RU2163943C2 - Способ управления процессом кристаллизации и устройство для его осуществления - Google Patents

Способ управления процессом кристаллизации и устройство для его осуществления Download PDF

Info

Publication number
RU2163943C2
RU2163943C2 RU99110643A RU99110643A RU2163943C2 RU 2163943 C2 RU2163943 C2 RU 2163943C2 RU 99110643 A RU99110643 A RU 99110643A RU 99110643 A RU99110643 A RU 99110643A RU 2163943 C2 RU2163943 C2 RU 2163943C2
Authority
RU
Russia
Prior art keywords
heating elements
growth
heat
crystallization process
thermocouple
Prior art date
Application number
RU99110643A
Other languages
English (en)
Other versions
RU99110643A (ru
Inventor
А.Е. Кох
Н.Г. Кононова
В.Е. Кох
Original Assignee
Институт минералогии и петрографии СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт минералогии и петрографии СО РАН filed Critical Институт минералогии и петрографии СО РАН
Priority to RU99110643A priority Critical patent/RU2163943C2/ru
Publication of RU99110643A publication Critical patent/RU99110643A/ru
Application granted granted Critical
Publication of RU2163943C2 publication Critical patent/RU2163943C2/ru

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к выращиванию кристаллов. Технический результат - обеспечение условий бесконтактного управляемого тепломассопереноса в кристаллизационной среде. Управление процессом кристаллизации основано на бесконтактном возбуждении азимутальных круговых течений - вынужденной конвекции в ростовом объеме посредством вращения (ротации) теплового поля. Вращение теплового поля достигается тем, что по наружной стенке ростового тигля или кристаллизатора и, следовательно, по периметру растущего кристалла создают циклическое движение тепловой волны посредством поочередного подключения с заданной частотой отдельных нагревательных элементов печи. В устройстве управления процессом кристаллизации, содержащем ростовой тигель или кристаллизатор, вокруг которого размещен нагреватель, выполненный из отдельных вертикальных нагревательных элементов, регулирующую дифференциальную термопару, блоки управления нагревом и контроля температуры, регулирующая дифференциальная термопара выполнена из отдельных элементов, рабочие спаи которой расположены синхронно между отдельными нагревательными элементами. Устройство дополнительно содержит формирователь частоты переключений нагревательных элементов и тиристорный блок формирователя напряжения на нагревательных элементах, связанные с регулирующей термопарой. 2 с. п.ф-лы, 5 ил.

