RU2172329C1 - Способ получения наполнителя на основе карбоната кальция - Google Patents

Способ получения наполнителя на основе карбоната кальция Download PDF

Info

Publication number
RU2172329C1
RU2172329C1 RU2000127886/12A RU2000127886A RU2172329C1 RU 2172329 C1 RU2172329 C1 RU 2172329C1 RU 2000127886/12 A RU2000127886/12 A RU 2000127886/12A RU 2000127886 A RU2000127886 A RU 2000127886A RU 2172329 C1 RU2172329 C1 RU 2172329C1
Authority
RU
Russia
Prior art keywords
calcium carbonate
pulp
chalk
drying
microns
Prior art date
Application number
RU2000127886/12A
Other languages
English (en)
Inventor
А.А. Лейба
И.А. Гладков
Original Assignee
Открытое акционерное общество "Стройматериалы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Стройматериалы" filed Critical Открытое акционерное общество "Стройматериалы"
Priority to RU2000127886/12A priority Critical patent/RU2172329C1/ru
Application granted granted Critical
Publication of RU2172329C1 publication Critical patent/RU2172329C1/ru

Links

Images

Abstract

Изобретение относится к области обработки неорганических материалов для улучшения их наполняющих свойств и может быть использовано при получении тонкодисперсного мела в качестве наполнителя в химической, резинотехнической, лакокрасочной, бумажной, электротехнической, косметической и других отраслях промышленности из высоковлажных мелов. Сущность изобретения заключается в дроблении природного карбоната кальция, его сушке при 300-350°С с последующим охлаждением и измельчением при 115-130°С, причем перед сушкой раздробленный карбонат кальция с содержанием влаги 35-41% под действием механических и гидравлических сил переводят в устойчивое вязко-пластическое пульпообразное состояние при участии добавочно вводимого дисперсанта в количестве не более 0,15% от массы пульпы, после чего подготовленную пульпу мелют в замкнутом цикле до содержания фракции с размером частиц больше 45 мкм не более 1% и подают на сушку. При содержании влаги в раздробленном карбонате кальция ниже заявляемых пределов его доводят до этого предела путем добавления в карбонат кальция воды в процессе приготовления пульпы. Согласно изобретению повышается выход продукта с фракцией частиц менее 10 мкм до 95,6-99,4%. 1 з.п.ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к области обработки неорганических материалов для улучшения их наполняющих свойств и может быть использовано при получении тонкодисперсного мела в качестве наполнителя в химической, резинотехнической, лакокрасочной, бумажной, электротехнической, косметической и других отраслей промышленности из высоковлажных мелов.
Возрастающая потребность многих отраслей промышленности в меловой продукции и ужесточение требований к ее качеству и экологии привело к усовершенствованию существующих и разработке новых способов по переработке мела. Наиболее важными требованиями к меловой продукции является содержание карбонатов и его крупность - тонина помола.
Производство качественных марок мела сосредоточено в России и в первую очередь на меловых заводах Белгородской области, что объясняется высоким содержанием карбонатов в исходном сырье от 96 до 99%. Эта особенность отечественных месторождений обусловила добычу и переработку мела по сухим технологиям.
Отечественные технологии переработки природного мела сухим способом позволяет получать мел марок - молотый и сепарированный.
В этих технологиях природный мел из карьера поступает на дробление, сушку, измельчение и классификацию, при этом влажность природного мела не должна превышать 20%.
Это ограничение объясняется тем, что прочность мела во многом зависит от влажности. При увлажнении мела в нем проявляются вязкопластические свойства, связанные с его разупрочнением, возникающим в результате нарушения естественных структурных связей в породе, обусловленного особенностью водоколлоидных и коагуляционных связей между его частицами, которые осуществляются с помощью молекулярного притяжения частиц через водные оболочки. Критическая влажность при которой мел переходит в разупроченное состояние, составляет 25-27% (Н.С. Иванов, Н.Ф. Мясников "Производство и потребление мела", с. 60, 217).
