитель-охладитель". В устройстве реактор-разделитель-охладитель химически активный газовый поток вводится на стороне отвода мембраны для переноса ионов в секции реактора устройства с целью вступления в реакцию со вторым кислородным газовым потоком, проникающим через мембрану для переноса ионов рядом со стороной отвода мембраны для переноса ионов, для создания газового потока продуктов реакции, который используется для продувки стороны отвода мембраны для переноса ионов в секции разделения устройства, а газовый поток продуктов реакции и первый поток кислородного газа и любой не вступивший в реакцию кислород из второго кислородного потока объединяются в виде обогащенного кислородом газового потока, который выходит из устройства, и в котором обедненный кислородом газовый поток отдельно выходит из устройства. Мембрану для переноса ионов секции разделения устройства и мембрану для переноса ионов секции реактора можно образовать совместно и более предпочтительно, мембрана для переноса ионов секции разделения устройства включает в себя пористую поддерживающую подложку и содержит материал переноса ионов, имеющий высокую проводимость кислорода при высоком парциальном давлении кислорода, а мембрана для переноса ионов секции реактора устройства содержит слой смешанного проводника, имеющий оптимальную стойкость при низком парциальном давлении кислорода.
Мембрана для переноса ионов секции реактора и мембрана для переноса ионов секции разделения могут быть образованы совместно с трубопроводом для переноса обогащенного кислородом газового потока через секцию охладителя устройства.
Трубопровод для перенесения обогащенного кислородом газового потока через секцию охлаждения представляет собой металлическую трубу и соединяется с мембраной для переноса ионов секции реактора устройства посредством сварки или пайки твердым припоем.
Трубопровод для переноса обогащенного кислородом газового потока через секцию охлаждения устройства содержит плотный уплотняющий материал и соединяется с мембраной для переноса ионов секции реактора устройства посредством сварки или пайки твердым припоем.
Секция разделения может включать в себя секцию реактора, а операция отвода кислорода через мембрану включает в себя введение химически активного газового потока на стороне отвода от мембраны для переноса ионов для вступления в реакцию, по меньшей мере, с частью переносимого кислорода.
Химически активный газ нагревают перед его вводом в секцию реактора устройства.
Изобретение также относится к способу получения обедненного кислородом газового потока и газового потока продуктов химической реакции в виде проникающего потока посредством первого выделения кислорода из подаваемого газового потока, содержащего элементарный кислород, для создания обедненного кислородом газового потока и горячего газового потока продуктов реакции, а после этого - охлаждения газового потока продуктов реакции в едином устройстве реактор-охладитель с целью получения газового потока продуктов химической реакции. Устройство реактор-охладитель имеет секцию реактора и секцию охлаждения и выход для продуктов реакции, а секция реактора включает в себя мембрану для переноса ионов, имеющую сторону подвода и сторону отвода. Способ содержит следующие операции: (а) сжатие подаваемого газового потока, (b) разделение сжатого газового потока на основную часть газового потока и вспомогательную часть газового потока, (с) введение основной части газового потока в секцию реактора устройства, (d) введение вспомогательной части газового потока в секцию охлаждения рядом с выходом для продуктов реакции, (е) отвод кислорода из основной части газового потока через мембрану для переноса ионов секции реактора посредством введения химически активного газового потока на стороне отвода от мембраны для переноса ионов в секции реактора устройства с целью вступления в реакцию с кислородным газовым потоком, проникающим через мембрану для переноса ионов рядом со стороной отвода от мембраны для переноса ионов, с целью получения газового потока продуктов реакции на стороне отвода от мембраны для переноса ионов и обедненного кислородом газового потока на стороне подвода к мембране для переноса ионов, и (f) передача тепла от горячего газового потока продуктов химической реакции вспомогательной части газового потока для создания газового потока продуктов реакции и нагретой вспомогательной части газового потока, в котором вспомогательная часть газового потока либо выводится из устройства, либо объединяется с нагретой основной частью газового потока перед введением нагретой основной части газового потока в секцию реактора устройства и в котором обедненный кислородом газовый поток также выходит из устройства. Изобретение применимо к любой реакции окисления или частичного окисления на стороне отвода от мембраны для переноса ионов. Примеры таких применений включают камеры сгорания, устройства разложения, процессы производства синтез-газа или других окислительных процессов.
В предпочтительном варианте осуществления изобретения основная часть газового потока нагревается до промежуточной температуры перед его введением в секцию реактора устройства. В другом предпочтительном варианте осуществления изобретения газовый поток продуктов химической реакции оказывается по существу свободным от водорода. В следующем варианте осуществления изобретения мембрана для переноса ионов секции реактора и трубопровод для транспортирования газового потока продуктов химической реакции через секцию охладителя устройства выполнены в виде единого целого.
Изобретение также относится к способу получения обогащенного кислородом газового потока и обедненного кислородом газового потока посредством выделения кислорода из подаваемого газового потока, содержащего элементарный кислород, в устройстве реактор-разделитель. Устройство реактор-разделитель имеет секцию разделения и секцию реактора, в котором секции разделения и реактора включают в себя, по меньшей мере, одну мембрану для переноса ионов, имеющую сторону подвода и сторону отвода. Способ содержит следующие операции: (а) сжатие подаваемого газового потока, (b) введение сжатого подаваемого газового потока в устройство и передача тепла от газового потока продуктов химической реакции, (с) удаление кислорода из нагретого подаваемого гaзового потока посредством мембраны для переноса ионов в секции реактора с целью создания газового потока химической реакции на стороне отвода от мембраны и обедненного кислородом газового потока на стороне подвода к мембране, и (d) удаление дополнительного кислорода из частично обедненного кислородом газового потока с помощью мембраны для переноса ионов в секции разделения для создания обедненного кислородом газового потока на стороне подвода к мембране. Химически активный газовый поток вводится на стороне отвода от мембраны для переноса ионов в секции реактора с целью вступления в реакцию с кислородом, проходящим через мембрану для переноса ионов рядом со стороной отвода от мембраны, для создания газового потока продуктов химической реакции, который используется для продувки со стороны отвода от мембраны для переноса ионов в секции разделения, а газовый поток продуктов химической реакции и не вступивший в реакцию передаваемый кислород объединяются в виде обогащенного кислородом газового потока, отводимого из устройства. Обедненный кислородом газовый поток предпочтительно отдельно отводится из устройства.
В предпочтительном варианте осуществления изобретения мембрана для переноса ионов секции разделения устройства и мембрана для переноса ионов секции реактора устройства выполнены за одно целое. В другом предпочтительном варианте осуществления изобретения мембрана для переноса ионов секции разделения устройства включает в себя пористую поддерживающую подложку и содержит материал для переноса ионов, имеющий высокую проводимость ионов кислорода при высоком парциальном давлении кислорода, а мембрана для переноса ионов секции реактора устройства содержит слой смешанного проводника, имеющий оптимальную стойкость при низком парциальном давлении кислорода. Еще в одном предпочтительном варианте осуществления изобретения химически активный газ нагревается перед его введением в секцию реактора устройства.
Используемый здесь термин "элементарный кислород" означает любой кислород, который не объединен ни с каким другим элементом в периодической таблице элементов. Хотя кислород обычно находится в двухатомной форме, элементарный кислород включает одноатомный кислород, трехатомный озон и другие формы, не объединенные с другими химическими элементами.
Используемый здесь термин "реактор" означает разделитель, в котором переносимый кислород подвергается химической реакции и благодаря этому происходит потребление кислорода. Хотя термины "реактор" и "разделитель" используются здесь иногда для описания различных секций соответствующего настоящему изобретению устройства, термин "разделитель" используется здесь также при описании секции реактора и (или) разделителя.
Другие цели, особенности и преимущества изобретения станут очевидными специалистам в данной области техники из последующего описания предпочтительного варианта осуществления изобретения и прилагаемых чертежей, на которых:
на фиг. 1А представлен схематически вариант осуществления изобретения, иллюстрирующий основную конструкцию разделитель-охладитель с ионными проводниками из твердого электролита, отличающуюся трубой переноса ионов с закрытым и свободно плавающим концом;
фиг.1В - схематически способ соединения трубы переноса ионов секции разделения с металлической трубой секции охлаждения посредством сварки, пайки твердым припоем или механическим соединением труб для осуществления уплотнения;
фиг. 2 - схематически другой вариант осуществления изобретения, иллюстрирующий основную конструкцию реактор-разделитель-охладитель с ионными проводниками из твердого электролита, отличающуюся переносом ионов через трубу со скользящим уплотнением;
фиг. 3 - схематически вариант осуществления изобретения, иллюстрирующий основную конструкцию разделитель-охладитель с ионным проводником из твердого электролита, отличающуюся трубой для переноса ионов с закрытым и свободно плавающим концом;
фиг. 4 - схематически другой вариант осуществления изобретения, иллюстрирующий основную конструкцию реактор-разделитель-охладитель с ионным проводником из твердого электролита, отличающуюся трубой для переноса ионов с закрытым и свободно плавающим концом;
фиг. 5 - схематически вариант осуществления изобретения, иллюстрирующий основную конструкцию реактор-охладитель с ионным проводником из твердого электролита, отличающуюся переносом ионов через трубу со скользящим уплотнением и имеющую возможность охлаждать выходящие из нее потоки со стороны подвода и стороны отвода мембраны;
фиг. 6 - схематически еще один вариант осуществления изобретения, иллюстрирующий основную конструкцию реактор-охладитель с ионным проводником из твердого электролита, отличающуюся трубой для переноса ионов с закрытым и свободно плавающим концом;
фиг. 7 - схематически часть трубы для переноса ионов в поперечном разрезе, в которой мембрана для переноса ионов секции реактора, мембрана переноса ионов секции разделения и трубопровод секции охладителя устройства образованы за одно целое;
фиг. 8 - блок-схема, иллюстрирующая полный цикл разделения кислорода-водорода, используя соответствующий настоящему изобретению реактор-разделитель-охладитель;
фиг. 9 - блок-схема, иллюстрирующая соответствующий изобретению реактор-разделитель-охладитель, объединенные в цикл газовой турбины.
Некоторые из основных проблем, на которые направлено настоящее изобретение, включают снижение до минимального уровня сопротивление газообразной диффузии, устранение чрезмерных напряжений от теплового и композиционного расширения и сжатия и уплотнение элементов для переноса ионов в устройстве для переноса ионов. Последняя проблема усугубляется тем, что рабочая температура мембраны для переноса ионов лежит в диапазоне от 500 до 1100oС. Изобретение, в котором в предпочтительных вариантах осуществления использованы элементы для переноса ионов в форме труб, устраняет вышеупомянутые напряжения благодаря использованию труб, которые закрыты на концах и имеют свободно плавающие концы. Проблема уплотнения также облегчается по существу посредством сочетания функций разделения и (или) химической реакции переноса ионов с охлаждением кислорода в одном устройстве. Как описывается ниже, это предпочтительно позволяет поддерживать температуру соединения трубы с трубной решеткой в диапазоне от 180 до 300oС и позволяет использовать обычную технику, например сварку, пайку твердым припоем или механические средства, чтобы выполнить уплотнение. В предпочтительном способе часть подаваемого воздуха проходит мимо камеры сгорания или нагревателя и служит в качестве поглотителя тепла для охлаждения кислородного продукта или выходящего газового потока продуктов химической реакции. Диффузионное сопротивление при высоком давлении газа уменьшается посредством установки отражательной перегородки, которая обеспечивает высокие скорости поперечного течения или посредством каналов с малыми гидравлическими радиусами.
