RU2171315C2 - Способ получения защитного покрытия на лопатках газовых турбин - Google Patents

Способ получения защитного покрытия на лопатках газовых турбин Download PDF

Info

Publication number
RU2171315C2
RU2171315C2 RU99119109A RU99119109A RU2171315C2 RU 2171315 C2 RU2171315 C2 RU 2171315C2 RU 99119109 A RU99119109 A RU 99119109A RU 99119109 A RU99119109 A RU 99119109A RU 2171315 C2 RU2171315 C2 RU 2171315C2
Authority
RU
Russia
Prior art keywords
layer
coating
deposition
vacuum
gas turbine
Prior art date
Application number
RU99119109A
Other languages
English (en)
Inventor
Е.Н. Каблов
С.А. Мубояджян
С.А. Будиновский
В.П. Бунтушкин
Я.А. Помелов
В.В. Терехова
Original Assignee
Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов filed Critical Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов
Priority to RU99119109A priority Critical patent/RU2171315C2/ru
Application granted granted Critical
Publication of RU2171315C2 publication Critical patent/RU2171315C2/ru

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом газотурбиностроении для защиты пера лопаток турбин от высокотемпературного окисления и коррозии. Способ предполагает осаждение вакуумно-дуговым методом на поверхность пера лопатки слоя из карбида металла, выбранного из группы титан, хром, ниобий, тантал, молибден, вольфрам, ванадий или гафний толщиной 1 - 6 мкм, затем последовательное осаждение слоя из жаростойкого сплава на основе никеля и внешнего слоя на основе сплава алюминия и вакуумный отжиг. Изобретение позволяет повысить ресурс покрытия в интервале рабочих температур 850 - 1250°С. 1 з.п. ф-лы.

