RU2164045C2 - Способ очистки жидких отходов атомных электростанций - Google Patents

Способ очистки жидких отходов атомных электростанций Download PDF

Info

Publication number
RU2164045C2
RU2164045C2 RU99108113A RU99108113A RU2164045C2 RU 2164045 C2 RU2164045 C2 RU 2164045C2 RU 99108113 A RU99108113 A RU 99108113A RU 99108113 A RU99108113 A RU 99108113A RU 2164045 C2 RU2164045 C2 RU 2164045C2
Authority
RU
Russia
Prior art keywords
water
nuclear power
condensate
radionuclides
bypass
Prior art date
Application number
RU99108113A
Other languages
English (en)
Inventor
Л.В. Шмаков
Ю.В. Гарусов
В.М. Тишков
В.И. Черемискин
Г.А. Денисов
А.В. Черникин
Г.М. Лемберг
Original Assignee
Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина
Закрытое акционерное общество Научно-производственное объединение "Энергоатоминвент"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина, Закрытое акционерное общество Научно-производственное объединение "Энергоатоминвент" filed Critical Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина
Priority to RU99108113A priority Critical patent/RU2164045C2/ru
Application granted granted Critical
Publication of RU2164045C2 publication Critical patent/RU2164045C2/ru

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Изобретение относится к области ядерной технологии, а именно к способам переработки жидких отходов атомных электростанций (АЭС). Сущность изобретения: способ переработки жидких радиоактивных отходов (ЖРО) атомных электростанций включает выпаривание ЖРО в выпарных аппаратах, охлаждение конденсата вторичного пара, очистку и обессоливание его на фильтрах. Часть обессоленного конденсата - дебалансную воду - концентрируют, многократно пропуская ее через испарительную градирню и теплообменный аппарат, и удаляют радионуклиды в системе байпасной очистки. В качестве теплообменного аппарата используют конденсаторы вторичного пара и холодильники штатной установки для переработки ЖРО, а в качестве системы байпасной очистки используют штатную систему переработки ЖРО. Данный способ способствует улучшению экологической ситуации в районе расположения АЭС, так как предотвращает выход в окружающую среду значительного количества радионуклидов. 2 з.п. ф-лы, 1 табл., 2 ил.