Другие функции типа косвенного нагрева третьего газового потока или разделения потока кислородной продукции посредством соответствующей мембраны из твердого электролита объединены для достижения оптимальной простоты, отвечая в то же время описанным в предыдущем разделе операционным требованиям.
Изобретение выполняет все подлежащие осуществлению и практическому применению функциональные требования к реакторам с твердыми электролитами и раскрывает способ целесообразного объединения функций реактора с другими операциями. В частности, изобретение вводит средство переноса тепла таким образом, что тепло, выделяемое при химической реакции, отводится от элементов ионных проводников из твердого электролита, поддерживая тем самым довольно постоянную температуру элементов ионных проводников из твердого электролита. Это достигается посредством изменения локальных коэффициентов теплопередачи в необходимых пределах посредством выбора соответствующей конфигурации поверхности теплопередачи и соответственных локальных скоростей течения. В то же время эффективный перенос масс кислорода к катодной поверхности и реагирующего вещества к анодной поверхности мембраны обеспечивается либо высокой турбулентностью, либо узким размером каналов. Кроме того, уделяется внимание необходимости поддержания парциального давления кислорода на анодной поверхности или возле нее на достаточно высоком уровне в течение длительного срока службы конкретного смешанного или двухфазного проводника, используемого благодаря балансированию локальной динамики кислородного течения и реакции. Это достигается посредством выбора мембраны с надлежащей ионной проводимостью и толщиной, с одной стороны, и управления каталитической активностью материалом катализатора и (или) площадью поверхности, с другой стороны.
Как упоминалось выше, в настоящем изобретении используется множество основных подходов к уменьшению или устранению проблем, встречающихся в устройстве разделения с переносом ионов. Наибольшие преимущества, имеющиеся, по меньшей мере, в некоторых из различных вариантов осуществления изобретения, представленных на чертежах, являются следующие: (i) свободно плавающие и закрытые концы труб устраняют напряжения из-за разности теплового или композиционного расширения, (ii) введение охладителя в устройство разделителя с переносом ионов устраняет необходимость в отдельном и дорогостоящем охладителе высокотемпературного кислорода с дополнительными трубными решетками и оболочкой, (iii) объединение разделителя с охладителем в одном и том же устройстве позволяет сохранять умеренную температуру трубных решеток, допускающую приемлемо высокие напряжения конструкции при относительно недорогостоящих материалах и обычные соединения между трубами и трубными решетками, (iv) изолированные емкости позволяют осуществлять использование недорогостоящих материалов конструирования оболочки, (v) использование отражательных перегородок и высоких скоростей потока газа увеличивает перенос массы и тепла, (vi) использование части содержащего кислород подаваемого газа обеспечивает поглотитель тепла для охлаждения газового потока кислородного продукта и (vii) упрощаются оборудование и система труб.
Трубы ионных проводников из твердого электролита, используемые в соответствующих изобретению вариантах осуществления, обычно состоят из смешанного или двухфазного проводника из твердого оксида плотных стенок или смешанного либо двухфазного проводника из тонкопленочного твердого оксида, поддерживаемого пористой подложкой. Материал ионного проводника из твердого электролита должен иметь достаточную способность проводить ионы и электроны кислорода в диапазоне температур от 500oС до 1100oС при преобладающих парциальных давлениях кислорода, когда на поверхности мембраны ионного проводника из твердого электролита поддерживается химическая разность потенциалов, создаваемая отношением парциальных давлений кислорода на мембране ионного проводника из твердого электролита. Подходящими материалами для ионных проводников из твердого электролита являются перовскиты и двухфазные сочетания окиси между металлами, перечисленные в таблице. Поскольку химически активная среда на анодной стороне мембраны ионного проводника из твердого электролита во многих применениях создает очень низкие парциальные давления кислорода, предпочтительными материалами могут быть приведенные в таблице, содержащие хром перовскиты, поскольку они стремятся быть стойкими в этой среде, то есть они химически не разлагаются при очень низких парциальных давлениях кислорода. В целях повышения химической активности и (или) получения большей площади поверхности для обмена на обеих сторонах мембраны ионного проводника из твердого электролита можно факультативно добавлять пористые слои катализатора для повышения химических реакций на этих поверхностях, когда это необходимо. Однако эти слои пористого катализатора могут иметь тот же материал перовскит из твердого электролита, который используется в трубах переноса ионов. В качестве альтернативы поверхностный слой мембраны ионного проводника из твердого электролита можно легировать, например кобальтом, с целью повышения динамики поверхностного обмена.
В конструкции важно также балансировать локальную динамику потока кислорода и химической реакции для обеспечения гарантии, что локальные парциональные давления кислорода находятся на уровне, обеспечивающем стойкость материала, то есть обычно выше 10-15 атмосферы для известных в настоящее время материалов. Поток кислорода имеет сложную функциональную зависимость от ионной проводимости материала, толщины стенок твердого электролита, динамики химической реакции, парциального давления топлива и химической активности катализатора, на которые могут оказывать влияние выбор катализатора и увеличенная площадь катализатора. Газовый поток на стороне химической реакции труб из твердого электролита может иметь противоположный или совпадающий ток. При некоторых обстоятельствах может оказаться важным направление газового потока, поскольку это оказывает влияние на окружающие среды локальной динамики химической реакции и парциального давления кислорода. Последний аспект оказывает влияние на кислородный поток, стойкость материала и композиционные напряжения.
Как правило, основная часть газового потока нагревается до промежуточной температуры перед ее введением в секцию реактора устройства, что повышает эффективность процесса. Однако, если устройство включает в себя секцию реактора и требуется довести до максимума способность реактора вырабатывать тепло от химической реакции проникающего кислородного газового потока и химически активного газового потока, основная часть газового потока не нагревается перед ее введением в устройство.
На фиг. 1А показан схематически разделитель-охладитель для переноса ионов. Обычно подаваемый газовый поток, содержащий элементарный кислород, сжимается и делится на две части, подлежащие передаче в устройство разделитель-охладитель. Хотя вспомогательная часть газового потока холодного подаваемого газового потока 2 подается непосредственно в устройство, основная часть газового потока обычно нагревается для создания горячего подаваемого газового потока 1 перед его использованием. Во время работы горячий подаваемый газовый поток 1 вводится в секцию 30 разделителя, а холодный подаваемый газовый поток 2 с температурой предпочтительно в диапазоне от 80 до 250oС подается в секцию 32 охлаждения. Поскольку давление газовых потоков по существу одинаковое в секции 30 разделителя и секции 32 охладителя устройства, для разделения двух секций необходима только отражательная перегородка 11. Отражательная перегородка 11 может быть не изолированной, но она может быть и изолированной. Трубы 5 разделителя-охладителя переноса ионов проходят по обеим секциям 30 и 32. Трубы 5 разделителя-охладителя для переноса ионов закрыты колпачками и их верхние концы свободно плавают в устройстве, как показано на чертеже, и уплотнены и прикреплены к трубной решетке 4 у основания устройства, как показано на чертеже. Поскольку температура трубной решетки 4 оказывается ниже 300oС, можно использовать такие стандартные способы соединения, например сварку, пайку твердым припоем или локальное расширение трубы (обкатка), кольца с круглым поперечным сечением или другие механические средства для выполнения соединения трубы 5 разделителя-охладителя для переноса ионов с трубной решеткой 4. Трубы 5 для переноса ионов должны иметь возможность свободно расширяться с учетом осевого удлинения вследствие теплового и композиционного расширения. Изоляция 15 изолирует элементы, сдерживающие давление стенки 16 устройства для обеспечения возможности использования стандартных материалов конструкции, например нержавеющей стали или углеродистой стали.
Трубу 5 можно использовать как в секции 30 разделения, так и в секции 32 охлаждения устройства. Из-за того, что материал, из которого изготовлены трубы 5 разделителя-охладителя для переноса ионов, проводит ионы кислорода при повышенной температуре, но по существу оказываются непроницаемыми при более низких температурах, он может действовать в качестве мембраны разделителя в секции 30 разделения и в качестве поверхности переноса тепла в секции 32 охлаждения. Чтобы добиться требуемых высоких кислородных потоков, предпочтительными являются трубы 5 разделителя-охладителя, выполненные в виде тонкого плотного разделяющего слоя, поддерживаемого пористой подложкой. Плотный разделительный слой таких труб 5 разделителя-охладителя изготавливается из материала, имеющего высокую проводимость ионов кислорода при высоких парциальных давлениях кислорода. Как отмечалось выше, подходящими материалами являются представленные в таблице смешанные и двухфазные проводники. Предпочтительным материалом является материл La1-xSrxCo1-xFeyO3-. Пористую подложку можно изготавливать из того же материала или она может состоять из одного или нескольких слоев других материалов, химически совместимых с соседними материалами при рабочих температурах. Возможными альтернативными материалами могут быть менее дорогостоящие оксиды, такие как двуокись циркония, оксид церия, оксид иттрия, оксид алюминия или такие материалы, как содержащие хром и никель суперсплавы. Трубы 5 разделителя-охладителя можно покрывать в случае необходимости пористым слоем катализатора и со стороны подвода и со стороны отвода секции переноса ионов для соответственного повышения диссоциации и рекомбинации кислорода. На анодной стороне (стороне отвода) каталитическую функцию лучше выполняет пористый слой, соседний или соприкасающийся с плотным разделяющим слоем.
Поскольку разделительная труба для переноса ионов, вероятно, имеет более высокую стоимость, чем труба охладителя, можно соответственно использовать металлическую трубу охладителя, которая соединяется с трубой разделителя для переноса ионов посредством сварки или пайки твердым припоем, соединением, расположенным в верхней части секции охладителя. Подробное изображение такого соединения представлено на фиг.1В. Показанные на фиг.1В трубы 5 разделителя-охладителя имеют три части: трубу 48 для переноса ионов, имеющую металлизированный конец, муфту 49 и трубу 50 охладителя. Концы трубы 48 для переноса ионов и трубы 50 охладителя припаивают твердым припоем или приваривают к муфте 49. Другой вариант состоит в использовании одной и той же трубы подложки для секции 30 разделения и секции 32 охлаждения, кроме замены недорогостоящего плотного герметизирующего слоя слоем переноса ионов в части труб 5 разделителя-охладителя в секции 32 охлаждения. Это особенно целесообразно в том случае, если используется пористая металлическая подложка.
Возвращаясь к фиг. 1А, отметим, что горячий подаваемый газовый поток 1 проходит мимо внешней стороны поверхности труб 5 разделителя-охладителя, направленный отражательными перегородками 10. Кислород из горячего газового потока 1 проникает через трубу 5 разделителя-охладителя, обеспечивая горячий поток 8 кислородного газа во внутренней части труб 5 разделителя-охладителя. Горячий подаваемый газовый поток 1, обедненный кислородом, становится обедненным кислородом газовым потоком 12 и выходит из секции 30 разделителя устройства. Когда холодный подаваемый газовый поток 2 проходит в данный момент поперек и навстречу горячему кислородному газовому потоку 8 внутри труб 5 разделителя-охладителя, направляемый отражательными перегородками 10, горячий кислородный газовый поток 8 проходит из секции 30 разделения по направлению к секции 32 охлаждения и благодаря этому охлаждается переносом тепла холодным подаваемым газовым потоком 2, становясь газокислородным потоком 18, который выходит из устройства через выпуск 20 продукта. Холодный подаваемый газовый поток 2 теперь с повышенной температурой выводится в виде горячего газового потока 17 и может добавляться к горячему подаваемому газовому потоку 1. В качестве альтернативы горячий газовый поток 17 может соединяться с горячим подаваемым газовым потоком 1 в устройстве, например, посредством трубопровода 34 через отражательную перегородку 11. Как и раньше, горячий подаваемый газовый поток 1, увеличенный горячим газовым потоком 17, проходит через секцию 30 разделения в направленном поперек встречном потоке горячему кислородному газовому потоку 8, в то время как кислород проникает через трубы 5 разделителя-охладителя.