Description

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом газотурбиностроении для защиты пера лопаток турбин от высокотемпературного окисления и коррозии.
В промышленности известен способ защиты лопаток газовых турбин от коррозии и высокотемпературного окисления, включающий нанесение на подложку первого слоя покрытия из моноалюминида никеля с 10 - 40% W, второго слоя покрытия на основе моноалюминида никеля и вакуумный отжиг [1]. Высокое содержание вольфрама в первом слое ограничивает диффузию алюминия в подложку, что повышает защитные свойства покрытия по сравнению с покрытием из чистого моноалюминида никеля, а соответственно и его ресурс.
Недостатком известного способа является низкая рабочая температура покрытия 1050oC, получаемая по известному способу и обусловленная диффузионной природой слоев покрытия.
Наиболее близким по технической сути к изобретению является способ защиты лопаток газовых турбин от высокотемпературной коррозии согласно патенту /2/, включающий последовательное осаждение в вакууме на внешнюю поверхность пера лопатки первого слоя конденсированного покрытия из никелевого сплава, содержащего хром, алюминий, тантал, иттрий, последующее осаждение второго слоя на основе алюминия и вакуумный отжиг при следующем соотношении компонентов, мас.%:
Хром - 6-14
Алюминий - 10-13,5
Тантал - 1,5 - 4,5
Иттрий - 0,1 -0,8
Никель - Остальное
Недостатком известного способа является высокая диффузионная подвижность легирующих элементов на границе сплав - покрытие при рабочей температуре покрытия 1150 - 1200oC, что ограничивает ресурс двухслойных покрытий как при высоких температурах ~1200oC, так и при умеренных температурах до 1000oC и ресурсах свыше (15 - 20)103ч.
Технической задачей данного изобретения является увеличение ресурса покрытия в широком интервале его рабочих температур.
Это достигается тем, что предлагается способ получения защитного покрытия на лопатках газовых турбин, включающий последовательное осаждение в вакууме на внешнюю поверхность пера лопатки первого слоя конденсированного покрытия из никелевого сплава, последующее осаждение второго слоя на основе алюминия и вакуумный отжиг, отличающийся тем, что перед осаждением первого слоя покрытия на поверхность пера лопатки осаждают вакуумно-дуговым методом слой из карбида металла, выбранного из группы титан, хром, ниобий, тантал, молибден, вольфрам, ванадий или гафний, а слой из карбида металла наносят толщиной 1 - 6 мкм.
Введение дополнительной операции нанесения на поверхность пера лопатки вакуумно-дуговым методом слоя из карбида металла толщиной 1 - 6 мкм обеспечивает формирование на поверхности основы плотной (беспористой) карбидной прослойки с адгезией свыше 100 мПа, благодаря высоким энергиям частиц при осаждении (150 - 400 эВ), что является эффективным барьером, ограничивающим диффузию легирующих элементов из покрытия в основу и диффузию тугоплавких элементов и в первую очередь вольфрама и молибдена из основы в покрытие, ухудшающих защитные свойства покрытия при высоких температурах 1150-1200oC. Высокий уровень адгезии карбидного слоя и вакуумный отжиг лопатки после осаждения внешнего слоя покрытия, приводящий к частичному рассасыванию карбидного слоя, обеспечивают высокую работоспособность многослойной композиции в широком интервале рабочих температур благодаря плавному изменению коэффициентов линейного расширения слоев от основы до внешнего слоя покрытия.
Сущность изобретения поясняется на примере.
Пример. Покрытие наносят на образцы и лопатки из жаропрочного никелевого сплава с направленной кристаллизацией типа ЖС26ВНК (сплав системы Ni-W-Co-Al-Cr-Nb-Mo-Ti-V-C). Покрытие наносят на промышленной ионно-плазменной установке МАП-1 по серийной технологии следующим образом.
Подготавливают покрываемые поверхности (образцы и лопатки) под нанесение покрытия (обезжиривают, опескоструивают электрокорундом, обдувают детали чистым сжатым воздухом, промывают в ультразвуковой ванне для окончательного удаления электрокорунда, сушат в вакуумном термошкафу).