Description

Изобретение относится к области ядерной технологии, а именно к переработке жидких отходов атомных электростанций (АЭС), и может быть использовано при утилизации дебалансных вод АЭС.
В процессе работы АЭС образуются жидкие радиоактивные отходы (ЖРО), состоящие из трапных вод (организованные протечки основного и вспомогательного оборудования, вода санпропускников и саншлюзов, сливы лабораторий, сливы от мытья пола и дезактивации помещений), растворы от регенерации и отмывки ионообменных и угольных фильтров, вод намыва и регенерации намывных перлитных фильтров, вод гидротранспорта отработанных ионообменных смол и фильтр перлита, отработанных растворов от дезактивации и отмывки оборудования и трубопроводов, вод гидроиспытаний и опрессовки оборудования и трубопроводов, отработанных вод спецпрачечной. Образующиеся ЖРО направляют на переработку, которая состоит из выпаривания в выпарных аппаратах, деаэрирования конденсата в деаэраторах, очистки конденсата от масел на угольных и намывных перлитных фильтрах, дальнейшего глубокого обессоливания на ионообменных фильтрах (1, стр. 127; 2, стр. 135-168). Кубовый остаток выпарных аппаратов с солесодержанием 300-400 г/дм3 направляют на временное хранение и дальнейшую переработку, которая может заключаться в его битумировании, цементировании, остекловывании и получении солевого плава. Обессоленный конденсат, по качеству соответствующий подпиточной воде реактора, вновь используют для различных нужд АЭС: подпитки контуров ядерной энергетической установки, приготовления регенерационных и дезактивационных растворов, гидроиспытаний и опрессовки оборудования и трубопроводов, стирки спецодежды и других собственных технических нужд. Получаемый обессоленный конденсат имеет электропроводность не более 0,1 мкСм/см, значение pH 7,0, содержание солей жесткости не более 0,2 мкг-экв/кг, хлорид иона не более 4-50 мкг/кг (3, стр. 34; 4, стр. 192). Поскольку часть ЖРО образуется за счет попадания хозпитьевой и технической воды, то количество обессоленного конденсата превышает потребность для собственных нужд. Разницу между реально получаемым количеством обессоленного конденсата и потребностью для собственных нужд называют дебалансной водой.
Сброс жидких отходов в водоемы, в том числе моря и океаны практикуется во всем мире (5, стр. 66-74). При сбросе дебалансных вод в водоемы хозяйственного, рыбопромыслового, рыборазводного назначения и отдыха используется понятие "допустимый сброс", персонально определенный для каждой АЭС в технико-экономическом обосновании проекта. Территориальными природоохранными органами по согласованию с органами санитарно-эпидемиологического надзора утверждаются проектные значения выбросов и сбросов радиоактивных веществ и оформляется заключение и их соответствие дозовой квоте, которая может быть выделена для данной АЭС с учетом сложившейся радиационной обстановки и радиационного воздействия на регион планируемого размещения АЭС региональных и отдаленных радиационно-опасных предприятий. Причем в проекте и при эксплуатации АЭС дозы облучения критической группы населения не должны превышать 5% от установленного НРБ-76/87 (6, стр.9-10). При этом величина удельной радиоактивности в сбрасываемой воде может быть установлена значительно ниже величины ДКб, регламентируемой Нормами радиационной безопасности (7). Такой подход совершенно справедлив, поскольку при попадании в водоемы происходит концентрирование радионуклидов:
- пена - 100-10000 раз;
- фитопланктон - 500-75000 раз;
- зеленые водоросли - 800-50000 раз;
- личинки насекомых - 100-100000 раз;
- рыба - 100-30000 раз;
(5, стр.61-65; 8, стр. 25-42). Таким образом, для снижения влияния радиационно опасных производств на население необходимо максимально снижать производимые сбросы. При продолжительной эксплуатации АЭС в результате физического износа оборудования возрастает количество протечек технической воды, подсосов в конденсаторах, а соответственно и циклов регенераций ионообменных фильтров. В результате количество образовавшейся дебалансной воды может превысить проектное значение, а поступление радионуклидов в гидросферу может превысить величину допустимого сброса. Практика показывает, что количество дебалансных вод снизить практически невозможно, и, как правило, они возрастают с увеличением возраста АЭС и степенью износа оборудования.
