RU2162934C2 - Способ гравийной набивки вскрытого промежутка подземного пласта - Google Patents

Способ гравийной набивки вскрытого промежутка подземного пласта Download PDF

Info

Publication number
RU2162934C2
RU2162934C2 RU97115104/03A RU97115104A RU2162934C2 RU 2162934 C2 RU2162934 C2 RU 2162934C2 RU 97115104/03 A RU97115104/03 A RU 97115104/03A RU 97115104 A RU97115104 A RU 97115104A RU 2162934 C2 RU2162934 C2 RU 2162934C2
Authority
RU
Russia
Prior art keywords
perforations
formation
hydraulic fracturing
particles
well
Prior art date
Application number
RU97115104/03A
Other languages
English (en)
Other versions
RU97115104A (ru
Inventor
Гарнер Джоунс Ллойд
Original Assignee
Мобил Ойл Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мобил Ойл Корпорейшн filed Critical Мобил Ойл Корпорейшн
Publication of RU97115104A publication Critical patent/RU97115104A/ru
Application granted granted Critical
Publication of RU2162934C2 publication Critical patent/RU2162934C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Abstract

Изобретение относится к способам гидравлического разрыва пласта и гравийной набивки скважины подземной формации. Техническим результатом является создание условий для более эффективного протекания жидкостей из формации через перфорации ствола скважины. Способ включает формирование перфораций в обсаженном стволе скважины, примыкающем к вскрытому промежутку, и размещение рабочей колонны в стволе скважины, при этом рабочая колонна включает фильтр гравийной набивки, который лежит вблизи вскрытого промежутка с образованием затрубного пространства вскрытого промежутка, при размещении рабочей колонны внутри ствола скважины. Затем производят процессы закачивания чистой жидкости в указанное затрубное пространство вскрытого промежутка и из него через перфорации в пласт для выдавливания тем самым любого закупоривающего материала из перфораций для того, чтобы все они стали проницаемыми для потока, прекращение закачивания чистой жидкости, закачивание суспензии, содержащей частицы, в затрубное пространство вскрытого промежутка для подачи частиц через альтернативные пути потока к уровням внутри вскрытого промежутка для осаждения тем самым частиц в перфорациях и в затрубном пространстве до тех пор, пока указанные перфорации и затрубное пространство вскрытого промежутка не заполняются частицами. Техническое решение развивается в зависимых пунктах. 7 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способу гидравлического разрыва пласта и гравийной набивке скважины подземной формации и в одном из его аспектов относится к способу гидравлического разрыва пласта и гравийной набивке вскрытого промежутка подземной формации(ций), где гравийный фильтр, имеющий альтернативные пути потока, сначала располагается внутри ствола скважины, примыкающего к вскрытому промежутку, перед тем, как, по существу, чистая жидкость разрыва пласта (т.е. гель, не содержащий, по существу, посторонних примесей) закачивается с относительно высокой скоростью потока для очистки перфораций в обсадных трубах скважины и для гидравлического разрыва пласта, после чего суспензия, содержащая частицы (например, гравий), закачивается с более низкой скоростью потока для того, чтобы поддерживать формацию и производить гравийную набивку ствола скважины вокруг фильтра.
При освоении продуктивного или нагнетаемого промежутка подземного пласта(тов) в пределах обсаженного ствола скважины, обычно перфорируют обсадную трубу, примыкающую к промежутку, и "гидравлически разрывают" формацию путем закачивания жидкости (например, геля) в низ ствола скважины и в формацию через перфорации в обсадной трубе. Обсаженный ствол скважины, непосредственно примыкающий к промежутку, затем подвергается "гравийной набивке" путем опускания скважинного фильтра в обсадную трубу и заполнением затрубного пространства скважины между обсадной трубой и фильтром "гравием" (например, песком). Гравий подбирается по размеру таким образом, чтобы позволить протекать жидкости через гравий и в фильтр, при этом блокируя поток измельченного материала.
Существует основная проблема в этого типа освоении скважины, состоящая в том, что перфорации обсадной трубы часто закупориваются обломками и/или посторонними материалами, которые выпадают из жидкости, которая обычно присутствует в стволе скважины в процессе операций освоения пласта. Таким образом, когда "гравийная набивка" (т.е. фильтр, окруженный песком) впоследствие помещается внутри ствола скважины, протекание жидкостей из формации через эти закупоренные перфорации блокируется или сильно затрудняется, тем самым оказывая серьезное влияние на оптимальную набивку перфорации и освоение скважины.