Мел влажностью 25% и выше под действием механического воздействия начинает разжижаться и налипать на узлы и детали оборудования, что приводит к отказу добычи и переработки мела с нижних, обводненных горизонтов, хотя содержание карбоната кальция в нем достигает до 99%. Однозначных технических решений по переработке влажного высококачественного мела нет. В этом случае целесообразно перейти на технологию переработки высоковлажного мела, включая элементы технологии мокрого обогащения.
Технология мокрого обогащения природного мела широко применяется на месторождениях Франции, Австрии, Англии и др., содержание карбоната кальция на которых составляет всего 80-85%. Низкое содержание карбоната кальция и обусловило появление этих способов. Эти способы позволяют получить высокодисперсный качественный мел, но отличаются высокими энергозатратами, сложным технологическим оборудованием и экологически не безопасны, в связи с чем их применение в России, обладающей месторождениями с содержанием карбоната кальция до 99%, нецелесообразно (Н.С. Иванов, Н.Ф. Мясников "Производство и потребление мела", с. 182-183).
В этом направлении известен способ получения тонкодисперсного мела по п. РФ N 2060943. Способ включает приготовление пульпы, ее отмучивание, первичное измельчение, обезвоживание и помол. Перед обезвоживанием пульпу диспергируют высокочастотной пульсацией в роторно-пульсационном аппарате, сушку ведут в статическом состоянии в поле высокой частоты, а помол проводят в воздушном потоке струйной мельницы (П N 2060943, БИ N 15, 27.03.96). Способ позволяет получать тонкодисперсный мел, но отличается высокими энергозатратами и сложностью технологического оборудования.
Также известен способ получения тонкодисперсного мела из природного мела по п. РФ N 2008260, включающий грубое дробление исходного сырья, магнитное сепарирование, мокрое размучивание с одновременным внесением дисперсанта - триполифосфата натрия или его смеси с углекислым натрием, удаление из суспензии частиц размером 5 мм, тонкое измельчение в струйных дезинтеграторах, обогащение в гидроциклонах, вторичное тонкое измельчение, отмывку суспензии водой, контрольный отсев, промежуточный сбор суспензии между стадиями тонкого измельчения, распылительную сушку. Внесение дисперсанта в количестве 0,02-0,09 от массы мела и составление его в смеси в массовом соотношении триполифосфат натрия : углекислый натрий как 1:9 позволяет сократить период сушки и снизить вязкость пульпы (П.N 2008260, БИ N 4, 28.04.94). К недостаткам способа также следует отнести высокие энергозатраты, сложность технологического оборудования и экологическую нагрузку.
Таким образом, несмотря на то, что сухие способы не решают однозначно проблему получения высокодисперсного наполнителя из высоковлажного мела, переход на известные технологии мокрой переработки также нецелесообразно для мелов с высоким содержанием карбоната кальция.
В связи с этим в качестве прототипа выбран способ получения наполнителя на основе карбоната кальция по а.с. N 1700025 по сухой технологии. Способ применим для сырья с высоким содержанием карбоната кальция и включает дробление природного карбоната кальция до размера частиц не более 80 мм с последующей сушкой раздробленного продукта при 300-350oC, охлаждением перед измельчением до 115-130oC и классификацию. Сушку осуществляют в средней зоне сушилки до массовой доли влаги 0,1 - 0,2%. Выбранный режим сушки не приводит к изменению структуры продукта. Охлаждение продукта после сушки 115-130oC препятствует образованию агрегатов в процессе измельчения.
Способ по прототипу обеспечивает получение наполнителя, в котором фракция с размером частиц менее 10 мкм составляет 80,0-84,5%. Выход продукта после классификации составляет 50%. Недостатками прототипа являются низкий выход продукта требуемой крупности и невозможность реализации способа при влажности природного карбоната кальция свыше 20%. Этот фактор сужает его применения на многих месторождениях, с большим содержанием влаги в природном сырье. Он также осложнен из-за колеблющейся по сезонам влажности мела, которая в летний период соответствует значению 18%, а в осенне-зимний период возрастает до 30%.
Задачей изобретения является создание экологичного безотходного способа получения тонкодисперсного наполнителя из природного мела с содержанием карбоната кальция не менее 97,0% и влажностью выше 20%.
Техническими результатами являются:
- обеспечение возможности получения высокодисперсного карбоната кальция из природного мела влажностью 20% и выше;