Наиболее близким по заявляемой сущности аналогом является утилизация жидких отходов атомных электростанций путем выпаривания, охлаждения конденсата вторичного пара, очистки и дальнейшего обессоливания его на фильтрах, с последующим направлением обессоленного конденсата на нужды АЭС и сбросом дебалансной воды в водоемы. (5, стр.201-204).
Недостатком ближайшего аналога является выход всех содержащихся в дебалансной воде радионуклидов в окружающую среду, а также бесполезная потеря обессоленного конденсата.
Задачей, решаемой изобретением, является повышение степени очистки путем уменьшения выхода радионуклидов в окружающую среду и полезного использования дебалансной АЭС.
Сущность изобретения состоит в том, что в способе очистки жидких радиоактивных отходов атомных электростанций, включающем выпаривание жидких радиоактивных отходов АЭС в выпарных аппаратах, охлаждение конденсата вторичного пера, очистку и обессоливание его на фильтрах, предложено концентрировать часть обессоленного конденсата - дебалансную воду, многократно пропуская его через испарительную градирню и теплообменный аппарат, и удалять радионуклиды в системе байпасной очистки. В качестве теплообменного аппарата предложено использовать конденсаторы вторичного пара и холодильники штатной установки переработки жидких радиоактивных отходов, а в качестве системы байпасной очистки - штатную систему переработки жидких радиоактивных отходов. При определенных условиях может быть применена система байпасной очистки, состоящая из комплекса механических, сорбционных и ионообменных фильтров.
Новизна способа заключается в том, что при охлаждении воды в градирне часть ее испаряется и переходит в атмосферу без кипения, и при этом не происходит испарения радионуклидов, так как они находятся в виде растворенных в воде солей. Это приводит к увеличению концентрации радионуклидов в оборотной воде до величин, при которых становится возможным отбирать часть оборотной воды на байпасную очистку и улавливать часть радионуклидов с организацией эффективного радиометрического контроля за процессом. При этом радионуклиды выводятся из оборотной воды и в составе кубового остатка выпарных аппаратов или регенератов ионообменных фильтров направляются на дальнейшую переработку совместно с другими ЖРО АЭС. Для реализации способа на АЭС организуют локальную систему оборотного водоохлаждения, включающую в себя: требующий подачи охлаждающей воды теплообменный аппарат, градирню и систему байпасной очистки оборотной воды. В качестве требующего подачи охлаждающей воды теплообменного аппарата целесообразно использовать конденсаторы вторичного пара и холодильники перерабатывающих ЖРО АЭС штатных выпарных установок. Выпарные установки выбраны с учетом годового количества образующихся дебалансных вод, а именно, потребление греющего пара в выпарном аппарате должно приблизительно соответствовать величине испаряющейся воды в градирне. В качестве градирни необходимо использовать только испарительные градирни, каплеунос в которых не превышает 0,1-0,01%. К таковым можно отнести современные пленочные или эжекторные испарительные градирни, снабженные эффективными водоуловителями (9, стр. 81). Байпасная очистка может осуществляться на последовательно включенных: механическом фильтре, сорбционном фильтре, ионообменных фильтрах или фильтрах с селективным сорбентом на радионуклиды цезия, например, на основе ферроцианидов никеля, железа, меди, на основе термоксидов циркония или каких-либо других высокоэффективных цеолитов. Также в качестве системы байпасной очистки можно использовать штатную систему переработки ЖРО, при этом часть охлаждающей оборотной воды надо направлять на выпаривание совместно с ЖРО. При реализации данного способа ограничивается сброс дебалансной воды в гидросферу, снижается выход радионуклидов в окружающую среду, который в данном случае обуславливается лишь каплеуносом в градирне. В системе байпасной очистки улавливаются, выводятся из оборота и направляются на переработку радионуклиды, находит полезное применение обессоленный конденсат, который не вызывает коррозии охлаждаемого оборудования. Использование градирен в технике известно, например, для создания систем оборотного водоохлаждения, предназначенных для экономии охлаждающей технической воды (9, 10). Здесь испарение влаги и концентрирование примесей в оборотной воде играет отрицательную роль, и принимаются, меры направленные на их устранение. Так используют