На фиг. 2 представлен схематически другой вариант осуществления изобретения в виде основной конструкции реактора-разделителя-охладителя с ионным проводником из твердого электролита, включающей в себя перенос ионов через трубу со скользящим уплотнением 54. Как и на фиг.1А, подаваемый газовый поток, содержащий элементарный кислород, сжимается и разделяется на две части, подлежащие подаче в устройство реактора-разделителя-охладителя. Во время работы подаваемый газовый поток 61 вводится в секцию 51 реактора, а холодный подаваемый газовый поток 62 подается в секцию 53 охладителя. Труба 55 реактора-разделителя-охладителя переноса ионов проходит по всем секциям 51, 52 и 53. Труба 55 реактора-разделителя-охладителя переноса ионов прикреплена к трубной решетке 64 на верхнем конце устройства посредством скользящего уплотнения 54 или неподвижного уплотнения с сильфоном и прикреплена к трубной решетке 65 и уплотнена у основания устройства. Поскольку трубная решетка 65 имеет температуру ниже 300oС, можно использовать стандартные способы соединения, такие как сварка, пайка твердым припоем или локальное расширение трубы (накатка), кольца с круглым поперечным сечением или другие механические средства, для выполнения соединения трубы 55 реактора-разделителя-охладителя с переносом ионов с трубной решеткой 65. Однако трубные решетки 64 и 65 имеют более высокую температуру и обычно для них используются различные способы выполнения уплотнения. Хотя на чертеже не показано, изоляция изолирует конструкционные сдерживающие давление стенки 70 устройства, чтобы обеспечить возможность использования стандартных материалов, например нержавеющую сталь или углеродистую сталь.
Трубу 55 можно использовать в секции 51 реактора, секции 52 разделения и секции 53 охлаждения устройства. Как упоминалось в отношении фиг.1А и 1В, труба разделителя с переносом ионов и химической реакцией, вероятно, оказывается более дорогостоящей, чем труба охладителя и для охладителя можно соответственно использовать металлическую трубу, которую соединяют с трубой разделителя с переносом ионов и трубой реактора с переносом ионов посредством сварки или пайки твердым припоем при расположении соединения в верхней части секции охлаждения. В качестве альтернативы можно использовать одну составную трубу, которая имеет различный состав в каждой из различных секций 51, 52 и 53, оптимизированный для конкретной подлежащей выполнению функции в каждой секции. На фиг.7 показан поперечный разрез такой составной трубы. В этих составных трубах пористая подложка 251 поддерживает тонкий плотный разделяющий слой. Труба секции реактора покрыта слоем 252 смешанного проводника, имеющим оптимальную стойкость при низком парциальном давлении кислорода, секция разделения покрыта материалом 253, имеющим высокую проводимость при высоких парциальных давлениях кислорода, а секция охлаждения - недорогостоящим уплотняющим слоем 254. Как и в случае фиг.1В, трубу секции охлаждения можно также изготавливать из другого материала (например, металла) и соединять с составной трубой переноса ионов, которая содержит секции реактора и разделения. Следовательно, в секции 51 реактора, секции 52 разделения и секции 53 охлаждения устройства можно использовать одну составную трубу.
Возвращаясь к фиг.2, отметим, что подаваемый газовый поток 61 проходит мимо наружной поверхности трубы 56 кожуха, направляемый отражательными перегородками 60, нагревается переносом тепла трубой 56 кожуха и проходит в концентрический кольцеобразный канал 68, образованный между наружной поверхностью трубы 55 реактора-разделителя-охладителя и внутренней поверхностью трубы 56 кожуха. Труба 56 кожуха проходит за пределы секции 51 реактора через секцию 52 разделителя устройства. Химически активный газовый поток 72, например метан, необязательно разбавленный водяным паром, проходит вниз по трубе 55 реактора-разделителя-охладителя и вступает в реакцию с кислородом, проникающим из подаваемого газового потока 61 через трубу 55 реактора-разделителя-охладителя, с целью обеспечения газового потока 73 продуктов реакции во внутренней части трубы 55. Когда химически активный газовый поток 72 состоит из метана или другого углеводорода, то в случае наличия избытка топлива или кислорода газовый поток 73 продуктов реакции представляет собой, главным образом, двуокись углерода и воду, нормальные продукты сгорания и не вступившее в реакцию топливо, если процесс проходит при обедненном топливе. Когда реакционно-способные условия неблагоприятны для материала переноса ионов в секции 52 разделителя, избытка топлива в этой секции предпочтительно нет.
Тепло, вырабатываемое при реакции химически активного газового потока 72 с проникающим кислородом, передается из секции 51 реактора трубы 55 реактора-разделителя-охладителя трубе 56 кожуха посредством процессов конвекции и излучения, а отсюда подаваемому газовому потоку 61, проходящему по внешней стороне трубы 56 кожуха. Коэффициенты локальной теплопередачи регулируют посредством переменного разнесения или изолирования отражательных перегородок с целью создания умеренно равномерной температуры трубы 55 реактора-разделителя-охладителя. В то же время, холодный подаваемый газовый поток 62, направляемый отражательными перегородками 60, проходит в секцию 53 охлаждения устройства, охлаждает газовый поток во внутренней части трубы 55 реактора-разделителя-охладителя и получаемый газовый поток теперь с повышенной температурой проходит в концентрический кольцеобразный канал 68 вместе с подаваемым газовым потоком 61. Газовый поток 73 продуктов химической реакции проходит в секцию 52 разделителя устройства и продувает секцию 52 разделителя трубы 55 реактора-разделителя-охладителя с целью повышения химического раскачивающего потенциала на мембране, так что кислород проникает через трубу 55 с целью обеспечения газового потока 74, обогащенного кислородом продукта, который охлаждается течением холодного подаваемого газового потока 62 и который содержит кислород, а также продукты химической реакции, создаваемые в секции 51 реактора устройства. Газовый поток 74 обогащенных кислородом продуктов выходит из устройства через выход 76 для продукта. Можно также восстанавливать газовый поток 78 обедненных кислородом продуктов при высоком давлении.
Показанный на фиг.2 вариант осуществления изобретения иллюстрирует возможное использование продувочного газового потока, типа водяного пара или продуктов химической реакции из реактора переноса ионов (двуокись углерода и вода), с целью продувки анода мембраны переноса ионов и благодаря этому уменьшения парциального давления кислорода на аноде и увеличения движущей силы для разделения кислорода, приводя к меньшей площади разделителя и (или) восстановлению большего количества содержащегося в подаваемом газе кислорода. На фиг. 2 и 3 показаны модификации основного устройства разделителя-охладителя, которое позволяет использовать такой продувочный газ, сохраняя в то же время все ранее рассмотренные преимущества в отношении разделителя-охладителя. Показанный на фиг.3 описанный выше вариант осуществления изобретения отличается от показанного на фиг.2 варианта тем, что показанный на фиг.2 вариант вырабатывает продувочный газ в секции реактора в устройстве, в то время как продувочный газ, используемый в показанном на фиг.3 варианте, можно вырабатывать в другом месте или получать от внешнего источника.
На фиг. 3 представлен схематический чертеж варианта осуществления изобретения, иллюстрирующий основную конструкцию разделителя-охладителя с ионным проводником из твердого электролита, отличающуюся трубой со свободно плавающим закрытым концом и внутренней трубой подачи продувки для топлива или вырабатываемого с внешней стороны продувочного газового потока. Как и на фиг.1А, подаваемый газовый поток, содержащий элементарный кислород, сжимается и делится на две части, подлежащие подаче в устройство реактора-разделителя-охладителя. Во время работы горячий подаваемый газовый поток 91 вводится в секцию 100 реактора, а холодный подаваемый газовый поток 92 подается в секцию 101 охладителя. Трубы 95 разделителя-охладителя для переноса ионов пересекают секцию 100 разделителя и секцию 101 охладителя устройства. Трубы 95 разделителя-охладителя для переноса ионов закрыты колпачками и свободно плавают в верхнем конце устройства, как показано на чертеже, и прикреплены к трубной решетке 94 у основания устройства. Как и раньше, поскольку температура трубной решетки 94 ниже 300oС, можно использовать стандартные способы соединения для выполнения соединения трубы 95 разделителя-охладителя с трубной решеткой 94. Таким же образом, изоляция 105 изолирует конструктивные сдерживающие давление стенки 106 устройства, чтобы обеспечить возможность использования стандартных материалов. Как и в случае фиг.1А, одну и ту же трубу 95 можно использовать в секции 100 разделителя и секции 101 охладителя устройства и можно конструировать, как описано выше.
Горячий подаваемый газовый поток 91 проходит мимо наружной поверхности труб 95 разделителя-охладителя, направляемый отражательными перегородками 120. В то же самое время продувочный газовый поток 108 проходит в устройство и направляется трубами 110 для осуществления продувки, прикрепленными к трубной решетке 96. Продувочный газовый поток 108 имеет по существу такую же температуру (100-300oС), как и холодный воздушный поток 92 при его поступлении в устройство, и нагревается переносом тепла горячим газовым потоком продукта в кольцеобразном канале 112. Продувочный газовый поток 108 проходит в концентрические кольцеобразные каналы 112, образованные между внутренней поверхностью труб 95 разделителя-охладителя и наружной поверхностью труб 110 подачи продувки. Трубы 110 для осуществления продувки проходят почти по всей длине труб 95 разделителя-охладителя. Продувочный газовый поток 108 очищает сторону проникновения труб 95 разделителя-охладителя и повышает выделение кислорода из горячего подаваемого газового потока 91, когда он проходит мимо наружной поверхности труб 95 разделителя-охладителя и выходит из устройства в виде обедненного кислородом газового потока 114,
который может восстанавливаться в виде продукта. В то же время, холодный подаваемый газовый поток 92, направляемый отражательными перегородками 120, проходит в секцию 101 охлаждения устройства, охлаждает смешанный газовый поток во внутренней части трубы 95 разделителя-охладителя и получающийся газовый поток, теперь с более высокой температурой, выходит из устройства в виде нагретого газового потока 116. Нагретый газовый поток 116 можно добавить к подаваемому газовому потоку 91 до его входа в устройство или, хотя и не показано, можно добавлять к подаваемому газовому потоку 91 после его входа. Продувочный газовый поток 108, теперь смешанный с проникающим кислородом и охлажденный течением холодного подаваемого газового потока 92, выходит из устройства в виде газового потока 118 продукта через выход 119 для продукта.
Легко можно видеть, что здесь имеются все преимущества показанного на фиг.1А варианта осуществления, поскольку концы всех труб свободно плавают, и расположение течения охлаждающего газового потока остается неизменным. Желательно иметь ввод продувочного газового потока с достаточно низкой температурой для облегчения уплотнения в месте соединения трубы с трубной решеткой и нагрева продувочного газового потока до рабочей температуры мембраны для переноса ионов благодаря расположению в виде встречного потока относительно выходящей смеси получаемого кислорода и продувочного газа.