- повышение выхода фракции с размерами частиц менее 10 мкм;
- обеспечение экологичности;
- обеспечение безотходности способа.
Решение указанной задачи и достижение перечисленных технических результатов стало возможно благодаря тому, что в известном способе получения наполнителя на основе карбоната кальция, включающем дробление природного карбоната кальция, его сушку при 300-350oC с последующим охлаждением и измельчением при 115-130oC, раздробленный карбонат кальция при заявленных пределах влажности 35-41% перед сушкой, под действием механических и гидравлических сил, переводят в устойчивое вязкопластическое пульпообразное состояние при участии добавочно вводимого дисперсанта в количестве не более 0,15% от массы пульпы, после чего подготовленную пульпу мелют в замкнутом цикле до содержания фракции с размером частиц больше 45 мкм не более 1% и подают на сушку. При содержании влаги в раздробленном карбонате кальция ниже заявленных пределов, его доводят до этих пределов путем добавления в карбонат кальция воды в процессе приготовления пульпы.
Предложенная совокупность последовательности операций и количественных пределов позволяет без значительного повышения энергозатрат и трудоемкости обеспечить получение наполнителя, в котором фракция с размером частиц менее 10 мкм составляет 95,6 - 99,4% от массы природного карбоната кальция при влажности последнего 20% и выше. Достижение такого результата стало возможно путем обеспечения оптимального режима деструкции мела с учетом приложения механических и гидравлических внешних сил к нему в период его разупрочнения, т. е. в период ослабления и нарушения внутренних связей и закрепления этого результата путем подключения поверхностно-активных свойств вводимого в начальный момент этого процесса дисперсанта. Заявляемые пределы влажности раздробленного мела также обеспечивают оптимальные условия протекания этого процесса. Мел распускается до вязкопластического пульпообразного состояния. И приложение внешних сил к разрушающейся системе позволяет трансформировать ее в новое фазовое состояние со значительно меньшими затратами, чем было бы при измельчении высушенной массы. Полученная пульпообразная устойчивая масса легко подвергается транспорту по коммуникационной системе, при этом составляющие ее частицы мела в процессе транспорта дополнительно деструктируются за счет набухания и истирания, за счет скорости и турбулентного перемешивания подаваемого под давлением потока пульпы. Подготовленную пульпу с помощью вышеназванной совокупности операций подают на помол в замкнутом цикле, предусматривающий аналогичное приложение механических и гидравлических сил, но уже направленных на контролированное разрушение частиц до содержания фракции размером частиц больше 45 мкм не более 1%. Несоответствующая стандарту твердая фракция домеливается на этой же операции путем цикличного возврата в исходную точку. Это позволяет обеспечить безотходность и экологичность способа, устраняя значительный недостаток существующих аналогов мокрой переработки мела, а в отличие от прототипа позволяет достигнуть высокого выхода тонкодисперсной фазы, т.е. получить мел высшего качества. Приобретенные положительные свойства в процессе приготовления пульпы и помола в сочетании с благоприятным режимом сушки и измельчения позволяют гарантировать достижение такого результата. При этом равномерная дисперсность частиц и их покрытие путем обволакивания ультрамикропленкой поверхностно-активного вещества (дисперсанта) устраняет агрегацию частиц, позволяя получить легкую хрупкую пористую массу, легко подвергающуюся деструктивному воздействию до составляющих ее микрочастиц с размером менее 10 мкм, не слеживающихся в процессе хранения.
Заявляемая совокупность признаков не известна из существующего технического уровня и позволяет решить поставленную задачу.
Изобретение иллюстрируют чертежом, на котором представлена схема получения наполнителя на основе карбоната кальция, примерами конкретного исполнения и таблицей, в которую сведены полученные результаты.
Способ осуществляют следующим образом.