Для облегчения этой проблемы в процессе освоения скважин с гравийной набивкой, промывное устройство помещают в нижний конец рабочей колонны и опускают в ствол скважины для вымывания и удаления любого закупоривающего материала из перфораций. Затем рабочая колонна и промывное устройство удаляются и вторая колонна с гравийно-набитым фильтром в ее нижнем конце помещается в ствол скважины. Суспензию, содержащую "гравий" (например, песок), закачивают в низ рабочей колонны и выкачивают через "переходник" в затрубное пространство, образованное между обсадной колонной и фильтром.
Когда песок осаждается из суспензии в затрубном пространстве скважины с образованием гравийной набивки в обсадной трубе вокруг фильтра, он также "забивает" перфорации проницаемым песком. Как будет очевидно специалисту в этой области, адекватная набивка перфораций считается очень важной в любом успешном освоении скважины с гравийной набивкой. К сожалению, однако, эта двухстадийная процедура первоначального опускания и удаления промывного устройства на рабочей колонне и затем опускания рабочей колонны с гравийной набивкой и фильтра являются в обоих случаях расточительными и дорогими.
С появлением в последнее время "технологии с использованием альтернативного пути потока" стало возможным теперь опускание единичной рабочей колонны с гравийной набивкой, имеющей фильтр в ее нижнем конце, в ствол скважины и затем использование этой единичной колонны в обоих процессах гидравлического разрыва пласта и помещения гравия в пределах формации, перфораций и затрубного пространства скважины вокруг фильтра. В этого типа освоения скважины фильтры с гравийной набивкой поддерживают "альтернативные пути потока" (например, одну или больше ответвляющих труб), которые, по существу, простираются вдоль длины фильтра. Каждое из ответвлений имеет отверстия, расположенные вдоль его длины таким образом, что жидкость гидравлического разрыва ствола и/или суспензия, содержащая гравий, могут обходить любые песчаные перегородки, которые могут образоваться в затрубном пространстве скважины в процессе гидравлического разрыва пласта и/или операций гравийной набивки. Это позволяет хорошо распределять жидкость гидравлического разрыва пласта и/или суспензию вдоль всей длины вскрытого промежутка без опускания дополнительных рабочих колонн.
Из патента США 4945991 известен способ гравийной набивки вскрытого промежутка подземного пласта, который проходится обсаженным стволом скважины, включающий формирование перфораций в обсаженном стволе скважины, примыкающем к вскрытому промежутку, и размещение рабочей колонны в стволе скважины, и используемый для неуплотненных или слабоуплотненных формаций, для осуществления процесса получения песка из такой формации. С помощью этого способа исключается неполная гравийная набивка, связанная с образованием перегородок в затрубном пространстве, подлежащем набивке. Указанный патент принят в качестве наиболее близкого аналога.
Из патента США 5417284 известен способ гидравлического разрыва пласта и расклинивания трещин подпочвенной формации. В этом способе жидкость для гидравлического разрыва подается через первый проход в один конец затрубного пространства для того, чтобы вызвать гидравлический разрыв. Затем через второй проход в противоположный конец затрубного пространства подается суспензия, содержащая частицы, при этом продолжается подача жидкости гидравлического разрыва через первый проход.
Однако известные способы также не позволили решить проблемы, связанные с "закупориванием" перфораций обсадной трубы.
Технической задачей настоящего изобретения является создание такого способа гравийной набивки, который позволил бы решить упомянутые проблемы.
Данная техническая задача решается за счет того, что в способе гравийной набивки вскрытого промежутка подземного пласта, который проходится обсаженным стволом скважины, включающем формирование перфораций в обсаженном стволе скважины, примыкающем к вскрытому промежутку, и размещение рабочей колонны в стволе скважины, согласно изобретению рабочая колонна включает фильтр гравийной набивки, который лежит вблизи вскрытого промежутка с образованием затрубного пространства вскрытого промежутка, при размещении рабочей колонны внутри ствола скважины, закачивание чистой жидкости, не содержащей, по существу, измельченного материала, в указанное затрубное пространство вскрытого промежутка и из него через перфорации в пласт для выдавливания тем самым любого закупоривающего материала из перфораций для того, чтобы все они стали проницаемыми для потока до тех пор, пока все указанные перфорации не станут проницаемыми для потока, прекращение закачивания чистой жидкости, закачивание суспензии, содержащей частицы, в затрубное пространство вскрытого промежутка для подачи частиц через альтернативные пути потока к уровням внутри вскрытого промежутка для осаждения тем самым частиц в перфорациях и в затрубном пространстве до тех пор, пока указанные перфорации и затрубное пространство вскрытого промежутка не заполняются частицами.
Предпочтительно чистую жидкость закачивают при более высокой скорости потока, чем суспензию.
При этом предпочтительно чистой жидкостью является чистый гель гидравлического разрыва пласта, а частицами суспензии является песок.
Предпочтительно гель гидравлического разрыва закачивают через перфорацию в пласт для инициирования и расширения гидравлического пласта в нем и в гидравлический разрыв закачивают суспензию, содержащую частицы.