На фиг.4 представлен схематический чертеж другого варианта осуществления изобретения, иллюстрирующий основную конструкцию реактора-разделителя-охладителя с ионным проводником из твердого электролита. Как и на фиг.1А, подаваемый газовый поток, содержащий элементарный кислород, сжимается и делится на две части, подлежащие подаче в устройство реактора-разделителя-охладителя. В устройстве используются три вида концентрических труб: трубы 149 кожуха, подсоединенные к верхней трубной решетке 150 и открытые у основания секции 131 разделителя, трубы 145 реактора-разделителя-охладителя для переноса ионов, закрытые в верхней части и прикрепленные к средней трубной решетке 144 и внутренние трубы 154 подачи, открытые в верхней части и прикрепленные к нижней трубной решетке 155. Изоляция 165 изолирует конструктивные сдерживающие давление стенки 166 устройства для обеспечения возможности использования стандартных материалов конструирования. Температура трубных решеток 144 и 155 оказывается ниже 300oС и можно использовать стандартные способы соединения для выполнения всех соединений труб с трубными решетками. Температура трубной решетки 150 выше, но здесь уплотнение оказывается менее критичным, чем другие соединения, потому что на уплотнении имеется лишь небольшой перепад давления. Труба 145 реактора-разделителя-охладителя переноса ионов пересекает секцию 130 реактора, секцию 131 разделителя и охладителя 132 устройства. Секции 130, 131 и 132 фактически работают как отдельные каскады благодаря выполнению различных функций при различных рабочих условиях. Для показанного на фиг.4 варианта можно использовать модификации, аналогичные трубе 145 реактора-разделителя-охладителя, которые упоминались в представленном на фиг. 2 варианте осуществления. Секция 132 охлаждения отделена от секции 131 разделителя отражательной перегородкой 158 с проточными отверстиями 157.
Во время работы подаваемый газовый поток 135 вводится в секцию 130 реактора, а холодный подаваемый газовый поток 142 подается в секцию 132 охладителя. Химически активный газовый поток 160 с разбавителем или без него подается по внутренним трубам 154 подачи. Подаваемый газовый поток 135 проходит мимо внешней поверхности трубы 149 кожуха, направляемый отражательными перегородками 168, и нагревается переносом тепла от трубы 149 кожуха и проходит в концентрический кольцеобразный канал 164, образованный между наружной поверхностью трубы 145 реактора-разделителя-охладителя и внутренней поверхностью трубы 149 кожуха.
Первая часть труб 145 реактора-разделителя-охладителя необязательно должна работать с химически пассивным продувочным газовым потоком, фактически создавая трехкаскадный разделитель, где химическая пассивность продуваемой секции предшествует химически активной продуваемой секции, за которой следует вторая химически пассивная продуваемая секция. Этот вариант показан в центральных трубах 145 реактора-разделителя-охладителя устройства и выполняется посредством добавления ограничивающего поток маленького отверстия 182 заранее определенного размера на верхнем конце трубы 145 передачи ионов, вводя тем самым поток продувки продукта и заканчивая внутреннюю трубу 154а подачи в ближайшей точке. Если используется такое устройство, то на верхнем конце внутренней трубы также должна быть отражательная перегородка 184 для отклонения химически активного газового потока 160 при его выходе из внутренней трубы 154а подачи. Мотивом для выбора этого варианта служит устранение открывания закрытого конца трубы переноса ионов в сторону сильно разрежающейся окружающей среды, которая имеется при химической активности продуваемого анода и водородного продукта высокой чистоты у катода и угрожает стойкости материала. В качестве альтернативы можно к химически активному газовому потоку добавлять небольшое количество подаваемого газового потока, чтобы сильно увеличить парциальное давление кислорода в продувочном газовом потоке в конце газового потока водородного продукта, в то же время все еще сохраняя его достаточно низким для поддержания достаточной движущей силы для переноса кислорода. Обычно парциальное давление кислорода в продувочном газе может подниматься от 10-20 до 10-14 атмосферы.
Без этой модификации химически активный газовый поток 160 проходит по кольцеобразному каналу 162, образованному между внутренней поверхностью трубы 145 реактора-разделителя-охладителя и наружной поверхностью внутренней трубы 154 подачи, вниз по трубе 145 реактора-разделителя-охладителя и вступает в реакцию с кислородом, проникающим из подаваемого газового потока 5 через трубу 145 с целью обеспечения горячего газового потока 170 продуктов химической реакции во внутренней части трубы 145. Надлежащее дозирование прохождений газового потока гарантирует, что топливо в химически активном газовом потоке 160 будет частично выпускаться вниз по кольцеобразному каналу 162. Тепло, вырабатываемое реакцией химически активного газового потока 160 с проникающим кислородом, передается от трубы 145 реактора-разделителя-охладителя к трубе 149 кожуха посредством процессов конвекции и излучения. В то же самое время холодный подаваемый газовый поток 142, направляемый отражательными перегородками 168, проходит по секции 132 охлаждения устройства, охлаждает газовый поток во внутренней части трубы 145 реактора-разделителя-охладителя и получаемый газовый поток, теперь с повышенной температурой, проходит через проточные отверстия 157 в отражательной перегородке 158 с целью соединения подаваемого газового потока 135 для прохождения вверх по кольцеобразному каналу 164. Таким образом, горячий газовый поток 170 продуктов химической реакции проходит в секцию 131 разделения и продувает трубу 145 реактора-разделителя-охладителя для повышения химического раскачивающего потенциала через мембрану, так что кислород проникает через трубу 145 с целью обеспечения газового тока 180 обогащенного кислородом продукта, который охлажден благодаря прохождению холодного подаваемого газового потока 142, направляемого отражательными перегородками 133 и который содержит кислород, а также продукты реакции, создаваемые в секции 130 реактора устройства. Газовый поток 180 обогащенного кислородом продукта выходит из устройства через выход 181 для продукта. Если химически активный газовый поток 160 состоит из метана или другого углеводорода, то газовый поток 180 обогащенного кислородом продукта содержит, главным образом, кислород, двуокись углерода и воду.
Как и в ранее описанных вариантах осуществления, холодный подаваемый газовый поток 142, который представляет собой вспомогательную часть первоначального подаваемого газового потока, поступает у основания секции 132 охладителя, проходит через проточные отверстия 157 и восстанавливающим образом нагревается посредством идущего навстречу потока, проникающего продукта и благодаря этому выполняет функцию охлаждения. Функция реактора, как показано на фиг.4 и раньше, состоит в нагревании подаваемого газового потока 135, который представляет собой основную часть первоначально подаваемого газового потока, когда он проходит вниз в поперечном встречном направлении, благодаря реакции, происходящей у стенки трубы 145 реактора-разделителя-охладителя. Как и на фиг.1А и 3, все концы труб свободно плавают для устранения напряжения от тепловых и композиционных изменений размеров, а нижняя трубная решетка является холодной для облегчения соединений и уплотнений между трубой и трубной решеткой. Качество этого уплотнения до некоторой степени связано с требованиями к чистоте потока водорода. Как и во всех вариантах осуществления, межтрубная зона оборудована отражательными перегородками 168 для улучшения переноса тепла. В секции 130 реактора отражательные перегородки 168 имеют переменный интервал: больший там, где разность температур между газовым потоком внетрубной зоны и трубами 149 кожуха высокая, и меньший там, где эта разность маленькая. Назначение этого переменного интервала отражательных перегородок 168 состоит в том, чтобы поддерживать постоянный тепловой поток в секции 130 реакции и минимизировать изменения температуры в элементах переноса ионов. Как упоминалось выше, трубы 149 кожуха обладают благоприятным излучательным способом переноса тепла в сочетании с поверхностью трубы реактора переноса ионов. Хотя и не показано, конструкция может также предусматривать изолирование трубы кожуха около входа подачи, где может быть очень высокая температура.
Показанный на фиг. 4 вариант осуществления изобретения, как и в случае всех обеспечиваемых вариантов осуществления, можно использовать для большого количества функций. Например, устройство можно использовать в качестве двухкаскадного устройства Деоксо (Деохо), с реакцией продувки в первом каскаде и давлением продувания во втором каскаде чистыми продуктами сгорания или в качестве разделителя для извлечения кислорода из подаваемого воздуха и производства двуокиси углерода из продуктов сгорания при обедненном цикле газовой турбины, или в качестве устройства для разделения воздуха на газовый поток водородного продукта и газовый поток кислородного продукта, который содержит некоторое количество двуокиси углерода и воды, подлежащие выводу ниже по потоку из устройства.
На фиг. 5 представлен схематически другой вариант осуществления изобретения, иллюстрирующий основную конструкцию реактора-охладителя с ионным проводником из твердого электролита. Как и на фиг.1А, подаваемый газовый поток, содержащий элементарный кислород, сжимается и делится, по меньшей мере, на две части, подлежащие подаче в устройство реактора-охладителя. Во время работы, подаваемый газовый поток 205 вводится в активную секцию 201 реактора, а холодный подаваемый газовый поток 207 подается в секцию 202 охладителя продуктов химической реакции. Второй холодный подаваемый газовый поток 208 необязательно подается в секцию 200 охладителя водородного продукта. Труба 210 реактора-охладителя переноса ионов пересекает все секции 200, 201 и 202 реактора-охладителя. Труба 210 реактора-охладителя переноса ионов прикреплена к трубной решетке 211 у верхнего конца устройства посредством скользящего уплотнения или неподвижного уплотнения с сильфоном и крепится к трубной решетке 212 и уплотняется у основания устройства. Как и раньше, поскольку трубная решетка 212 имеет температуру меньше 300oС, можно использовать стандартный способ соединения с целью выполнения соединения трубы 210 реактора-охладителя с трубной решеткой 212. Точно так же, изоляция (не показанная) изолирует конструктивные сдерживающие давление стенки 206 устройства с целью допускания использования стандартных материалов конструирования. Как и на предыдущих чертежах, одну и ту же трубу 210 можно использовать в секции 201 реактора и секциях 200 и 202 охладителя и можно конструировать, как описано выше. Только центральная часть 210а трубы 210 реактора-охладителя должна иметь активную мембрану для переноса ионов. Как и раньше, можно использовать составную трубу, состоящую из пористой поддерживающей трубы и пленку смешанного проводника в секции 201 реактора и уплотняющую пленку в секциях 200 и 202 охладителя.
Подаваемый газовый поток 205 проходит мимо наружной поверхности трубы 215 кожуха, направляемый отражательными перегородками 214 и нагревается переносом тепла от труб 215 кожуха и проходит в концентрический кольцеобразный канал 216, образованный между наружной поверхностью трубы 210 реактора-охладителя и внутренней поверхностью трубы 215 кожуха. Труба 215 кожуха проходит немного за пределы секции 210 реактора в секцию 202 охладителя продуктов химической реакции устройства. Химически активный газовый поток 218, например метан, течет вниз по трубе 210 реактора-охладителя и, поскольку поверхность трубы переноса ионов реагирует на рабочую температуру трубы переноса ионов, он вступает в реакцию с кислородом, проникающим из подаваемого газового потока 205 через трубу 210 реактора-охладителя с целью обеспечения газового потока 221 продуктов химической реакции во внутренней части трубы 210. Если химически активный газовый поток 218 состоит из метана или другого углеводорода, газовый поток 221 продуктов химической реакции будет представлять собой, главным образом, двуокись углерода и воду, нормальные продукты сгорания и не вступившее в реакцию топливо, когда имелся избыток топлива или кислорода, если процесс проходил при бедной топливной смеси. Тепло, выделяемое при химической реакции химически активного газового потока 218 с проникающим кислородом, передается от трубы 210 реактора-охладителя трубе 215 кожуха посредством процессов конвекции и излучения. В то же самое время, холодный подаваемый газовый поток 207, направляемый отражательными перегородками 214, проходит в секции 202 охладителя продуктов химической реакции устройства, охлаждает газовый поток во внутренней части трубы 210 реактора-охладителя и получающийся газовый поток, теперь с повышенной температурой, проходит в концентрический кольцеобразный канал 216 вместе с подаваемым газовым потоком 205. Таким образом, газовый поток 221 продуктов химической реакции охлаждается проходящим холодным газовым потоком 207 и выходит из устройства через выход 222 для продукта. Можно также восстанавливать газовый поток 220 обедненного кислородом (водородного) продукта. Если это происходит, преимуществом является использование необязательного второго холодного подаваемого газового потока 208 для охлаждения газового потока в секции 200 охладителя водородного продукта способом, аналогичным секции 202 охладителя продуктов химической реакции.