Осаждают слой карбида металла (карбид титана или хрома) толщиной 1-6 мкм. Для осаждения образцы и лопатки устанавливают в кассеты, кассеты размещают в камеру напыления установки, создают в камере вакуум (P≅10-3 Па). Осаждение карбида металла проводят по режиму: ток дуги генератора металлической плазмы 700 А; напряжение дуги 35 - 38 В, напряжение на деталях (образцах и лопатках) в режиме ионной очистки ≥300 В; давление реактивного газа - ацетилена 6,5•10-2 - 3,4•10-1 Па (газ подают после завершения ионной очистки, продолжительность ионной очистки 3-5 мин); напряжение на деталях при осаждении карбида 80 - 200 В в зависимости от массы детали; температура осаждения карбидов составляет 450 - 600oC; время осаждения 4 - 24 мин. Затем детали охлаждают в высоком вакууме в течении 2 ч и выгружают кассеты из камеры напыления.
Подготавливают установку к нанесению слоя жаростойкого сплава на основе никеля (очищают камеру напыления и меняют катод из испаряемого материала). Загружают кассеты в камеру напыления, откачивают ее до высокого вакуума P≅ 103 Па и наносят слой жаростойкого сплава СДП-2 по ТУ 812 - 0065 - 85 (жаростойкий сплав системы Ni - 20% Cr - 12,5% Al - 0,3% Y;% по массе), толщиной 75 - 80 мкм по режиму: ток вакуумной дуги 750 А, напряжение на дуге 36-38 В, напряжение на деталях (образцах и лопатках) в режиме ионной очистки ≥280 В; продолжительность ионной очистки 3-5 мин; напряжение на деталях при осаждении покрытия ≥20 В; время осаждения покрытия 3 ч 30 мин. Затем детали охлаждают в высоком вакууме и выгружают кассеты из камеры напыления.
Подготавливают установку к нанесению внешнего слоя покрытия (очищают камеру напыления и меняют катод из испаряемого материала). Загружают кассеты в камеру напыления, откачивают ее до высокого вакуума P≅10-3 Па и наносят внешний слой покрытия из сплава ВСДП-11 (жаростойкий сплав системы Al - 5% Si - 1,5%Y по ТУ 1-595- 27-187-84), толщиной 15 - 20 мкм по режиму: ток вакуумной дуги 500 А, напряжение на дуге 35-36 В, напряжение на деталях в режиме ионной очистки ≥250 В; продолжительность ионной очистки 3 мин; время осаждения покрытия 45 мин - 1 ч. После детали охлаждают в высоком вакууме и выгружают кассеты из камеры напыления.
Вакуумный отжиг деталей с нанесенным покрытием производят по режиму: температура 1050oC, время отжига 3 ч.
Наличие карбидного слоя толщиной 1 - 6 мкм обеспечивает повышение в 1,2-2 раза циклической жаростойкости композиции жаропрочный сплав - жаростойкое покрытие при температуре испытаний 1150-1200oC и продолжительности цикла нагрева и охлаждения 1 ч. При меньшей толщине карбидного слоя эффект по повышению циклической жаростойкости становится соизмеримым с точностью измерений, а при толщинах свыше 6 мкм наблюдается отслоение покрытия по карбидной прослойке, что связано с большими внутренними напряжениями из-за отличия коэффициентов линейного расширения жаропрочного сплава и карбида. При изменении состава внутреннего и внешнего слоев покрытия можно получать покрытия стойкие к сульфидной коррозии при температуре до 1000oC. Наличие карбидной прослойки в таких композициях увеличивает циклическую коррозионную стойкость в расплаве Na2SO4 более чем в два раза.
Жаропрочные никелевые сплавы для лопаток турбин могут содержать следующие карбидообразующие элементы: Ti, Cr, Mo, W, V, Nb, Та и Hf. Наиболее стабильными карбидами типа МС (М-металл) являются TaC и HfC, далее - NbC, TiC, VC и Cr3C2. Поэтому для лопаток турбин из жаропрочных сплавов, легированных Та, Та и Hf, Hf, целесообразно в качестве карбида металла использовать карбиды тантала или гафния или ниобия, что в целом способствует повышению термостабильности защитного покрытия и увеличению ресурса покрытия при высоких температурах ~ 1250oC. Исходя из экономических соображений при создании трехслойного защитного покрытия целесообразно использование карбидов титана и хрома.
Вакуумно-дуговое осаждение беспористого карбидного слоя перед осаждением внутреннего слоя жаростойкого сплава на основе никеля повышает циклическую жаростойкость и коррозионную стойкость композиционных покрытий в 1,2-2 раза, а ресурс работы лопаток в целом на 50-60%. Одновременно наличие карбидного слоя, ограничивающего диффузионные потоки на границе сплав - покрытие, обеспечивает увеличение максимальной рабочей температуры покрытия с 1200 до 1250oC, что важно для лопаток турбин теплонапряженных ГТД.
Применение изобретения в промышленности для получения нового класса защитных жаростойких и коррозионностойких покрытий на лопатки турбин позволит значительно (до двух раз) повысить ресурс лопаток, что даст значительный экономический эффект, т.к. лопатка является одной из дорогих и массовых деталей газотурбинного двигателя.
Литература:
1. Патент США N 3 450 572
2. Патент РФ N 2033474 по классу С 23 С 14/00, опубл. 20.04.95, бюл. N 11.