Природный комовый мел с содержанием карбоната кальция не менее 97% и влажностью более 20% направляют в приемный бункер 1, из приемного бункера питателем 2 мел подают на механизм дробления 3. Раздробленная масса поступает на узел приготовления пульпы 4, куда одновременно дозатором 5 подают дисперсант и по коммуникационной линии 6 - воду в заданном объеме, при влажности природного сырья менее 35%. Полученную массу подвергают воздействию механических и гидравлических сил до придания ей свойств равномерной устойчивой вязкопластической, пульпообразной массы. После этого пульпу по коммуникационной линии 7 насосом 8 подают на узел помола 9. Далее пульпа с содержанием фракции размером частиц больше 45 мкм не более 1% поступает на сушку, которую проводят в средней зоне сушилки 10 при температуре 300-350oC до достижения массовой доли влаги до 0,15%. Полученный продукт охлаждают до 115-130oC и измельчают в диспергаторе 11. Выход продукта с фракцией частиц менее 10 мкм составляет 95,6 - 99,4%.
Пример 1. В качестве сырья выбран природный карбонат кальция, содержащий, мас.%: CaCO3 и MgCO3 в перерасчете на CaCO3 97; нерастворимые в HCl 1,5; массовая доля полуторных окислов железа и алюминия 0,12.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 120
Влажность природного карбоната кальция, % - 35
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - -
Количество дисперсанта, % - 0,05
Температура сушки, oC - 350
Температура измельчения, oC - 130
Количество фракции с размером частиц не более 10 мкм, % - 95,6
Гранулометрический состав готового продукта, %:
+ 45 мкм - 0,09
-45 + 20 мкм - 2,71
-20 + 10 мкм - 1,6
-10 + 5 мкм - 24,1
-5 + 2 мкм - 58,4
-2 мкм - 13,1
Выход готового продукта, т - 3,25
Выход готового продукта, % - 100
Пример иллюстрирует нижнее значение заявленного предела по влажности природного карбоната кальция и максимальные значения температуры сушки и охлаждения с измельчением.
Пример 2. В качестве сырья выбран природный карбонат кальция, содержащий, мас. %: CaCO3 и MgCO3 в пересчете на CaCO3 98; нерастворимые в HCl 1,5; массовая доля полуторных окислов железа и алюминия 0,2.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 80
Влажность природного карбоната кальция, % - 38
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - -
Количество дисперсанта, % - 0,1
Температура сушки, oC - 325
Температура измельчения, oC - 123
Количество фракции с размером частиц не более 10 мкм, % - 95,9
Гранулометрический состав готового продукта, %:
+45 мкм - 0,06
-45 + 20 мкм - 0,94
-20 + 10 мкм - 3,1
-10 + 5 мкм - 14,6
-5 + 2 мкм - 28,7
-2 мкм - 52,6
Выход готового продукта, т - 3,1
Выход готового продукта, % - 100
Пример иллюстрирует среднее значение заявленного предела по влажности природного карбоната кальция и средние значения температуры сушки и охлаждения с измельчением.
Пример 3. В качестве сырья выбран природный карбонат кальция, содержащий, мас. %: CaCO3 и MgCO3 в пересчете на CaCO3 98,2; нерастворимые в HCl 1,25; массовая доля полуторных окислов железа и алюминия 0,11.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 100
Влажность природного карбоната кальция, % - 41
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - -
Количество дисперсанта, % - 0,1
Температура сушки, oC - 350
Температура измельчения, oC - 115
Количество фракции с размером частиц не более 10 мкм, % - 95,9
Гранулометрический состав готового продукта, %:
+45 мкм - 0,18
-45 + 20 мкм - 1,22
-20 + 10 мкм - 2,7
-10 + 5 мкм - 31,6
-5 + 2 мкм - 55,9
-2 мкм - 8,4
Выход готового продукта, т - 2,95
Выход готового продукта, % - 100
Пример иллюстрирует максимальное значение заявленного предела по влажности природного карбоната кальция и максимальные значения температуры сушки и минимальное значение температуры охлаждения с измельчением.
Пример 4. В качестве сырья выбран природный карбонат кальция, содержащий, мас.%: CaCO3 и MgCO3 в пересчете на CaCO3 97,5; нерастворимые в HCl 1,3; массовая доля полуторных окислов железа и алюминия 0,11.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 120
Влажность природного карбоната кальция, % - 30
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - -
Количество дисперсанта, % - 0,2
Температура сушки, oC - 340
Температура измельчения, oC - 120
Количество фракции с размером частиц не более 10 мкм, % - 90
Гранулометрический состав готового продукта, %:
+45 - 1,6
-45 + 20 мкм - 4,7
-20 + 10 мкм - 3,7
-10 + 5 мкм - 36,34
-5 + 2 мкм - 49,1
-2 мкм - 8,1
Выход готового продукта, т - 3,45
Выход готового продукта, % - -