На фиг. 6 представлен схематически еще один вариант осуществления изобретения, иллюстрирующий основную конструкцию другого реактора-охладителя с ионным проводником из твердого электролита. Как и на фиг.1А, подаваемый газовый поток, содержащий элементарный кислород, сжимается и делится, по меньшей мере, на две части, подлежащих подаче в устройство реактора-охладителя. Во время работы, газовый поток 233 вводится в активную зону 231 реактора, а холодный газовый поток 234 подается в секцию 232 охладителя продуктов химической реакции. Второй холодный газовый поток 235 необязательно подается в секцию 230 охладителя водородного продукта. Труба 236 реактора-охладителя для переноса ионов проходит через секцию 231 реактора и секцию 232 охлаждения реактора-охладителя. В устройстве используются три концентрических трубы: труба 240 кожуха, подсоединенная к верхней трубной решетке 241 и открытая у основания секции 231 реактора, труба 236 реактора-охладителя переноса ионов, закрытая сверху и прикрепленная к средней трубной решетке 237 и внутренняя труба 238 подачи, открытая в верхней части и прикрепленная к нижней трубной решетке 239. Как и прежде, поскольку трубные решетки 237, 239 и 241 имеют температуру ниже 300oС, для выполнения необходимых соединений можно использовать стандартные способы соединения. Точно так же изоляция (не показанная) изолирует конструктивные сдерживающие давления стенки 242 устройства для обеспечения возможности использования стандартных материалов. Как и в случаях, изображенных на предыдущих чертежах, одну и ту же трубу 236 можно использовать в секции 231 реактора и секции 232 охлаждения продуктов реакции и ее можно конструировать, как описано выше. Активную мембрану для переноса ионов должна иметь только верхняя часть 236а трубы 236 реактора-охладителя.
Подаваемый газовый поток 233 проходит мимо наружной поверхности трубы 240 кожуха, направляемый отражательными перегородками 243 и нагревается путем переноса тепла от трубы 240 кожуха и поступает в концентрический кольцеобразный канал 244, образованный между наружной поверхностью трубы 236 реактора-охладителя и внутренней поверхностью трубы 240 кожуха. Труба 240 кожуха проходит несколько за пределы секции 231 реактора в секцию 232 охлаждения продуктов химической реакции. Химически активный газовый поток 245, например метан, необязательно разбавляемый водяным паром, проходит вверх по внутренней трубе 238 подачи, вниз по кольцеобразному каналу 246, образованному между внутренней поверхностью трубы 236 реактора-охладителя и наружной поверхностью трубы 240 кожуха и вступает в химическую реакцию с кислородом, проникающим из подаваемого газового потока 233 через трубу 236 реактора-охладителя с целью обеспечения газового потока 247 продуктов химической реакции во внутренней части трубы 236. Если химически активный газовый поток 245 состоит из метана или другого углеводорода, то газовый поток 247 продуктов химической реакции представляет, главным образом, двуокись углерода и воду, нормальные продукты сгорания и не вступившее в реакцию топливо, если был избыток топлива или кислород, когда процесс проходил при бедной топливной смеси. Тепло, выделяемое при химической реакции химически активного газового потока 245 с проникающим кислородом, передается от трубы 236 реактора-охладителя трубе 240 кожуха и внутренней трубе 238 посредством процессов конвекции и излучения. В то же время холодный газовый поток 234, направляемый отражательными перегородками 243, проходит в секции 232 охлаждения продуктов химической реакции, охлаждает газовый поток во внутренней части трубы 236 реактора-охладителя и получаемый газовый поток теперь с повышенной температурой проходит в концентрический кольцеобразный канал 244 вместе с подаваемым газовым потоком 233. Таким образом, газовый поток 247 продуктов химической реакции охлаждается течением холодного подаваемого газового потока 234 и выходит из устройства через выход 248 для продукта. Можно также восстанавливать газовый поток 249 обедненного кислородом (водородного) продукта при высоком давлении. Если это происходит, то преимущественно используют необязательный второй холодный подаваемый газовый поток 235 для охлаждения газового потока в секции 230 охлаждения водородного продукта способом, аналогичным секции 232 охлаждения продукта химической реакции.
Фиг.8 иллюстрирует простоту полного цикла разделения кислорода-водорода, используя соответствующий изобретению модуль 300 реактора-разделителя-охладителя. Подаваемый газовый поток 260, обычно воздух, сжимается компрессором 260 с целью получения сжатого газового потока 264. Сжатый газовый поток 264 разделяется на основной подаваемый газовый поток 268 и вспомогательный подаваемый газовый поток 266. Вспомогательный подаваемый газовый поток 266 охлаждается в охладителе 270 и затем проходит через клапан 272. Охлажденный газовый поток 274 вводится в секцию 271 охлаждения модуля 300 переноса ионов. Основной подаваемый газовый поток 268 проходит через клапан 301, становясь основным газовым потоком 299, который вводится в секцию 273 реактора 300 переноса ионов. В одном варианте осуществления газовый поток 286 представляет собой химически активный газовый поток, а основной газовый поток 299 нагревается в секции 273 реактора модуля 300 переноса ионов до температуры примерно 900oС посредством реакции газового потока 286 и кислорода на одной стороне мембраны для переноса ионов секции 273 реактора модуля 300 переноса ионов. В другом варианте осуществления газовый поток 286 представляет собой химически пассивный разбавленный газовый поток, который используется для очистки анодной стороны мембраны для переноса ионов секции 273 реактора и секции 275 разделителя модуля 300 переноса ионов. Энергия нагрева подаваемого газового потока 274 обеспечивается встречным потоком анодного продукта.
В показанной на фиг.8 системе используется приводимый в действие реакцией каскад 273 деоксо и приводимый в действие давлением каскад 275 выделения кислорода, который усиливается продувкой продуктами сгорания, с использованием таких веществ, как вода (в виде пара) и двуокись углерода. Два газовых потока, выходящие из модуля 300 переноса ионов, представляют собой холодный газовый поток 284, низкого давления, двуокись углерода и воду и поток 276 водородных продуктов с высоким давлением и высокой температурой.
Газовый поток 284 низкого давления, содержащий кислород, двуокись углерода и водяной пар, охлаждается охладителем 302, образуя газовый поток 303. Основное количество воды, содержащейся в газовом потоке 303, конденсируется конденсатором 304 с целью получения водяного потока 305 и газового потока 306, который содержит, главным образом, кислород и двуокись углерода. Газовый поток 306 поступает к расположенной ниже по потоку мембране для разделения адсорбции или абсорбции. Водяной поток 305 можно выпускать в виде водяного потока 312, или он может стать водяным потоком 307, который нагнетается насосом 308 с целью получения водяного потока 309. Водяной поток 309 пропускается через теплообменник 307 для нагрева газовым потоком 282 с целью получения пара, то есть газового потока 310. Газовый поток 310 факультативно делится на газовый поток 311 и газовый поток 313. Как упоминалось выше, газовый поток 286, либо химически активный, либо химически пассивный, поступает в секцию 275 реактора модуля 300 переноса ионов.
Поток 276 водородного продукта факультативно делится на газовый поток 277, показанный пунктирной линией, и газовый поток 323. Газовый поток 277, если он создается, соединяется с необязательным газовым потоком 311, показанным пунктирной линией, отделяемым от потока 310, образуя газовый поток 279. Газовый поток 279 и химически активный газовый поток 320 подаются в камеру сгорания 321 для сжигания с целью создания газового потока 322. Газовый поток 322 соединяется с газовым потоком 323, образуя газовый поток 324. Газовый поток 324 в одном варианте осуществления расширяется в газовой турбине 280, или тепловую энергию можно восстанавливать паровой системой с циклом Ранкина. Паровая система с циклом Ранкина усложняет устройство, но имеет преимущество подачи вырабатываемого водорода под давлением. В показанном варианте осуществления с использованием газовой турбины 280 имеется достаточно тепла в выходном газовом потоке 282 турбины для вырабатывания газового потока 310 в виде водяного пара посредством нагрева водяного потока 305 в теплообменнике 307 для дальнейшего увеличения кислородного потока в модуле 300 переноса ионов, как упоминалось выше. Газовый поток 282 проходит через теплообменник 307, создавая газовый поток 283. Газовый поток 283 проходит через охладитель 330, образуя газовый поток 329, который обычно выпускается.
Фиг. 9 иллюстрирует объединение разделителя-охладителя с переносом ионов в цикл газовой турбины в соответствии с настоящим изобретением. Подаваемый газовый поток 350, например воздух, после сжатия в компрессоре 352 для получения сжатого подаваемого газового потока 353 делится на основной подаваемый газовый поток 356 и вспомогательный подаваемый газовый поток 355. Вспомогательный подаваемый газовый поток 355 проходит через клапан 358 для создания газового потока 360, который поступает в секцию 361 охладителя модуля 400 разделителя-охладителя, а затем нагревается и выходит из модуля 400 разделителя-охладителя в виде газового потока 368.
Основной подаваемый газовый поток 356 факультативно делится на газовый поток 364 и газовый поток 404. Газовый поток 364 нагревается до рабочей температуры мембраны для переноса ионов (примерно до 900oС) в камере сгорания 362, после добавления топливного газового потока 364, для создания газового потока 366. Реактор переноса ионов или камеру сгорания 362 можно заменить воспламеняемым с внешней стороны нагревателем, не оказывая влияния на функциональные возможности системы. Газовый поток 404 проходит через необязательный теплообменник 407 для получения горячего газового потока 403, который соединяется с газовым потоком 366, образуя газовый поток 367. К газовому потоку 367 добавляется необязательный химически активный газовый поток 405 с целью образования газового потока 370. Газовый поток 368 добавляется к газовому потоку 370 для образования газового потока 372, который вводится в секцию 363 разделения модуля 400 разделителя-охладителя, где кислород 365 удаляется с использованием трубы 367 для переноса ионов.
После удаления через мембрану 367 для переноса ионов в секции 363 разделения модуля 400 разделителя-охладителя части кислорода 365, содержащегося в газовом потоке 372, из модуля 400 разделителя-охладителя выходит газовый поток 380 и после добавления топливного газового потока 384 нагревается в камере сгорания 382 до температуры входа в турбину. Получающийся газовый поток 386 расширяется в турбине 388 с целью образования выпускаемого потока 420 из турбины. Газовый поток 420 необязательно делится на газовый поток 402 и газовый поток 421. Газовый поток 402, если он образуется, пропускается через теплообменник 407 для получения газового потока 406. Газовый поток 406 добавляется к газовому потоку 421 с получением газового потока 426.
В показанном на чертеже случае отработанное топливо восстанавливается паровым циклом 410 Ранкина следующим образом. Газовый поток 401 кислородного продукта выходит из секции 361 охлаждения модуля 400 разделителя-охладителя с температурой примерно 150-300oС. Если уровни температуры позволяют, то некоторое количество тепла, содержащегося в газовом потоке 401 кислородного продукта и выходном потоке 426 турбины, восстанавливается паровым циклом 410 Ранкина. Вместо парового цикла 410 Ранкина для восстановления избытка тепла, содержащегося в выпускаемом потоке 426 турбины и газовом потоке 401 кислородного продукта, можно использовать рекуператор. Цикл 410 обработки потока Ранкина создает отработанный газовый поток 412, который обычно выпускается и кислородный газовый поток 411. Кислородный газовый поток 411 затем охлаждается охладителем 414, создавая кислородный газовый поток 415, который сжимается компрессором 416 для получения кислородного газового потока 417, восстанавливаемого в качестве продукта.
Как описано выше, для работы реактора и разделителя с целью обеспечения оптимальной эксплуатации вероятно будут выбираться различные материалы ионных проводников из твердого электролита. Выбираемые для эксплуатации реактора материалы должны иметь максимальную стойкость на низких парциальных давлениях кислорода, типа перечисленных в таблице, содержащих хром материалов, а материалы, выбираемые для осуществления отделения кислорода, должны иметь высокую ионную проводимость при высоких парциальных давлениях кислорода.
Конкретные особенности изобретения представлены на одном или более чертежах только для удобства, поскольку в соответствии с изобретением каждый его признак можно объединять с другими признаками. Кроме того, можно осуществлять различные изменения и модификации приведенных примеров, не выходя при этом за рамки изобретения. Специалисты в данной области техники могут обнаружить альтернативные варианты осуществления, и эти варианты подлежат включению в объем формулы изобретения.

