RU2173350C1 - Способ получения низкокремнистого феррониобия - Google Patents

Способ получения низкокремнистого феррониобия

Info

Publication number
RU2173350C1
RU2173350C1 RU2000112461A RU2000112461A RU2173350C1 RU 2173350 C1 RU2173350 C1 RU 2173350C1 RU 2000112461 A RU2000112461 A RU 2000112461A RU 2000112461 A RU2000112461 A RU 2000112461A RU 2173350 C1 RU2173350 C1 RU 2173350C1
Authority
RU
Russia
Prior art keywords
niobium
charge
ferroniobium
melt
refining
Prior art date
Application number
RU2000112461A
Other languages
English (en)
Inventor
В.М. Рытвин
А.Б. Галезник
Н.В. Кузьмин
В.В. Ярин
В.Г. Цикарев
Original Assignee
Рытвин Виктор Михайлович
Галезник Анатолий Борисович
Кузьмин Николай Владимирович
Ярин Владимир Васильевич
Цикарев Владислав Григорьевич
Filing date
Publication date
Application filed by Рытвин Виктор Михайлович, Галезник Анатолий Борисович, Кузьмин Николай Владимирович, Ярин Владимир Васильевич, Цикарев Владислав Григорьевич filed Critical Рытвин Виктор Михайлович
Application granted granted Critical
Publication of RU2173350C1 publication Critical patent/RU2173350C1/ru

Links

Abstract

Изобретение относится к области металлургии, в частности к производству феррониобия. Способ заключается в том, что в качестве ниобийсодержащей части шихты используют отходы, содержащие гидроокись ниобия, в качестве плавильного агрегата используют электродуговую печь, в которую сначала загружают и расплавляют запальную и ниобийсодержащую части шихты. Восстановление и рафинирование расплава проводят при периодической подаче охладителя. Разработан технологический процесс, в котором используют трудноутилизированные техногенные отходы, содержащие гидроокись ниобия. Используемые шихтовые материалы, их количество, порядок подготовки и проплавления с регулированием температурно-теплового режима обеспечивает повышение технико-экономических показателей производства низкокремнистого феррониобия за счет экономии электроэнергии, шихтовых материалов и повышения коэффициента извлечения ниобия в готовый продукт. 3 з.п. ф-лы.