радиаторные градирни и аппараты воздушного охлаждения, в которых отсутствует процесс испарения оборотной воды, а в системах с испарительными градирнями для уменьшения солесодержания производят периодическое обновление (продувку) оборотной воды со сбросом ее в водные бассейны или использованием для технических нужд, после которых она также попадает в окружающую среду (9, стр.83; 10, стр. 114, 164, 183). В предлагаемом способе нельзя использовать брызгальные бассейны, открытые, башенные и вентиляторные градирни с капельными или брызгальными оросителями, охладители, каплеунос в которых может достигать 2-3%. Можно использовать испарительные пленочные или эжекционные испарительные градирни, снабженные эффективными водоуловителями, каплеунос в которых не превышает 0,1-0,01%. Испарение влаги и концентрирование радионуклидов в предлагаемом способе играет положительную роль, так как только при увеличении концентрации радионуклидов может эффективно работать система байпасной очистки и появляется возможность контролировать процесс очистки. Здесь градирня выступает в новом для нее качестве, в качестве испарителя и сепаратора пара условного выпарного аппарата.
Охлаждаемый оборотной водой теплообменный аппарат в данном сравнении является вынесенной греющей камерой условного выпарного аппарата. Он определяет производительность системы по количеству утилизируемых жидких отходов АЭС (дебалансной воды) и имеет возможность изменять тепловую нагрузку в соответствии с потребностью в данный момент, т.к. количество дебалансной воды не постоянно во времени и может меняться в зависимости от времени года, проводимых плановых ремонтов и наличия аварийных ситуаций. Использование, в качестве требующего подачи охлаждающей воды теплообменного аппарата, конденсаторов и холодильников выпарных аппаратов системы переработки ЖРО предпочтительно, поскольку легко позволяет изменять тепловую нагрузку путем уменьшения или увеличения расхода греющего пара в выпарном аппарате. В отличие от используемой в технике продувки оборотной воды, в системе охлаждения с градирней предлагается использовать систему байпасной очистки оборотной воды от радионуклидов. Это становится возможным из-за очень низкого содержания солей в очищенном конденсате, благодаря чему до минимума снижается поступление нерадиоактивных балластных солей в ЖРО.
Примеры конкретного выполнения 1 и 2 можно проследить по фиг. 1 и 2.
ЖРО АЭС (поз.1) подают в выпарные аппараты на выпаривание (поз.2). При этом процессе образуются: кубовый остаток (поз.9), который далее направляют на хранение и переработку (поз. 10), и конденсат вторичного пара в конденсаторе выпарного аппарата (поз.3). Для отвода выделяющегося при конденсации пара тепла в трубное пространство конденсатора подают холодную техническую воду (поз. 11), а выходит из конденсатора теплая техническая вода (поз.12). Конденсат вторичного пара затем охлаждают в холодильнике (поз.4), куда для удаления тепла подают холодную техническую воду (поз.11), а удаляют теплую техническую воду (поз. 12). Охлажденный конденсат подают в систему (поз.5) механических, сорбционных, ионообменных фильтров и др. для удаления масел, поверхностно-активных веществ и солей. Полученный обессоленный конденсат направляют на нужды АЭС, что составляет 70-90% от его общего количества (поз.8), а 10-30% от его общего количества составляет дебалансная вода (поз. 7). Поскольку дебалансная вода теплая, ее подают на подпитку в пленочную испарительную градирню, где она охлаждается (поз.13) и смешивается с общим потоком охлажденной воды. Охлажденную в градирне воду (поз.15) подают для отвода тепла из части конденсаторов и холодильников (поз.3 и 4), которые должны быть отключены от подачи технической воды. Отводимую из них нагретую воду (поз.15) направляют на охлаждение в градирню (поз.13). При многократной циркуляции воды по контуру и ее испарении: градирня (поз.13) - охлажденная вода (поз. 14) - теплообменные аппараты, требующие подачи охлаждающей воды (поз. 3 и 4) - нагретая вода (поз.15) - градирня (поз.13), происходит концентрирование радионуклидов и создаются условия для их улавливания и удаления. В примере конкретного выполнения 1 (фиг.1), где в качестве системы байпасной очистки используют имеющуюся на АЭС систему переработки ЖРО, часть циркулирующей воды отбирают, смешивают с другими ЖРО АЭС (поз.1) и в общем потоке направляют на выпаривание (поз.2). При этом процессе количество дебалансной воды (поз.7) возрастает на величину отобранной на байпасную очистку воды. В примере конкретного выполнения 2 (фиг.2), где в качестве системы байпасной очистки используют механические, сорбционные и ионообменные фильтры, часть охлажденной воды (поз.14) направляют на фильтры (поз.16) и после очистки смешивают с потоком нагретой воды (поз.15). Удаление радионуклидов происходит периодически с регенератами, промывными водами и водой взрыхления в момент восстановления работоспособности фильтров или же совместно с отработанными фильтрматериалами.