Кроме того, предпочтительно отделяют часть затрубного пространства, которое лежит вблизи указанного вскрытого промежутка, до закачивания чистого геля гидравлического разрыва пласта в затрубное пространство вскрытого промежутка.
Предпочтительно чистый гель гидравлического разрыва пласта закачивают при более высокой скорости потока, чем суспензию.
Предпочтительно также чистый гель гидравлического разрыва пласта закачивают со скоростью, большей, чем около 8 баррелей -1272 л - в минуту, а указанную суспензию закачивают со скоростью меньше, чем около 6 баррелей - 954 л - в минуту.
Предпочтительно альтернативные пути потока обеспечиваются за счет ответвленных труб, которые располагаются радиально вокруг рабочей колонны и которые проходят через вскрытый интервал, при котором каждая из ответвленных труб имеет впускные и выпускные отверстия, расположенные вдоль ее длины.
При использовании заявленного способа, если образуется песчаная перегородка(ки) и когда она образуется в затрубном пространстве вокруг фильтра, альтернативные пути потока в фильтре (например, ответвленные трубы, имеющие отверстия, расположенные вдоль всей длины) будут позволять суспензии обходить блокированное место, вызванное песчаной перегородкой. Это позволяет доставить суспензию на все уровни внутри затрубного пространства освоенной скважины, так, что песок из суспензии может осаждаться вдоль гидравлического разрыва пласта и затрубного пространства освоенной скважины. Кроме того, очисткой от любого закупоривающего материала из всех перфораций до помещения в них песка перфорации сами по себе могут быть легко набиты песком с использованием ответвлений небольшого размера (т.е. от 2,5 до 3,7 см или меньше), обеспечивая тем самым хорошие проницаемые проходы для протекания жидкостей из ствола скважины и/или в ствол скважины, как только скважину вводят на добычу. Возможность использования небольших ответвлений позволяет использовать большие фильтры и позволяет более высокие максимальные скорости добычи.
Действительная конструкция, операция и очевидные преимущества настоящего изобретения будут более понятны со ссылкой на чертежи, в которых соответствующие позиции идентифицируют соответствующие части и в которых:
фиг. 1 представляет вертикальный разрез, частично в сечении, нижней части типичного фильтра, содержащего альтернативный путь потока, в рабочем положении внутри обсаженного ствола скважины, примыкающего к вскрытому промежутку, когда чистая жидкость (например, гель гидравлического разрыва пласта, не содержащий примесного материала) протекает в указанный вскрытый интервал в соответствии с одной из стадий настоящего изобретения) и
фиг. 2 представляет вертикальный разрез частично в сечении, аналогичный тому, который представлен на фиг. 1, где гравийная суспензия протекает в указанный вскрытый интервал в соответствии с другой стадией настоящего изобретения.
Ссылаясь более конкретно на чертежи, фиг. 1 иллюстрирует нижнюю часть добывающей и/или нагнетающей скважины 10. Скважина 10 имеет ствол скважины 11, который проходит от поверхности (не показано) через вскрытый интервал 12. Ствол скважины обычно обсаживается обсадной колонной 13, которая, в свою очередь, надежно укрепляется путем цементирования 13a. В то время как способ настоящего изобретения иллюстрируется преимущественно, как он проводится в вертикальном обсаженном стволе скважины, следует понимать, что настоящее изобретение в равной степени может быть использовано в наклонных и горизонтальных стволах скважин.
Как проиллюстрировано, вскрытый промежуток 12 представляет пласт(ы), имеющий значительную длину или толщину, который простирается вертикально вдоль ствола скважины 11. Обсадная колонна 13 может иметь перфорации 14 по всему вскрытому интервалу 12 или может быть перфорирована на выбранных уровнях в пределах интервала гидравлического разрыва пласта. Так как настоящее изобретение является также применимым при использовании в горизонтальных и наклонных стволах скважин, термины "верхний и нижний", "верх и низ", как они использованы здесь, относятся к терминам, предназначенным для применения к соответствующим положениям в пределах конкретного ствола скважины, в то время как термин "уровни" относится к соответствующим положениям, лежащим вдоль ствола скважины между концами вскрытого интервала 12.