Description

Изобретение относится к области выращивания кристаллов, в частности к обеспечению условий бесконтактного управляемого тепломассопереноса в кристаллизационной среде.
Конфигурация теплового поля и процессы конвективного тепломассопереноса в кристаллизационной среде являются основополагающими факторами при выращивании кристаллов многих материалов.
В последнее время наблюдается устойчивая тенденция к поиску оптимальных условий выращивания кристаллов при значениях температурных градиентов порядка 1 град/см и менее. Наиболее распространенным способом создания тепловых полей в области рабочих температур до 1200-1400oC является использование резистивных нагревательных печей с нагревателем спиралевидной формы. С целью создания необходимого распределения температуры в ростовой печи нагреватель может быть секционирован с управлением зонами нагрева от отдельных терморегуляторов. Для этой же цели часто применяют различную плотность намотки спирали и/или изменяют шаг расположения большой спирали вокруг муфеля (И.А.Фельдман. Расчеты и исследования многозонных электропечей сопротивления прецизионного нагрева. - М.: ВНИИЭМ, 1966, с. 14). Недостаток использования печи подобной конструкции заключается в отсутствии осевой симметрии теплового поля, особенно в торцевых частях нагревателя (И.А.Фельдман, М.Б.Гутман, Г.К. Рубин, Н.И.Шадрич. Расчет нагревателей электрических печей сопротивления. - М. : Энергия, 1966), и связанной с этим сложностью изготовления секционированных многозонных нагревателей с осесимметричным тепловым полем на границах между зонами нагрева. Стремление создать тепловое поле с радиальным градиентом температуры порядка 1 град/см может приводить к смещению оси симметрии теплового поля от центра и к образованию отрицательного радиального градиента в значительном угловом секторе. И в данном случае, пренебрегать первоначальной радиальной асимметрией теплового поля уже нельзя.
При выращивании некоторых материалов (например, боратов) из растворов-расплавов, обладающих высокими значениями динамической вязкости, конвективное движение жидкости проявляется в очень малой степени. Вследствие недостаточного перемешивания нарушается однородность раствора-расплава, что может приводить к гравитационной или иной дифференциации, и получение качественного кристалла становится проблематичным или даже невозможным. Явление концентрационного переохлаждения и ячеистый рост являются типичными для таких систем. В таких случаях принудительное перемешивание раствора-расплава может быть достигнуто использованием формообразователя-мешалки (ФМ), расположенной соосно с ростовым тиглем и внутри него (A.Kokh. Crystal growth through forced stirring of melt or solution in Czochralski configuration. - J. Crystal Growth. 1998, v. 191, p. 774-778; A.E.Kokh, N.G.Kononova. Crystal growth through forced stirring of melt or solution in Czochralski configuration - II. - J. Crystal Growth. 1999, v. 198-199, p. 161-164; A.E.Kox. Устройство для выращивания монокристаллов. - Решение о выдаче патента РФ на изобретение. Заявка N 97111347/25 (011823) с приоритетом от 2 июля 1997 г.).
Рассмотренный выше и другие известные методы активизации вынужденной конвекции, такие как вращение кристалла и/или тигля, так или иначе основаны на активном (контактном) воздействии какого-либо конкретного физического тела на расплав. Этим методам, как правило, сопутствуют вибрации вращательных механизмов и необходимость создания зазоров и/или уплотнений, усложняющих ростовые установки и, главное, вносящих элемент случайных возмущающих воздействий на процесс роста кристалла и являющихся просто-напросто источниками загрязнений.
Из известных способов управления процессом кристаллизации путем воздействия на тепловое поле печи наиболее близким по технической сущности является способ и устройство для управления тепловым полем, заключающийся в регулировании изменения соотношения между токами, подводимыми к зонам нагрева многозонной печи, сформированными отдельно коммутируемыми нагревательными элементами. Это изменение производится установкой различных напряжений задатчиков температуры терморегуляторов, управляющих токами нагрузки зон печи по сигналам регулирующих термопар, рабочие спаи которых помещают вблизи нагревательных элементов в средней части каждой из зон (А.Е.Кох, В.Е.Кох, В.А. Гец, Н. Г. Кононова. Прецизионная нагревательная печь для выращивания кристаллов. - ПТЭ, 1998, N 4, с. 153-158).
Данная система управления обеспечивает создание осесимметричного теплового поля с четкими горизонтальными границами между зонами нагрева печи, при этом ось симметрии теплового поля практически совпадает с осью симметрии печи, а положительный радиальный градиент температуры сохраняется во всех направлениях.
Недостатком данной системы управления тепловым полем является его стационарность. В стационарных тепловых полях могут возникать естественно-конвективные течения только в радиальном направлении, что, как правило, не обеспечивает достаточное перемешивание в кристаллизационной среде вблизи фронта кристаллизации. В результате в кристаллах проявляется "фундаментальная" слоистость, ухудшающая качество выращиваемых кристаллов (М. Г.Мильвидский, В.Б.Освенский. Проблемы современной кристаллографии.- М.: Наука, 1975, с. 79-109; В.Н.Аполлонов. Механизм и условия роста ритмичнопостроенных кристаллов. - ДАН, 1999, т. 364, N 1, с. 94-96).