Пример иллюстрирует величину влажности природного карбоната кальция ниже значения заявленного предела по влажности. Из-за снижения эффективности работы классификатора в узле измельчения выход фракции менее 10 мкм составил 90%.
Пример 5. В качестве сырья выбран природный карбонат кальция, содержащий, мас. %: CaCO3 и MgCO3 в пересчете на CaCO3 97,28; нерастворимые в HCl 1,35; массовая доля полуторных окислов железа и алюминия 0,17.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 150
Влажность природного карбоната кальция, % - 33
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - 1092
Количество дисперсанта, % - 0,1
Температура сушки, oC - 350
Температура измельчения, oC - 130
Количество фракции с размером частиц не более 10 мкм, % - 99,4
Гранулометрический состав готового продукта, %:
+45 - 0,00
-45 + 20 мкм - 0,00
-20 + 10 мкм - 0,6
-10 + 5 мкм - 32,1
-5 + 2 мкм - 50,0
-2 мкм - 17,3
Выход готового продукта, т - 3,35
Выход готового продукта, % - 100
Пример иллюстрирует величину влажности природного карбоната кальция ниже значения заявленного предела по влажности, добавление воды до величины влажности выше заявленного предела (45%), максимальные значения температуры сушки и охлаждения с измельчением.
Пример 6. В качестве сырья выбран природный карбонат кальция, содержащий, мас. %: CaCO3 и MgCO3 в перерасчете на CaCO3 97,8; нерастворимые в HCl 1,31; массовая доля полуторных окислов железа и алюминия 0,15.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 80
Влажность природного карбоната кальция, % - 30
Заявленный предел влажности, % - 35-41
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - 664
Количество дисперсанта, % - 0,2
Температура сушки, oC - 300
Температура измельчения, oC - 115
Количество фракции с размером частиц не более 10 мкм, % - 96,3
Гранулометрический состав готового продукта, %:
+45 - 0,2
-45 + 20 мкм - 0,9
-20 + 10 мкм - 2,6
-10 + 5 мкм - 26,5
-5 + 2 мкм - 56,3
-2 мкм - 13,5
Выход готового продукта, т - 3,5
Выход готового продукта, % - 100
Пример иллюстрирует величину влажности природного карбоната кальция ниже значения заявленного предела по влажности, добавления воды до величины влажности, среднего заявленного предела (38%), максимальное значение температуры сушки, минимальное значение температуры охлаждения с измельчением.
Пример 7 (прототип). В качестве сырья выбран природный карбонат кальция, содержащий, мас.%: CaCO3 и MgCO3 в пересчете на CaCO3 97,0; нерастворимые в HCl 2,3; массовая доля полуторных окислов железа и алюминия 0,5.
Количество природного карбоната кальция, т - 5
Размер раздробленных частиц, не более, мм - 80
Влажность природного карбоната кальция, % - 13
Заявленный предел влажности, % - -
Количество воды, добавленной в карбонат кальция для достижения значения в заявленном пределе влажности, л - -
Количество дисперсанта, % - -
Температура сушки, oC - 300
Температура измельчения, oC - 115
Количество фракции с размером частиц не более 10 мкм, % - 84,5
Гранулометрический состав готового продукта, %:
+45 мкм - -
-45 + 20 мкм - 3,6
-20 + 20 мкм - 11,9
-10 + 5 мкм - 19,8
-5 + 2 мкм - 28,5
-2 мкм - 36,2
Выход готового продукта, т - 2,0
Выход готового продукта, % - 50
Пример по прототипу иллюстрирует сухой способ получения наполнителя при минимальных значениях температуры сушки и охлаждением с измельчением.
Приведенные примеры (1-3 и 5, 6) доказывают промышленную применяемость способа и достижение ожидаемых технических результатов. Для значения влажности в заявленных пределах и при количестве дисперсанта 0,1% получают выход продукта после измельчения 100%, в котором мелкая фракция с размером частиц менее 10 мкм составляет 95,6 - 99,4%, в то время как по прототипу при влажности мела 13% выход продукта после классификации 50%, в котором мелкая фракция с размером частиц менее 10 мкм составляет 80,0 - 84,5%.
Для предложенного способа снижение влажности ниже 35% ухудшает его прохождение (пример 4) и необходимо добавлять воду для достижения ожидаемы результатов (примеры 5, 6).
При увеличении влажности выше заявленных пределов (пример 6), процесс работоспособен, но влечет увеличение энергозатрат на сушку.
Уменьшение количества дисперсанта до 0,05% ухудшает его текучесть и классификацию (пример 1).
Увеличение количества дисперсанта до 0,2% нецелесообразно с экономической точки зрения (примеры 6, 4).