Description

Изобретение относится к области металлургии ферросплавов, конкретно к выплавке сплавов феррониобия.
Известны способы производства феррониобия при использовании углетермического, силикотермического, алюмотермического методов восстановления оксидов ниобия при получении феррониобия (1). В промышленном производстве низкокремнистого феррониобия получил распространение алюмотермический метод. Низкокремнистый феррониобий получают путем восстановления пирохлоровых ниобиевых концентратов или технической пятиокиси в специальных плавильных агрегатах. При использовании ниобиевого концентрата дозировка шихты на 100 кг концентрата содержит 40-43 кг порошка первичного алюминия, 8,5 кг железной руды и 26 кг натриевой селитры. Продолжительность плавки на 2500 кг концентрата составляет 6-8 мин. Недостатком указанного способа является относительно невысокое извлечение ниобия, а для улучшения показателей технологического процесса (снижение содержания серы, повышение извлечения ниобия) требуются мероприятия по осуществлению специальных технологических приемов, конструкторских решений.
При алюмотермическом методе в качестве ниобийсодержащего материала для получения низкокремнистого феррониобия используют также оксид ниобия. В этом случае на 100 кг ниобийсодержащего материала в шихту добавляют 52-56 кг порошка первичного алюминия, 38-40 кг железных окатышей, 20 кг железной окалины, 30 кг извести и 0,1 кг селитры при условии содержания в шихте 110% восстановителя к теоретически необходимому от массы ниобийсодержащего материала. При незначительном повышении содержания ниобия в конечном продукте показатели производственного процесса не компенсируют материальных и энергетических затрат на его осуществление.
Наиболее близким по технической сущности и достигаемому результату является способ производства феррониобия низкокремнистого (2). В известном способе в качестве основной восстановительной части шихты используют пятиокись ниобия. Технологический процесс включает подготовку запальной, восстановительной и рафинировочной частей шихты, порционное проплавление запальной части шихты, проплавление основной части шихты с последующей подачей на зеркало расплава восстановителей и рафинировочно-осадительных компонентов шихты. Выпуск металла и шлака осуществляют в приемную изложницу. После выдержки расплава в течение 12 часов изложницу разбирают и металлическую часть сплава разбивают до требуемых габаритов по размеру частиц.
Недостатком известного способа является то, что при значительных материально-энергетических затратах степень извлечения ниобия в сплав относительно невысокая. Наблюдаются ликвационные зоны по распределению ниобия по сечениям отливки. Возможен неравномерный ход плавки с выбросами шихтовых материалов и расплава или медленный "холодный" ход плавки. Все это снижает качество и выход годного по конечной продукции.
В настоящей заявке на изобретение поставлена задача разработать стабильный надежный способ получения низкокремнистого феррониобия, в том числе с использованием нетрадиционного сырья, например трудноутилизируемых техногенных отходов, содержащих гидроокись ниобия. Предусмотрена высокая степень извлечения ниобия в сплав с меньшими материальными и энергетическими затратами и себестоимостью производства, а также улучшение экологии технологического процесса.
Сущность предлагаемого изобретения и поставленная задача выражаются и решаются тем, что в известном способе получения феррониобия низкокремнистого, включающем подготовку запальной, ниобийсодержащей, восстановительной и рафинировочной частей шихты, их последовательную загрузку в плавильный агрегат и поэтапное проплавление, проведение процессов восстановления и рафинирования расплава, слив расплава в приемную изложницу, выдержку до затвердевания и разделку слитка на габаритные фракции, в качестве ниобийсодержащей части шихты используют отходы, содержащие гидроокись ниобия, а в качестве плавильного агрегата используют электродуговую печь, при этом сначала в электродуговую печь загружают и расплавляют запальную и ниобийсодержащую части шихты, а процессы восстановления и рафинирования расплава проводят при периодической подаче охладителя.
Раздельное расплавление всего количества ниобийсодержащей части шихты позволяет в дальнейшем осуществлять технологический процесс в стабильном надежном и регулируемом режиме. Последовательная загрузка и поэтапное проплавление оставшейся части шихтовых материалов проводят на жидкий расплав отходов, содержащих гидроокись ниобия. В результате расплавления отходов, содержащих гидроокись ниобия, и порядка введения компонентов шихты, заявленного количества и состава в расплав образуются высшие окислы ниобия, при наличии которых алюмотермический процесс протекает интенсивно с большим выделением тепла. Этот эффект позволяет сократить время технологического цикла в целом, снизить энергозатраты и повысить выход ниобия в конечный продукт.
Для регулирования температурного режима металлического и шлакового расплавов в периоды восстановительного и рафинировочного циклов на жидкий расплав подают охладительные балластные добавки. Этот прием исключает отклонения от заданных параметров процесса и предотвращает самопроизвольные выбросы шихтовых материалов или замедленный ход плавки.