С учетом сложившейся ситуации в данной области техники настоящее изобретение ставит своей целью управление процессом кристаллизации путем воздействия на осесимметричное тепловое поле и на процесс вынужденной конвекции в ростовом объеме, основанное на бесконтактном возбуждении азимутальных круговых течений - вынужденной конвекции в ростовом объеме посредством вращения (ротации) теплового поля.
Вращение теплового поля достигается тем, что создают циклическое движение тепловой волны по наружной стенке ростового тигля или кристаллизатора и, следовательно, по периметру растущего кристалла посредством поочередного подключения с заданной частотой отдельных нагревательных элементов печи.
В устройстве управления процессом кристаллизации, включающем ростовой тигель или кристаллизатор, вокруг которого размещен нагреватель, выполненный из отдельных вертикальных нагревательных элементов, регулирующую дифференциальную термопару, блоки управления нагревом и контроля температуры, регулирующая дифференциальная термопара выполнена из отдельных элементов, рабочие спаи которой расположены синхронно между отдельными нагревательными элементами. Устройство дополнительно содержит формирователь частоты переключений нагревательных элементов и тиристорный блок формирования напряжения на нагревательных элементах, связанные с регулирующей термопарой.
Примеры, подтверждающие возможность осуществления изобретения, проверены на процессах кристаллизации из водных растворов и раствор-расплавов под воздействием вращающегося теплового поля со ссылкой на прилагаемые чертежи.
Фиг. 1: а) схема кристаллизатора для выращивания кристаллов из водных растворов; б) схема системы управления тепловым полем и вместе с тем конвективным тепломассопереносом в кристаллизаторе. Фиг. 2 - схема установки для выращивания кристаллов из раствор-расплавов в условиях ротации теплового поля. Фиг. 3 - схема терморегулирования групп нагревательных элементов и диаграмма тепловой волны. Фиг. 4, 5 - тепловое поле внутри ростового тигля, создаваемое тепловой волной.
Пример 1.
Кристаллизатор для выращивания кристаллов из водных растворов (фиг. 1а) содержит стакан с раствором (1), затравочный кристалл (2) с держателем, 20 равномерно расположенных по окружности внутри кварцевой трубы (3) резистивных нагревательных элементов (4). На плотно прилегающей к стакану (1) крышке (5) установлен дополнительный кольцевой нагреватель (6) для предотвращения образования на ней конденсата. Между нагревательными элементами укреплены 20 последовательно соединенных медь-константановых термопар (7), холодные спаи которых помещены в термостат при 0oC.
Устройство работает следующим образом (фиг. 1б).
Суммарная ЭДС от 20 термопар ε - сигнал отрицательной обратной связи - сравнивают с напряжением задатчика температуры (ЗТ) Ut, и образующийся при этом разностный сигнал ошибки регулирования δ поступает на вход ПИД-регулятора, который управляет силовым блоком (БС). На выходе силового блока формируется напряжение нагрузки U0, которое в тиристорном блоке (БТ) поочередно коммутируется на нагревательные элементы U01, U02...U020 с частотой f. Частота переключений f вырабатывается в формирователе частоты. Задатчик температуры, ПИД-регулятор и силовой блок выполнены на базе терморегулятора типа РИФ-101.
Предложенный способ и устройство управления процессом кристаллизации посредством подключения нагревательных элементов в динамическом режиме с заданной частотой переключения позволяет стабильно поддерживать среднюю температуру в зоне роста кристалла и при этом имеется возможность задания амплитуды и частоты колебаний температуры в широком диапазоне значений. В данном кристаллизаторе были выращены прозрачные кристаллы KDP объемом несколько кубических сантиметров.
Пример 2 (фиг. 2).
Основу установки для выращивания кристаллов из раствор-расплавов представляет прецизионная нагревательная печь (1) с вертикальным расположением нагревательных элементов (2) (в данном случае 15 штук). Диаметр муфеля печи 90 мм. Внутри печи на пьедестале (3) установлен платиновый тигель (4) диаметром 80 мм. Пьедестал укреплен на штоке с возможностью вертикального перемещения для поиска оптимального положения тигля внутри печи. Сверху печь зарыта крышкой (5) с центральным отверстием для ввода затравкодержателя (6) и двух боковых отверстий для визуального наблюдения и подсветки.
Устройство управления работает следующим образом (фиг. 3).
Сигналом отрицательной обратной связи является ЭДС дифференциальной хромель-алюмелевой термопары (7, фиг. 2), состоящей из 15 рабочих спаев, находящихся между нагревательными элементами печи. Такая конструкция регулирующей термопары обеспечивает устойчивое регулирование средней температуры с сохранением осевой симметрии теплового поля при динамическом режиме подключения нагревательных элементов. Суммарная ЭДС такой дифференциальной термопары, состоящей из нечетного числа рабочих спаев, равного количеству нагревательных элементов, с точностью до ошибки регулирования, равна ЭДС одинарной термопары для случая стационарного теплового поля, т.е. когда по всем нагревательным элементам протекает одинаковый ток нагрузки. Холодные концы термопары термостатируются. Далее ЭДС регулирующей термопары ε сравнивается с напряжением задатчика температуры Ut, и разностный сигнал ошибки регулирования δ поступает на вход ПИД-регулятора. ПИД-регулятор управляет силовым блоком.