Эффективность функционирования системы утилизации дебалансных вод можно оценить на примере Ленинградской АЭС, учитывая следующие конкретные данные:
- удельная радиоактивность очищенного конденсата составляет Ад=5·10-11 Ku/дм3;
- количество дебалансной воды 80000 м3/год;
- необходимая производительность системы утилизации жидких отходов (дебалансной воды) Gд = 10 м3/ч;
- качество воды после байпасной очистки соответствует качеству очищенного конденсата;
- расход на байпасную очистку Gб м3/ч;
- удельная радиоактивность оборотной воды Aоб Ku/дм3;
- производительность по оборотной воде Gоб = 1000 м3/ч;
- потери оборотной воды с каплеуносом, Gунос = 0,01-0,1% от производительности по оборотной воде 1000 м3/ч·Gунос/ 100% = 0,1-1 м3/ч;
Эффективность работы предлагаемого способа можно оценить по отношению количества выводимой из системы радиоактивности к величине радиоактивности поступающей на переработку:
Эф.%=Gбобд)·100% / Ад(Gд+Gб);
Величину Аоб можно найти из уравнения баланса радиоактивности:
5·10-11 Ku/дм3·1000 дм33·(10 м3/ч+Gб)=АобKu/дм3·1000дм33 (Gунос+Gб)
Результаты расчетов приведены в таблице 1.
Уже с расхода на байпасную очистку 2% от производительности системы утилизации жидких отходов (поз.2) можно говорить о заметной эффективности работы предлагаемого способа, здесь удаляется 15-60% радиоактивности. При дальнейшем увеличении расхода на байпасную очистку 5, 10, 20, 50, 100% (поз. 3, 4, 5, 6 и 7) эффективность работы возрастает до 98%. Это означает, что такое количество радионуклидов по отношению к исходному улавливается в системе переработки и не попадает в окружающую среду, дебалансная вода не сбрасывается в гидросферу региона, а полезно используется для охлаждения действующего оборудования. Расход на байпасную очистку менее 2% нельзя применять из-за низкой эффективности системы, а более 100% нецелесообразно из-за достаточности получаемого эффекта.
Предлагаемый способ может быть осуществлен с использованием выпускаемого отечественной промышленностью оборудования. Он позволяет повысить степень очистки и предотвратить выход в окружающую среду значительной части радионуклидов, что способствует улучшению экологической ситуации в районе расположения АЭС. Достигается экономический эффект за счет уменьшения выхода из строя теплообменного оборудования, обусловленного снижением коррозии при охлаждении его обессоленным конденсатом.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Ядерная энергетика, человек и окружающая среда / Бабаев Н.С., Демин В. Ф. , Ильин Л.А. и др.; под. ред. акад. Александрова А.П., М., Энергоатомиздат, 1984, 312 с.
2. А. С. Копылов, Е.И.Верховский. Спецводоочистка на атомных электростанциях: М.: Высшая школа, 1988. - 208 с.
3. Очистка вод атомных электростанций / Кульский Л.А., Страхов Э.Б., Волошинова А.М. и др., Киев, Наукова думка, 1979, 209 с.
4. Атомные электрические станции. Учебник для вузов по специальности "Атомные станции и установки" / Маргулова Т.Х., М., "Высшая школа", 1974, 359 с.
5. Очистка радиоактивно-загрязненных вод лабораторий и исследовательских ядерных реакторов. Изд. 3-е, переработанное и дополненное/ Хоникевич А.А. Атомиздат, 1974, 312 с.
6. Правила и нормы в атомной энергетике. Санитарные правила проектирования и эксплуатации атомных станций (СП-АС-88/93)/2-е издание, исправленное и дополненное, 1993, 85 с.
7. Нормы радиационной безопасности. НРБ 76/87. Приложение 2.
8. Основы очистки вод от радиоактивных загрязнений / Кузнецов Ю.В., Щебетковский В. Н. , Трусов А.Г., под ред.чл.-кор. АН СССР В.М.Вдовенко, изд. 2-е, перер. и доп., М., Атомиздат, 1974, 360 с.
9. Беличенко Ю.П. Замкнутые системы водообеспечения химических производств. М.: Химия, 1990, 208 с.
10. Шабалин А.Ф. Оборотное водоснабжение промышленных предприятий. М., Стройиздат, 1972, 296 с.