В качестве охладительных добавок могут быть использованы оборотные шлаки феррониобиевого производства или известь. Количество охладителя и последовательность подачи его на расплав регулируют в зависимости от параметров алюмотермического процесса в восстановительно-рафинировочный период.
Преимущество использования гидроокиси ниобия в качестве ниобийсодержащего компонента проявляется в ее дешевизне, легкоплавкости и возможности получения при расплавлении высших окислов ниобия.
Последующая подача другой части шихтовых материалов осуществляется с гарантированным весом, составом и качеством смешивания шихтовых компонентов, так как их доля по сравнению с гидроокисью ниобия составляет значительно меньшую величину, что позволяет упростить технологический процесс на стадии подготовки шихтовых материалов и при их подаче на расплав гидроокиси ниобия.
По предлагаемому способу процессы восстановления и рафинирования можно проводить непосредственно в электродуговой печи после полного расплавления отходов, содержащих гидроокись ниобия.
При использовании в заявленном способе в качестве ниобийсодержащей части шихты отходов, содержащих гидроокись ниобия вместо пятиокиси ниобия, экспериментально установлен и рекомендуется при производстве феррониобия низкокремнистого состав шихтовых компонентов, при следующем относительном соотношении: отходы, содержащие гидроокись ниобия - 1, алюминиевый порошок - 0,35-0,45, железная руда и(или) окалина - 0,28-0,36, известь - 0,35-0,45.
Использование и реализация технологических параметров предлагаемого способа получения низкокремнистого феррониобия по сравнению с известным способом обеспечивает следующие преимущества:
- простота и стабильность технологического процесса;
- удешевление производства за счет использования отходов, содержащих гидроокись ниобия вместо дорогостоящей пятиокиси ниобия;
- повышение выхода ниобия в конечный продукт за счет более высокой жидкоподвижности расплава;
- улучшение экологии производства за счет снижения вредных выбросов.
Исходя из вышеизложенного, можно сделать вывод, что предлагаемый способ получения низкокремнистого феррониобия содержит совокупность новых существенных признаков, последовательность выполнения при определенных условиях осуществления действий. По сравнению с известным способом признаки, характеризующие заявленный способ, являются новыми существенными, что соответствует критерию "новизна".
Из известных источников информации не выявлено использования применяемых материалов, их количественных соотношений, порядка или совокупности самостоятельно отдельных новых существенных признаков в предлагаемом способе по их функциональному назначению и достигаемому результату, что соответствует критерию "изобретательский уровень".
Пример выполнения. На Ключевском заводе ферросплавов в электродуговой печи проведено семь плавок по предлагаемому способу. Израсходовано по компании 20000 кг отходов, содержащих гидроокись ниобия со средним содержанием окиси ниобия 62%. Количественный состав шихтовых материалов на каждую плавку рассчитывали по средним значениям, рекомендованным в заявленном способе, от массовой доли гидроокиси ниобия, равной 3000 кг.
На подину печи засыпали обычно применяемую в ферросплавном производстве запальную смесь, на которую загружали всю долю отходов, содержащих гидроокись ниобия. После розжига дуги печи и последующего полного расплавления отходов, содержащих гидроокись ниобия, на расплав подавали восстановительную часть шихты (известь, порошок алюминия, железную окалину). В восстановительный период для регулирования температурного и теплового режимов плавки в расплав вводили охладитель - молотый ниобийсодержащий шлак.
После завершения восстановительного периода осуществляли рафинировку расплава подачей в печь рафинировочной части шихты (порошок алюминия, железная окалина и железорудные окатыши) с регулированием температурно-теплового режима добавками ниобийсодержащего шлака.
Балансовый анализ проведенных плавок подтвердил преимущества предлагаемого способа получения низкокремнистого феррониобия по сравнению с известным (по удельным показателям, %): снижение расхода электроэнергии на 23, расхода порошка алюминия на 38, расхода извести на 20, сокращение времени технологического цикла на 15 и повышение коэффициента извлечения ниобия на 18.
Химический состав выплавленного низкокремнистого феррониобия с использованием трудноутилизируемых отходов, содержащих гидроокись ниобия, соответствует требованиям ГОСТ 16773 - 85. Технологический цикл подготовки, выплавки и разделки конечного продукта осуществлен на стандартном металлургическом оборудовании без отклонений регламентируемых параметров, последовательности операций и требований по соблюдению санитарных и экологических стандартов.
Источники информации
1. М. А. Рысс. Производство ферросплавов. Москва, "Металлургия">, 1985, стр. 307-316.
2. Технологическая инструкция (ТИ 141-Ф-042-91) ОАО "Ключевский завод ферросплавов".