Claims (10)

1. Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток посредством выделения кислорода из подаваемого газового потока, содержащего элементарный кислород, с последующим охлаждением получаемого кислородного газового потока или обогащенного кислородом газового потока в одном устройстве, имеющем секцию разделения, секцию охлаждения и выход для кислородного продукта, в котором секция разделения включает в себя мембрану для переноса ионов, имеющую сторону подвода и сторону отвода, и в котором обедненный кислородом газовый поток выводят из устройства, причем способ содержит следующие операции: сжатие подаваемого газового потока, разделение сжатого подаваемого газового потока на основную часть газового потока и вспомогательную часть газового потока, нагрев основной части газового потока, введение нагретой основной части газового потока в секцию разделения устройства, введение вспомогательной части газового потока в секцию охлаждения устройства рядом с выходом для кислородного продукта, отвод кислорода из нагретой основной части газового потока через мембрану для переноса ионов в секции разделения с целью получения горячего обогащенного кислородом газового потока на стороне отвода мембраны и обедненного кислородом газового потока на стороне подвода мембраны, и передачу тепла от обогащенного кислородом газового потока вспомогательной части газового потока с целью получения кислородного газового потока или газового потока, обогащенного кислородом продукта и нагретой вспомогательной части газового потока, причем вспомогательную часть газового потока либо выводят из устройства, либо объединяют с нагретой основной частью газового потока перед вводом нагретой основной части газового потока в секцию разделения и в котором обедненный кислородом газовый поток выводят из устройства.
2. Способ по п. 1, в котором устройство дополнительно содержит секцию реактора, включающую в себя мембрану для переноса ионов, имеющую сторону подвода и сторону отвода и в котором химически активный газовый поток вводят на стороне отвода мембраны для переноса ионов в секции реактора устройства для вступления в реакцию с обогащенным кислородным газовым потоком, проникающим через мембрану для переноса ионов рядом со стороной отвода мембраны для переноса ионов для получения газового потока продуктов реакции, который используется для продувки стороны отвода мембраны для переноса ионов в секции разделения устройства, и в котором газовый поток продуктов реакции и обедненный кислородный газовый поток и не вступивший в реакцию кислород из обогащенного кислородного газового потока объединяют в виде обогащенного кислородом газового потока, который выходит из устройства и в котором обедненный кислородом газовый поток отдельно выводят из устройства.
3. Способ по п. 2, в котором мембрана для переноса ионов секции разделения устройства и мембрана для переноса ионов секции реактора устройства образованы совместно.
4. Способ по п. 3, в котором мембрана для переноса ионов секции разделения устройства включает в себя пористую поддерживающую подложку и содержит материал для переноса ионов, имеющий высокую проводимость кислорода при высоком парциальном давлении кислорода, а мембрана для переноса ионов секции реактора устройства содержит слой смешанного проводника, имеющего оптимальную стойкость при низком парциальном давлении кислорода.
5. Способ по п. 3, в котором мембрана для переноса ионов секции реактора и мембрана для переноса ионов секции разделения образованы совместно с трубопроводом для переноса обогащенного кислородом газового потока через секцию охладителя устройства.
6. Способ по п. 5, в котором трубопровод для переноса обогащенного кислородом газового потока через секцию охлаждения представляет собой металлическую трубу и соединяется с мембраной для переноса ионов секции реактора устройства посредством сварки или пайки твердым припоем.
7. Способ по п. 5, в котором трубопровод для переноса обогащенного кислородом газового потока через секцию охлаждения содержит плотный уплотняющий материал и соединяется с мембраной для переноса ионов секции реактора устройства посредством сварки или пайки твердым припоем.
8. Способ по п. 2, в котором химически активный газ нагревают перед его вводом в секцию реактора устройства.
9. Способ по п. 1, в котором секция разделения включает в себя секцию реактора, а операция отвода кислорода через мембрану включает в себя введение химически активного газового потока на стороне отвода мембраны для переноса ионов для вступления в реакцию, по меньшей мере, с частью переносимого кислорода.
10. Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток посредством выделения кислорода из подаваемого газового потока, содержащего элементарный кислород в устройстве, имеющем секцию реактора и секцию разделения, в котором каждая из секций включает в себя, по меньшей мере, одну мембрану для переноса ионов, имеющую сторону подвода и сторону отвода, в котором химически активный газовый поток вводят на стороне отвода мембраны для переноса ионов в секции реактора для вступления в реакцию с кислородом, пропускаемым через мембрану для переноса ионов, рядом со стороной отвода мембраны для получения газового потока продуктов реакции, используемого для продувки стороны отвода мембраны для переноса ионов в секции разделения, и в котором газовый поток продуктов реакции и не вступивший в реакцию кислород объединяются в виде обогащенного кислородом газового потока, выпускаемого из устройства, и в котором обедненный кислородом газовый поток отдельно выводят из устройства, причем способ содержит следующие операции: сжатие подаваемого газового потока, введение сжатого подаваемого газового потока в устройство и передачу тепла от газового потока продуктов реакции подаваемому газовому потоку, отвод кислорода из нагретого подаваемого газового потока посредством пропускания через мембрану для переноса ионов в секции реактора с целью получения газового потока продуктов реакции на стороне отвода мембраны и обедненного кислородом газового потока на стороне подвода мембраны, и удаление дополнительного кислорода из обедненного кислородом газового потока с помощью мембраны для переноса ионов в секции разделения с целью получения обедненного кислородом газового потока на стороне подвода мембраны.
RU98108324/12A 1997-04-29 1998-04-28 Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток (варианты) RU2182036C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/848,199 1997-04-29
US08/848,199 US5820654A (en) 1997-04-29 1997-04-29 Integrated solid electrolyte ionic conductor separator-cooler