Claims (2)

1. Способ получения защитного покрытия на лопатках газовых турбин, включающий последовательное осаждение в вакууме на внешнюю поверхность пера лопатки первого слоя конденсированного покрытия из никелевого сплава, последующее осаждение второго слоя на основе алюминия и вакуумный отжиг, отличающийся тем, что перед осаждением первого слоя покрытия на поверхность пера лопатки осаждают вакуумно-дуговым методом слой из карбида металла, выбранного из группы титан, хром, ниобий, тантал, молибден, вольфрам, ванадий или гафний.
2. Способ по п.1, отличающийся тем, что слой из карбида металла наносят толщиной 1 - 6 мкм.
RU99119109A 1999-09-01 1999-09-01 Способ получения защитного покрытия на лопатках газовых турбин RU2171315C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99119109A RU2171315C2 (ru) 1999-09-01 1999-09-01 Способ получения защитного покрытия на лопатках газовых турбин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99119109A RU2171315C2 (ru) 1999-09-01 1999-09-01 Способ получения защитного покрытия на лопатках газовых турбин

Publications (1)

Publication Number Publication Date
RU2171315C2 true RU2171315C2 (ru) 2001-07-27

Family

ID=20224641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99119109A RU2171315C2 (ru) 1999-09-01 1999-09-01 Способ получения защитного покрытия на лопатках газовых турбин

Country Status (1)

Country Link
RU (1) RU2171315C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899612A (zh) * 2012-09-21 2013-01-30 中国科学院金属研究所 采用多弧离子镀制备以Cr2 AlC为主相的高温防护涂层的方法
RU2525878C1 (ru) * 2013-04-12 2014-08-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Нанокомпозит на основе никель-хром-молибден
RU2610188C1 (ru) * 2015-10-07 2017-02-08 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ защиты деталей газовых турбин из никелевых сплавов
RU2677824C2 (ru) * 2017-03-27 2019-01-21 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ВакЭТО" (ООО НПП ВакЭТО) Способ изготовления деталей высокотемпературного нагревателя вакуумной электропечи сопротивления из карбида тантала
RU206356U1 (ru) * 2021-06-26 2021-09-07 Антон Владимирович Новиков Лопатка турбины для газотурбинных двигателей и энергетических установок

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899612A (zh) * 2012-09-21 2013-01-30 中国科学院金属研究所 采用多弧离子镀制备以Cr2 AlC为主相的高温防护涂层的方法
RU2525878C1 (ru) * 2013-04-12 2014-08-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Нанокомпозит на основе никель-хром-молибден
RU2610188C1 (ru) * 2015-10-07 2017-02-08 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ защиты деталей газовых турбин из никелевых сплавов
RU2677824C2 (ru) * 2017-03-27 2019-01-21 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ВакЭТО" (ООО НПП ВакЭТО) Способ изготовления деталей высокотемпературного нагревателя вакуумной электропечи сопротивления из карбида тантала
RU206356U1 (ru) * 2021-06-26 2021-09-07 Антон Владимирович Новиков Лопатка турбины для газотурбинных двигателей и энергетических установок

Similar Documents

Publication Publication Date Title
JP4191427B2 (ja) 改良プラズマ溶射熱ボンドコート系
KR100354411B1 (ko) 부식,산화및과도한열응력으로부터부품을보호하기위한보호층및그제조방법
US11859499B2 (en) Turbine clearance control coatings and method
EP0844368B2 (en) Partial coating for gas turbine engine airfoils to increase fatigue strength
US8910379B2 (en) Wireless component and methods of fabricating a coated component using multiple types of fillers
CA2517298C (en) Process for applying a protective layer
EP1995350B1 (en) High temperature component with thermal barrier coating
US9511436B2 (en) Composite composition for turbine blade tips, related articles, and methods
US6645560B2 (en) Oxidation resistant coatings for niobium-based silicide composites
EP1340833B1 (en) Hybrid thermal barrier coating and method of making the same
JPH09296702A (ja) 断熱被覆製品並びに被覆法
JPH04254567A (ja) チタンの酸化防止用の被膜系
JP5905336B2 (ja) 発電用ガスタービン翼、発電用ガスタービン
US20020127112A1 (en) Enhanced coating system for turbine airfoil applications
EP2093307B1 (en) Cathodic arc deposition coatings for turbine engine components
RU2171315C2 (ru) Способ получения защитного покрытия на лопатках газовых турбин
Tucker An overview of alternative coatings for wear and corrosion resistance
EP3470543A1 (en) Coated component and method of preparing a coated component
Kablov et al. Ion-plasma protective coatings for gas-turbine engine blades
KR20160107244A (ko) 마멸성 코팅을 가지는 구성요소 및 마멸성 코팅을 코팅하기 위한 방법
EP1431416A1 (en) Protective Ti-Al-Cr-N coating
Bernstein High Temperature Coatings For Industrial Gas Turbine Users.
US20070128458A1 (en) Protection of metallic surfaces against thermally-inducted wrinkling (rumpling)
EP0987345B1 (en) Thermal barrier coating system