Claims (4)

1. Способ получения низкокремнистого феррониобия, включающий подготовку запальной, ниобийсодержащей, восстановительной и рафинировочной частей шихты, их последовательную загрузку в плавильный агрегат и поэтапное проплавление, проведение процессов восстановления и рафинирования расплава, слив расплава в приемную изложницу, выдержку до затвердевания и разделку слитка на габаритные фракции, отличающийся тем, что в качестве ниобийсодержащей части шихты используют отходы, содержащие гидроокись ниобия, в качестве плавильного агрегата используют электродуговую печь, при этом сначала в электродуговую печь загружают и расплавляют запальную и ниобийсодержащую части шихты, а процессы восстановления и рафинирования расплава проводят при периодической подаче охладителя.
2. Способ по п. 1, отличающийся тем, что используют состав шихты при следующем количественном соотношении компонентов: отходы, содержащие гидроокись ниобия - 1, порошок алюминия - 0,35-0,45; железная руда и/или окалина - 0,28-0,36, известь - 0,35-0,45.
3. Способ по любому из п.1 или 2, отличающийся тем, что в качестве охладителя используют оборотный шлак феррониобиевого производства.
4. Способ по любому из п.1 или 2, отличающийся тем, что в качестве охладителя используют известь.
RU2000112461A 2000-05-17 Способ получения низкокремнистого феррониобия RU2173350C1 (ru)

Publications (1)

Publication Number Publication Date
RU2173350C1 true RU2173350C1 (ru) 2001-09-10

Family

ID=

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
РЫСС M.A. Производство ферросплавов. -М.: Металлургия, 1985, С.307-316. *
Технологическая инструкция. ТИ 141-Ф-04.2-91. Феррониобий низкокремнистый. ОАО "Ключевский завод ферросплавов", п. Двуреченск, 1991. *

Similar Documents

Publication Publication Date Title
CN100469932C (zh) 一种v2o5直接合金化炼钢工艺
RU2733772C1 (ru) Способ изготовления сплавов феррованадия на основе алюминотермического самораспространяющегося градиентного восстановления и рафинирования шлаком
RU2739040C1 (ru) Способ получения ферровольфрама на основе восстановления самораспространяющегося градиента алюминотермии и рафинирования шлака
CN101928847B (zh) 一种镁合金熔炼工艺
CN102534271B (zh) 一种钒铝合金的生产方法
CN106086608B (zh) 一种利用碳锰熔渣生产低碳锰硅合金的方法
CN103045929A (zh) 电铝热法生产钒铁的方法
CN106350675A (zh) 一种高品质AlV55合金的制备方法
CN108486313A (zh) 一种提升耐热钢晶间纯净度的熔炼工艺
CN101368244A (zh) 低碳锰铁的生产工艺
CN105112594A (zh) 倾翻炉冶炼钒铁的方法
CN104141025A (zh) 电铝热法钒铁浇铸脱铝的方法
CN104762488B (zh) 一种在电渣重熔过程中直接钒合金化的方法
CN103643056B (zh) 低碳锰铁的冶炼方法
CN103643094B (zh) 高碳锰铁的冶炼方法
RU2338805C2 (ru) Способ алюминотермического получения ферротитана
RU2173350C1 (ru) Способ получения низкокремнистого феррониобия
CN102839292A (zh) 用于铝硅镇静钢脱氧的超低钛超低碳高硅铝铁合金及其制备方法
CN106350674A (zh) 一种高品质AlV85合金的制备方法
CN113430398B (zh) 一种含有钒元素的JCr98级金属铬及其制备方法
CN109487091B (zh) 一种电渣重熔引弧剂及制备方法
CN101591748B (zh) 一种特碳含量范围的钒铝中间合金及其制备方法
RU2374349C1 (ru) Способ выплавки ванадийсодержащих сплавов
RU2455379C1 (ru) Способ выплавки низкоуглеродистых марганецсодержащих сплавов
RU2196843C2 (ru) Способ печной выплавки ферротитана из окислов титана