Задатчик температуры, ПИД-регулятор и силовой блок представляют собой серийно выпускаемый Феодосийским приборостроительным заводом терморегулятор типа РИФ-101. Но в приведенном примере на выходе силового блока установлена не одна, а пять пар тиристоров, что дает возможность поочередной подачи напряжения U0 на пять групп нагревательных элементов, каждая из которых состоит из 3-х размещенных через 120o и соединенных последовательно нагревательных элементов. Такое подключение нагревательных элементов обеспечивает так называемый трехзаходной режим ротации теплового поля, т.е. по наружной стенке ростового тигля циклически движется тепловая волна, состоящая из трех пиков с разрядкой через 120o. Диаграмма тепловой волны показана в центре фиг. 3. Ритмичность переключения тиристорных пар определяется частотой f, которая вырабатывается в формирователе частоты, угловая скорость вращения тепловой волны равна 2πf.
Таким образом, предложенный способ и устройство управления процессом кристаллизации создают вращение (ротацию) теплового поля внутри ростового тигля, которое может быть охарактеризовано графиками, представленными на фиг. 4 и 5. На первом графике показаны амплитудные значения изменения температуры у края и в центре тигля в зависимости от периода ротации (1/f) теплового поля. При высоких частотах ротации имеем стационарное тепловое поле, как для случая одинакового тока нагрузки на всех 15 нагревательных элементах. С увеличением периода ротации амплитуда колебаний температуры у стенок тигля возрастает, а средняя температура уменьшается при неизменном значении напряжения Ut задатчика терморегулятора. Выше некоторого значения периода ротации возникают колебания температуры и в центре тигля, что, по-видимому, связано с потерей осевой симметрии конвективных потоков. Условно можно выделить границу частот, после которой в тигле устанавливается нерегулярная конвекция, когда минимальное значение температуры у края тигля (MINк) сравнивается с максимальным значением в центре (MAXц). Очевидно, что такой режим конвекции, правее этой границы может эффективно использоваться для гомогенизации раствор-расплавов. В настоящее время в большинстве случаев гомогенизация достигается использованием мешалок, что является трудоемкой технологической операцией, требующей переоснастки установки в разогретом состоянии.
На втором графике фиг. 5 показано трехмерное распределение температуры по радиусу (пространственная развертка тепловой волны) в зависимости от времени при некотором постоянном значении 1/f = 50 с. Средняя температура в соответствии с графиком на фиг. 5 убывает от 754,5oC у стенки тигля до 753,2oC в центре. Амплитуда колебаний также убывает от 0,6 до 0,1o по экспоненциальному закону.
Предложенный способ и устройство реализованы при выращивании кристаллов CLBO (CsLiB6O10) из раствор-расплавной системы CsLiB6O10-LiCsMoO4. Поскольку плотность кристалла меньше плотности растворителя (LiCsMoO4), то спонтанно образовавшийся и растущий при понижении температуры в ростовой печи кристалл плавает на поверхности. И при ротации теплового поля кристалл приобретает вращательное движение. Так, например, при частоте f = 0,033 Гц и поперечном размере кристалла 12-15 мм угловая скорость его вращения составляла около 5 об/час. Этот опыт послужил еще одним убедительным доказательством возможности возбуждения круговых вынужденных течений в цилиндрическом тигле с расплавом посредством ротации теплового поля.
Затем был осуществлен процесс выращивания кристалла на монокристаллическую затравку, прикрепленную к неподвижному затравкодержателю. Перед затравлением с целью гомогенизации раствор-расплава температура в печи повышалась на 50oC, а частота f уменьшалась до 0,01 Гц. После 12 часов такого режима гомогенизации частота увеличивалась до рабочего значения, а температура снижалась до значения, на 3-4oC превышающего равновесную температуру. После нескольких касаний и оплавлений затравки определялась равновесная температура (после каждого оплавления температура снижалась на 0,5-0,7oС) и производилось выращивание кристалла при скоростях охлаждения от 0,3 до 1,0 град/сут.
Было проведено три опыта при частотах 0,067, 0,033 и 0,021 Гц. Первый кристалл имел около 20% визуально-прозрачного объема, остальное - молочно-белая масса. Во втором опыте доля прозрачной части в кристалле увеличилась до 80-90%. Третий кристалл был лишен визуально видимых включений почти полностью и имел высокую оптическую однородность.
Таким образом, предложенное решение свидетельствует о потенциально высоких возможностях данного способа и устройства управления процессом кристаллизации с учетом того, что оптимизация f-параметра (оптимизация частоты поочередного подключения нагревательных элементов) требует детального исследования применительно к каждому конкретному материалу.