Publications (2)

Publication Number Publication Date
RU98108324A RU98108324A (ru) 2000-03-10
RU2182036C2 true RU2182036C2 (ru) 2002-05-10

Family

ID=25302627

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98108324/12A RU2182036C2 (ru) 1997-04-29 1998-04-28 Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток (варианты)

Country Status (11)

Country Link
US (1) US5820654A (ru)
EP (1) EP0875281A1 (ru)
JP (1) JPH1170314A (ru)
AU (1) AU737244B2 (ru)
BR (1) BR9801471A (ru)
CA (1) CA2236185C (ru)
DZ (1) DZ2471A1 (ru)
ID (1) ID20212A (ru)
NO (1) NO981921L (ru)
RU (1) RU2182036C2 (ru)
ZA (1) ZA983544B (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179323B2 (en) 2003-08-06 2007-02-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
AU2006200005B2 (en) * 2005-01-03 2008-03-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
AU2006200004B2 (en) * 2005-01-03 2008-04-24 Air Products And Chemicals, Inc. Feed gas contaminant removal in ion transport membrane systems
US7771519B2 (en) 2005-01-03 2010-08-10 Air Products And Chemicals, Inc. Liners for ion transport membrane systems
RU2492136C2 (ru) * 2008-11-10 2013-09-10 Праксайр Текнолоджи, Инк. Узел и способ отделения кислорода
RU2588294C2 (ru) * 2010-07-14 2016-06-27 ДжиТиЭлПЕТРОЛ ЭлЭлСи Генерирование энергии с использованием ионопроницаемой мембраны
RU2661581C2 (ru) * 2013-10-08 2018-07-17 Праксайр Текнолоджи, Инк. Система и способ регулирования температуры в реакторе на основе кислородпроводящих мембран

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820654A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler
US5954859A (en) * 1997-11-18 1999-09-21 Praxair Technology, Inc. Solid electrolyte ionic conductor oxygen production with power generation
US6056807A (en) * 1998-01-26 2000-05-02 Air Products And Chemicals, Inc. Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide
US6010614A (en) * 1998-06-03 2000-01-04 Praxair Technology, Inc. Temperature control in a ceramic membrane reactor
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
US6017646A (en) * 1998-06-03 2000-01-25 Praxair Technology, Inc. Process integrating a solid oxide fuel cell and an ion transport reactor
US6296687B2 (en) * 1999-04-30 2001-10-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Hydrogen permeation through mixed protonic-electronic conducting materials
US6521202B1 (en) * 1999-06-28 2003-02-18 University Of Chicago Oxygen ion conducting materials
US6302402B1 (en) 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
NO313493B1 (no) * 1999-09-28 2002-10-14 Norsk Hydro As Fast flerkomponent membran omfattende et blandet metalloksid for bruk i en reaktor for produksjon av varme eller syntesegass
US6454274B2 (en) 2000-03-27 2002-09-24 Praxair Technology, Inc. Joint assembly for joining a ceramic membrane to a tube sheet
US6293084B1 (en) 2000-05-04 2001-09-25 Praxair Technology, Inc. Oxygen separator designed to be integrated with a gas turbine and method of separating oxygen
CA2422667C (en) * 2000-09-08 2007-01-30 Nippon Steel Corporation Ceramic-metal composite body, composite structure for transporting oxide ion, and composite body having sealing property
EP1333009A4 (en) 2000-09-20 2004-08-04 Teikokuoil Co Ltd PROCESS FOR PARTIALLY OXIDIZING METHANE USING A SELECTIVE DENSE CERAMIC MEMBRANE FOR OXYGEN
FR2817860B1 (fr) * 2000-12-07 2003-09-12 Air Liquide Procede de preparation d'un materiau ceramique de faible epaisseur a gradient de porosite superficielle controle, materiau ceramique obtenu, cellule electrochimique et membrane ceramique le comprenant
US6562104B2 (en) * 2000-12-19 2003-05-13 Praxair Technology, Inc. Method and system for combusting a fuel
DE10064894A1 (de) * 2000-12-23 2002-06-27 Alstom Switzerland Ltd Luftzerlegungseinrichtung
FR2826956B1 (fr) * 2001-07-04 2004-05-28 Air Liquide Procede de preparation d'une composition ceramique de faible epaisseur a deux materiaux, composition obtenue, cellule electrochimique et membrane la comprenant
CA2493605A1 (en) * 2001-07-25 2003-02-06 Richard A. Haase Processes and apparatus for the manufacture of polynuclear aluminum compounds and disinfectants, and polynuclear aluminum compounds and disinfectants from such processes and apparatus
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
US6709782B2 (en) * 2001-10-01 2004-03-23 Delphi Technologies, Inc. Fuel cell having an anode protected from high oxygen ion concentration
US6565632B1 (en) * 2001-12-17 2003-05-20 Praxair Technology, Inc. Ion-transport membrane assembly incorporating internal support
JP2005522629A (ja) * 2002-04-11 2005-07-28 エイ. ハーゼ,リチャード 水燃焼技術−水素と酸素を燃焼させる方法、プロセス、システム及び装置
US6702570B2 (en) * 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US7252810B2 (en) * 2002-07-12 2007-08-07 Parsa Investments, L.P. Multi-sectional system for continuous gas separation
US7226679B2 (en) * 2002-07-31 2007-06-05 Siemens Power Generation, Inc. Fuel cell system with degradation protected anode
US7314502B2 (en) * 2002-09-25 2008-01-01 Exxonmobil Upstream Research Company Method and system for separating a component from a multi-component gas
US7686868B2 (en) * 2002-12-19 2010-03-30 Exxonmobil Upstream Research Company Membrane module for separation of fluids
US8268269B2 (en) 2006-01-24 2012-09-18 Clearvalue Technologies, Inc. Manufacture of water chemistries
JP5205910B2 (ja) 2006-10-31 2013-06-05 三菱マテリアル株式会社 トリクロロシラン製造装置
US7856829B2 (en) * 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US7771509B1 (en) * 2007-09-07 2010-08-10 Cryogenic Group, Inc. Magnetic oxygen concentrator for air streams
WO2009083983A2 (en) * 2008-01-02 2009-07-09 Technion Research & Development Foundation Ltd. Ceramic tubes composed of two materials
KR101579308B1 (ko) * 2008-02-25 2015-12-21 가부시키가이샤 노리타케 캄파니 리미티드 세라믹 제품 및 세라믹 부재의 접합 방법
JP2012011880A (ja) * 2010-06-30 2012-01-19 Denso Corp 空気浄化装置
US9417013B2 (en) * 2010-11-12 2016-08-16 Toyota Motor Engineering & Manufacturing North America, Inc. Heat transfer systems including heat conducting composite materials
RU2447928C1 (ru) * 2010-11-18 2012-04-20 Закрытое Акционерное Общество "Грасис" Способ разделения и очистки газовых смесей до параметров потребления
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
US8435332B2 (en) * 2011-04-08 2013-05-07 Praxair Technology, Inc. Oxygen separation module and apparatus
US8795417B2 (en) * 2011-12-15 2014-08-05 Praxair Technology, Inc. Composite oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
WO2014100376A1 (en) 2012-12-19 2014-06-26 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
DE102013103426B4 (de) * 2013-04-05 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Membranmodul zur energieeffizienten Sauerstofferzeugung in der Biomassevergasung
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
MX2016004495A (es) 2013-10-07 2016-06-16 Praxair Technology Inc Reactor ceramico de conversion de conjunto de membranas de transporte de oxigeno.
WO2015084729A1 (en) 2013-12-02 2015-06-11 Praxair Technology, Inc. Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming
US9383096B2 (en) 2013-12-23 2016-07-05 King Fahd University Of Petroleum And Minerals Carbon-free low-NOx liquid fuel oxygen transport reactor for industrial water tube boilers
CA2937943A1 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US10006369B2 (en) 2014-06-30 2018-06-26 General Electric Company Method and system for radial tubular duct heat exchangers
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US9835380B2 (en) * 2015-03-13 2017-12-05 General Electric Company Tube in cross-flow conduit heat exchanger
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
US10378835B2 (en) 2016-03-25 2019-08-13 Unison Industries, Llc Heat exchanger with non-orthogonal perforations
US10202946B2 (en) * 2016-03-29 2019-02-12 King Fahd University Of Petroleum And Minerals Power turbine system
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
PL3507472T3 (pl) * 2016-08-31 2021-02-22 8 Rivers Capital, Llc Układy i sposoby wytwarzania energii obejmujące elementy transportu jonowego
US10018352B1 (en) * 2017-04-21 2018-07-10 King Fahd University Of Petroleum And Minerals Fire tube boiler system with ion transport membranes
US10697561B2 (en) * 2017-05-25 2020-06-30 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device
US10711937B2 (en) 2017-05-25 2020-07-14 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
CN112334720A (zh) 2018-12-03 2021-02-05 开利公司 增强的制冷净化系统
WO2020117762A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Enhanced refrigeration purge system
CN112334656A (zh) * 2018-12-03 2021-02-05 开利公司 膜吹扫系统
WO2020117582A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Enhanced refrigeration purge system
US11773497B2 (en) 2020-03-04 2023-10-03 Massachusetts Institute Of Technology Combined cycle power system