Claims (3)

1. Способ очистки жидких отходов атомных электростанций путем выпаривания, охлаждения конденсата вторичного пара, очистки и обессоливания его на фильтрах, отличающийся тем, что часть обессоленного конденсата - дебалансную воду - концентрируют, многократно пропуская через пленочную испарительную градирню и теплообменный аппарат, и удаляют радионуклиды в системе байпасной очистки.
2. Способ по п.1, отличающийся тем, что в качестве теплообменного аппарата используют конденсаторы вторичного пара и холодильники штатной установки переработки жидких радиоактивных отходов.
3. Способ по п.1, отличающийся тем, что в качестве системы байпасной очистки используют штатную систему переработки жидких радиоактивных отходов.
RU99108113A 1999-04-15 1999-04-15 Способ очистки жидких отходов атомных электростанций RU2164045C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99108113A RU2164045C2 (ru) 1999-04-15 1999-04-15 Способ очистки жидких отходов атомных электростанций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99108113A RU2164045C2 (ru) 1999-04-15 1999-04-15 Способ очистки жидких отходов атомных электростанций

Publications (1)

Publication Number Publication Date
RU2164045C2 true RU2164045C2 (ru) 2001-03-10

Family

ID=20218758

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99108113A RU2164045C2 (ru) 1999-04-15 1999-04-15 Способ очистки жидких отходов атомных электростанций

Country Status (1)

Country Link
RU (1) RU2164045C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488421C1 (ru) * 2012-03-07 2013-07-27 Виталий Алексеевич Узиков Способ концентрирования жидких растворов
RU2601413C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ переработки жидких радиоактивных отходов
RU2601448C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ обработки жидких радиоактивных отходов
RU2601415C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ ликвидации жидких радиоактивных отходов
US20220162103A1 (en) * 2020-11-23 2022-05-26 Algignis, Inc. Environmental remediation, heat recovery, water purification, biomaterials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ХОНИКЕВИЧ А.А. Очистка радиоактивно-загрязненных вод лабораторий и исследовательских ядерных реакторов. - М.: Атомиздат, 1974, р.201-204. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488421C1 (ru) * 2012-03-07 2013-07-27 Виталий Алексеевич Узиков Способ концентрирования жидких растворов
RU2601413C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ переработки жидких радиоактивных отходов
RU2601448C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ обработки жидких радиоактивных отходов
RU2601415C1 (ru) * 2015-10-23 2016-11-10 Анатолий Павлович Ефимочкин Способ ликвидации жидких радиоактивных отходов
US20220162103A1 (en) * 2020-11-23 2022-05-26 Algignis, Inc. Environmental remediation, heat recovery, water purification, biomaterials

Similar Documents

Publication Publication Date Title
US4532045A (en) Bleed-off elimination system and method
US8092656B2 (en) Method and apparatus for high efficiency evaporation operation
EA009398B1 (ru) Способ производства пара высокого давления из отработанной воды
EP1539645B1 (en) Method and system for heat transfer
CN107140779A (zh) 一种核电站蒸发器排污水的零排放处理系统及其处理方法
US6616851B1 (en) System and method for treating water circulating in open-circuit cooling systems
RU2164045C2 (ru) Способ очистки жидких отходов атомных электростанций
KR20150060723A (ko) 증기 발전 설비의 공정 폐수 회수 방법
JPS60183595A (ja) 沸騰水型原子力発電プラントの運転方法
US5055237A (en) Method of compacting low-level radioactive waste utilizing freezing and electrodialyzing concentration processes
JP5417292B2 (ja) 洗濯廃液の処理方法
CN207108723U (zh) 一种核电站蒸发器排污水的零排放处理系统
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
JP2013148365A (ja) 放射性廃液処理装置
Kikuchi et al. Development of a laundry waste treatment system
PL191963B1 (pl) Urządzenie do oczyszczania cieczy w postaci pary wodnej, pochodzącej z obiegu
JP6137972B2 (ja) 原子炉構造物の腐食抑制方法及び腐食抑制装置
RU150156U1 (ru) Установка по очистке жидких радиоактивных отходов от трития
CN111681798B (zh) 一种小型核设施退役现场放射性废水处理装置
JP2892827B2 (ja) 原子力発電所の脱塩装置
JPH03186800A (ja) 放射性廃液処理設備
Jayan et al. A STUDY ON THE DESIGN OF THERMOSYPHON EVAPORATOR USED IN NUCLEAR WASTE VOLUME REDUCTION METHOD
JPS6148798A (ja) サイトバンカプ−ル水浄化設備
CN208250031U (zh) 锅炉蒸汽取样水回收装置
Pratama et al. Design of vacuum evaporator for optimization of corrosive liquid radioactive waste treatment

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160416