Claims (2)

1. Способ управления процессом кристаллизации путем воздействия на тепловое поле и конвективный тепломассоперенос в ростовом объеме, отличающийся тем, что по наружной стенке ростового тигля или кристаллизатора создают циклическое движение тепловой волны посредством поочередного подключения с заданной частотой нагревательных элементов печи.
2. Устройство управления процессом кристаллизации, содержащее ростовой тигель или кристаллизатор, вокруг которого размещен нагреватель, выполненный из отдельных вертикальных нагревательных элементов, регулирующую дифференциальную термопару блоки, управления нагревом и контроля температуры, отличающееся тем, что регулирующая дифференциальная термопара выполнена из отдельных элементов, рабочие спаи которой расположены синхронно между нагревательными элементами, устройство дополнительно содержит формирователь частоты переключений нагревательных элементов и тиристорный блок формирования напряжения на нагревательных элементах, связанные с регулирующей термопарой.
RU99110643A 1999-05-11 1999-05-11 Способ управления процессом кристаллизации и устройство для его осуществления RU2163943C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99110643A RU2163943C2 (ru) 1999-05-11 1999-05-11 Способ управления процессом кристаллизации и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99110643A RU2163943C2 (ru) 1999-05-11 1999-05-11 Способ управления процессом кристаллизации и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU99110643A RU99110643A (ru) 2001-02-27
RU2163943C2 true RU2163943C2 (ru) 2001-03-10

Family

ID=20220133

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99110643A RU2163943C2 (ru) 1999-05-11 1999-05-11 Способ управления процессом кристаллизации и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2163943C2 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
КЕРВАЛИШВИЛИ П.Д. "О возможности улучшения перемешивания расплава". - Изв. АН СССР". Сер. "Неорганические материалы", 1980, т.16, N 10, с.1727-1732. *
КОХ А.Е. и др. Прецизионная нагревательная печь для выращивания кристаллов. "Приборы и техника эксперимента", 1998, N 4, с.153-158. *

Similar Documents

Publication Publication Date Title
Kokh et al. Application of a rotating heat field in Bridgman–Stockbarger crystal growth
US4203951A (en) Apparatus for growing single crystals from melt with additional feeding of comminuted charge
US6139627A (en) Transparent multi-zone crystal growth furnace and method for controlling the same
Vegad et al. Review of some aspects of single crystal growth using Czochralski crystal growth technique
US6712904B1 (en) Device for producing single crystals
Meyer et al. Forced convection in vertical Bridgman configuration with the submerged heater
RU2163943C2 (ru) Способ управления процессом кристаллизации и устройство для его осуществления
US4615760A (en) Suppression or control of liquid convection in float zones in a zero-gravity environment by viscous gas shear
Kokh et al. Crystal growth under heat field rotation conditions
RU2507319C1 (ru) Способ выращивания кристаллов парателлурита гранной формы и устройство для его осуществления
CN109415843A (zh) 单晶硅的制造方法
US4267154A (en) Apparatus for manufacturing high quality crystals
CN2559657Y (zh) 一种双控温晶体生长炉
JPH09175889A (ja) 単結晶引き上げ装置
Kokh Crystal growth through forced stirring of melt or solution in Czochralski configuration
JPS6046073B2 (ja) 半導体単結晶の製造方法
KR100255780B1 (ko) 실리콘 단결정의 육성
RU2320791C1 (ru) Способ выращивания кристаллов и устройство для его осуществления
US20080053367A1 (en) Method and apparatus for manufacturing a tube
Kokh et al. II. Crystal growth through forced stirring of melt or solution in Czochralski configuration
RU2791646C1 (ru) Способ кристаллизации крупногабаритных легированных германиевых слитков в виде дисков и пластин и устройство для его реализации
Majchrowski et al. Czochralski growth of oxide single crystals under conditions of forced convection in the melt
Kokh et al. Change of symmetry and rotation of thermal field as a new method of control of heat and mass transfer in crystal growth (by example of β-BaB 2 O 4)
JPH02172885A (ja) シリコン単結晶の製造方法
PL172510B1 (pl) Urzadzenie do monokrystalizacji metoda Czochralskiego PL