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1685759A (en) * 1924-05-22 1928-09-25 Ver Fur Chemische Ind Ag Diffusion reaction
US3550355A (en) * 1967-12-22 1970-12-29 Gen Am Transport Oxygen separation process
US3847672A (en) * 1971-08-18 1974-11-12 United Aircraft Corp Fuel cell with gas separator
US3849076A (en) * 1972-06-21 1974-11-19 V Gryaznov Catalytic reactor for carrying out conjugate chemical reactions
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
SU573444A1 (ru) * 1974-06-11 1977-09-25 Новомосковский Химический Комбинат Им. В.И.Ленина Аппарат дл выделени водорода из газовой смеси
FR2366217A1 (fr) * 1975-08-27 1978-04-28 Comp Generale Electricite Dispositif generateur d'hydrogene
CA1213128A (en) * 1982-10-07 1986-10-28 Arie L. Mos Reactor for exothermic or endothermic chemical processes
SU1472104A1 (ru) * 1986-09-23 1989-04-15 Предприятие П/Я А-1157 Мембранный аппарат дл выделени водорода из газовых смесей
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
JP2931400B2 (ja) * 1989-03-08 1999-08-09 ロッキー・リサーチ 固体ガス反応器システムにおける高反応速度を達成するための方法および装置
DE3921390A1 (de) * 1989-06-29 1991-01-17 Merck Patent Gmbh Verfahren und vorrichtung zur gewinnung von reinem sauerstoff
US5342431A (en) * 1989-10-23 1994-08-30 Wisconsin Alumni Research Foundation Metal oxide membranes for gas separation
US5229102A (en) * 1989-11-13 1993-07-20 Medalert, Inc. Catalytic ceramic membrane steam-hydrocarbon reformer
US5169415A (en) * 1990-08-31 1992-12-08 Sundstrand Corporation Method of generating oxygen from an air stream
US5160713A (en) * 1990-10-09 1992-11-03 The Standard Oil Company Process for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane
US5186793A (en) * 1990-12-31 1993-02-16 Invacare Corporation Oxygen concentrator utilizing electrochemical cell
GB2257054A (en) * 1991-07-04 1993-01-06 Normalair Garrett Oxygen generating system
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
JPH06134244A (ja) * 1992-10-20 1994-05-17 Orion Mach Co Ltd 膜式気体ドライヤ
US5384051A (en) * 1993-02-05 1995-01-24 Mcginness; Thomas G. Supercritical oxidation reactor
US5516359A (en) * 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
US5565017A (en) * 1993-12-17 1996-10-15 Air Products And Chemicals, Inc. High temperature oxygen production with steam and power generation
US5447555A (en) * 1994-01-12 1995-09-05 Air Products And Chemicals, Inc. Oxygen production by staged mixed conductor membranes
JP3402515B2 (ja) * 1994-05-23 2003-05-06 日本碍子株式会社 水素分離体とそれを用いた水素分離装置及び水素分離体の製造方法
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
US5480620A (en) * 1994-08-17 1996-01-02 Cameron; Gordon M. Catalytic converter
AU706663B2 (en) * 1994-09-23 1999-06-17 Standard Oil Company, The Oxygen permeable mixed conductor membranes
US5599383A (en) * 1995-03-13 1997-02-04 Air Products And Chemicals, Inc. Tubular solid-state membrane module
US5681373A (en) * 1995-03-13 1997-10-28 Air Products And Chemicals, Inc. Planar solid-state membrane module
US5547494A (en) * 1995-03-22 1996-08-20 Praxair Technology, Inc. Staged electrolyte membrane
EP0747108B1 (en) * 1995-06-07 2002-02-20 Air Products And Chemicals, Inc. Oxygen production by ion transport membranes with work recovery
US5611931A (en) * 1995-07-31 1997-03-18 Media And Process Technology Inc. High temperature fluid separations using ceramic membrane device
US5837125A (en) * 1995-12-05 1998-11-17 Praxair Technology, Inc. Reactive purge for solid electrolyte membrane gas separation
US5820654A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658788B2 (en) 2003-08-06 2010-02-09 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
EA008527B1 (ru) * 2003-08-06 2007-06-29 Эр Продактс Энд Кемикалз, Инк. Мембранный модуль для переноса ионов и мембранная система
US7335247B2 (en) 2003-08-06 2008-02-26 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
US7179323B2 (en) 2003-08-06 2007-02-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
US8114193B2 (en) 2003-08-06 2012-02-14 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
US7425231B2 (en) 2003-08-06 2008-09-16 Air Products And Chemicals, Inc. Feed gas contaminant removal in ion transport membrane systems
EA013824B1 (ru) * 2003-08-06 2010-08-30 Эр Продактс Энд Кемикалз, Инк. Мембранная система для переноса ионов и система мембранного реактора для переноса ионов
AU2006200005B2 (en) * 2005-01-03 2008-03-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
US7771519B2 (en) 2005-01-03 2010-08-10 Air Products And Chemicals, Inc. Liners for ion transport membrane systems
EA010699B1 (ru) * 2005-01-03 2008-10-30 Эр Продактс Энд Кемикалз, Инк. Система мембранных модулей для ионного транспорта и аппарат с направленным внутренним газовым потоком
AU2006200004B2 (en) * 2005-01-03 2008-04-24 Air Products And Chemicals, Inc. Feed gas contaminant removal in ion transport membrane systems
RU2492136C2 (ru) * 2008-11-10 2013-09-10 Праксайр Текнолоджи, Инк. Узел и способ отделения кислорода
RU2588294C2 (ru) * 2010-07-14 2016-06-27 ДжиТиЭлПЕТРОЛ ЭлЭлСи Генерирование энергии с использованием ионопроницаемой мембраны
RU2661581C2 (ru) * 2013-10-08 2018-07-17 Праксайр Текнолоджи, Инк. Система и способ регулирования температуры в реакторе на основе кислородпроводящих мембран

Also Published As

Publication number Publication date
AU6365398A (en) 1998-11-05
NO981921D0 (no) 1998-04-28
US5820654A (en) 1998-10-13
NO981921L (no) 1998-10-30
AU737244B2 (en) 2001-08-16
CA2236185C (en) 2002-02-19
BR9801471A (pt) 1999-09-28
CA2236185A1 (en) 1998-10-29
DZ2471A1 (fr) 2003-02-01
ZA983544B (en) 1998-10-30
EP0875281A1 (en) 1998-11-04
ID20212A (id) 1998-10-29
JPH1170314A (ja) 1999-03-16

Similar Documents

Publication Publication Date Title
RU2182036C2 (ru) Способ разделения кислородного газового потока на обогащенный кислородом газовый поток и обедненный кислородом газовый поток (варианты)
CA2236194C (en) Solid electrolyte ionic conductor reactor design
US7658788B2 (en) Ion transport membrane module and vessel system with directed internal gas flow
US6537514B1 (en) Method and apparatus for producing carbon dioxide
US7771519B2 (en) Liners for ion transport membrane systems
CA2531706C (en) Ion transport membrane module and vessel system with directed internal gas flow
CA2273625C (en) Syngas reactor and ceramic membrane
US7160357B2 (en) Oxygen transport membrane reactor and method
US6296686B1 (en) Ceramic membrane for endothermic reactions
EP0962423A1 (en) Ceramic membrane reformer
JP2005095866A (ja) イオン輸送膜システム及び酸素含有ガスからの酸素回収方法
WO2023018967A1 (en) Producing high purity hydrogen and carbon monoxide from a hydrocarbon material
MXPA98003329A (en) Separator-integrated conductor cooler ionicode electrolito sol
MXPA98003331A (es) Diseño de reactor de conductor ionico de elctrolito solido
CN1205911A (zh) 综合固体电解质离子导体分离器-冷却器
MXPA99005119A (en) Membrane reformer ceram