Claims (2)

1. Способ получения наполнителя на основе карбоната кальция, включающий дробление природного карбоната кальция, его сушку при 300 - 350°С с последующим охлаждением и измельчением при 115 - 130°С, отличающийся тем, что раздробленный карбонат кальция при заявленных пределах влажности 35 - 41% перед сушкой под действием механических и гидравлических сил переводят в устойчивое вязко-пластическое пульпообразное состояние при участии добавочно вводимого дисперсанта в количестве не более 0,15% от массы пульпы, после чего подготовленную пульпу мелют в замкнутом цикле до содержания фракции с размером частиц больше 45 мкм не более 1% и подают на сушку.
2. Способ по п.1, отличающийся тем, что при содержании влаги в раздробленном карбонате кальция ниже заявляемых пределов его доводят до этих пределов путем добавления в карбонат кальция воды в процессе приготовления пульпы.
RU2000127886/12A 2000-11-10 2000-11-10 Способ получения наполнителя на основе карбоната кальция RU2172329C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000127886/12A RU2172329C1 (ru) 2000-11-10 2000-11-10 Способ получения наполнителя на основе карбоната кальция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000127886/12A RU2172329C1 (ru) 2000-11-10 2000-11-10 Способ получения наполнителя на основе карбоната кальция

Publications (1)

Publication Number Publication Date
RU2172329C1 true RU2172329C1 (ru) 2001-08-20

Family

ID=48232857

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000127886/12A RU2172329C1 (ru) 2000-11-10 2000-11-10 Способ получения наполнителя на основе карбоната кальция

Country Status (1)

Country Link
RU (1) RU2172329C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646432C1 (ru) * 2014-05-26 2018-03-05 Омиа Интернэшнл Аг Способ изготовления крошки , включающей в свой состав карбонат кальция
RU2663765C1 (ru) * 2015-01-07 2018-08-09 Омиа Интернэшнл Аг Способ получения ультрадисперсного gcc с высокими светорассеивающими свойствами и высоким содержанием твердого вещества

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646432C1 (ru) * 2014-05-26 2018-03-05 Омиа Интернэшнл Аг Способ изготовления крошки , включающей в свой состав карбонат кальция
RU2663765C1 (ru) * 2015-01-07 2018-08-09 Омиа Интернэшнл Аг Способ получения ультрадисперсного gcc с высокими светорассеивающими свойствами и высоким содержанием твердого вещества

Similar Documents

Publication Publication Date Title
CN101570343B (zh) 一种湿法制备水溶性油墨专用纳米碳酸钙的方法
CN105683300B (zh) 生产包含羧甲基纤维素基分散剂的高固体颜料悬浮液的方法
JPH10504514A (ja) 改良粉砕助剤組成物およびセメント製品
EP2209749A1 (en) Wet-grinding gypsum with polycarboxylates
CN107686322B (zh) 一种人造石废浆循环利用的方法
CN102985495A (zh) 矿物材料高固体悬浮液的制造方法
CN103693669A (zh) 一种压延膜专用纳米碳酸钙的制备方法
CN110951279A (zh) 一种超细针状硅灰石改性球形二氧化硅复合粉体的制备方法
CN106046860A (zh) 白炭黑/纳米钙复合浆料包覆湿法超细碳酸钙的制备方法
KR19990044587A (ko) 분쇄된 미립 물질의 현탁액을 제조하는 방법
RU2172329C1 (ru) Способ получения наполнителя на основе карбоната кальция
CN1415577A (zh) 高岭土煅烧加工生产工艺
CN108190935B (zh) 一种条片状碳酸钙超细颗粒的制备方法
CN105695001A (zh) 一种复合原料制备焦油型水煤浆添加剂及生产工艺
CN104743598A (zh) 一种造纸专用重钙的制备方法
KR19990044586A (ko) 분쇄된 미립물질 시스템을 제조하는 방법
JPH02232296A (ja) 石炭・水スラリーの製造方法
CN109704710B (zh) 一种动态连续生产超高强石膏的方法
CN106431176A (zh) 一种利用铸造废砂和电石渣生产蒸压砖的方法
CN111204774A (zh) 一种提高伊利石分散程度制备亚微米级伊利石干粉颗粒的方法
US2409546A (en) Methods of conditioning and treating lime and product thereof
CN110607195B (zh) 一种粗颗粒管道输送煤浆的制备方法
CN105001933A (zh) 用苛性白泥制造固硫环保型煤粘结剂
CN114436305A (zh) 一种板状勃姆石厚度控制方法
CN112661164A (zh) 一种以废液为原料制备水化硅酸钙的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081111