Рабочую колонну 20 устанавливают в стволе скважины 11 и располагают от поверхности (не показано) до вскрытого интервала 12. Как проиллюстрировано, рабочая колонна 20 включает фильтр гравийной набивки 21, который соединяется через обычный "переходник" 22 в нижней части трубчатой обсадной колонны 23 и который устанавливается вблизи вскрытого интервала в то время, как он находится в рабочем положении. "Фильтр гравийной набивки" или "фильтр", как он использован здесь, предназначается быть характерным для определенного типа фильтров и включать фильтры, фильтр с щелевидными отверстиями, фильтрующие трубопроводы, перфорированные хвостовики, предварительно набитые фильтры и/или трубопроводы и их комбинации и т.д., которые используются при освоениях скважины обычного типа. Фильтр 21 может быть сплошным, как показано, или он может включать множество фильтрующих сегментов, соединенных вместе с помощью втулок или "фланцев". Рабочая колонна 20 конструируется, по существу, такой же, как раскрывают в патенте США 5435391, опубликованном 25 июля 1995 г. и который вводится здесь ссылкой.
Одна или больше (например, четыре) небольших ответвленных труб 24 (т.е. от 2,5 до 3,7 см или меньше) располагается радиально вокруг и простирается продольно вдоль фильтра 21, за счет чего они простираются, по существу, через вскрытый интервал 12. Каждая из ответвленных труб 24 имеет множество отверстий 25, расположенных вдоль ее длины, которые обеспечивают "альтернативные пути потока" для высвобождения жидкостей к различным уровням в пределах интервала гидравлического разрыва пласта 12 для целей, которые обсуждаются детально ниже. Каждая такая ответвленная труба может быть открыта с обоих ее концов для того, чтобы позволить жидкостям входить в нее, или впуск жидкости может быть обеспечен через некоторые отверстия 25 (например, те, которые ближе к верхней или нижней части трубы). Ответвленные трубы этого типа были использованы для обеспечения альтернативных путей потока для жидкостей в целом ряде различных операций на скважине, патенты США 4945991; 5082052; 5113935; 5161613 и 5161618.
В то время как отверстия 25 в каждой из ответвленных труб 24 могут быть радиально открытыми, простирающимися от передней части трубы, предпочтительно отверстия формируют таким образом, что они располагаются с каждой стороны ответвленной трубы 24, как показано. Кроме того, предпочтительным является то, чтобы для каждого отверстия 25 обеспечивалась выходная труба (только две показаны на фиг. 1). Использование выходных труб 26 снижает вероятность того, что выходное отверстие окажется заблокированным песком или гравием до окончания операции гравийной набивки.
В процессе добычи, если ствол скважины 11 проходит на расстояние, по существу, ниже основания вскрытого промежутка 12, ствол скважины блокируется примыкающим основанием интервала гидравлического разрыва пласта за счет втулки или пакера (не показан), как будет понятно специалисту. Рабочую колонну 20 опускают в ствол скважины 11, который, в свою очередь, образует затрубное пространство скважины 33 между рабочей колонной 20 и стволом скважины 11. Фильтр гравийной набивки 21 располагают вблизи вскрытого промежутка 12, и пакет 34, который находится на рабочей колонне, устанавливают для изолирования той части 33a затрубного пространства, которая примыкает к вскрытому промежутку 12. Как будет понятно специалисту в этой области, ствол скважины 11 и рабочая колонна 20 будут обычно заполняться жидкостью вскрытого интервала, которая обычно присутствует в стволе скважины 11, когда в нее опускают рабочую колонну 20.
С установлением рабочей колонны 20 на место "чистую жидкость 30 гидравлического разрыва пласта" закачивают в низ рабочей колонны 20, вниз через трубу 23 из отверстий 38 переходника 22 и в верхнюю часть затрубного пространства 33a. Термин "чистая жидкость гидравлического разрыва пласта" относится к жидкости гидравлического разрыва пласта, которая не содержит, по существу, никаких измельченных материалов (например, песка). Жидкость гидравлического разрыва пласта 30 может быть любой хорошо известной жидкостью, используемой для гидравлического разрыва пласта (например, водой и т.д.), но предпочтительно является одной из коммерчески доступных, по существу, свободных от посторонних материалов "гелей", который обычно используют в обычных операциях гидравлического разрыва пласта (например, Versagel продукт Hilliburton Company, Duncan, OK).
Когда жидкость 30 гидравлического разрыва пласта протекает в затрубное пространство 33a, затрубное пространство 33a закрывается с поверхности, что эффективно блокирует любой дальнейший подъем потока жидкости 28 вскрытого интервала через трубу для промывки (смотри поверхность раздела 29 на фиг. 1) и затрубное пространство 33. Чистая жидкость гидравлического разрыва пласта закачивается с относительно высокой скоростью потока (например, со скоростью, по крайней мере, 8 баррелей в минуту). Когда давление в затрубном пространстве увеличится, жидкость 30 гидравлического разрыва пласта продавливается через перфорации 14 и в пласт для инициирования и расширения гидравлического разрыва пласта F во вскрытом промежутке 12. Кроме того, когда чистая жидкость гидравлического разрыва пласта продавливается через перфорации, любые обломки и/или материал, выпавший из жидкости, который может закупоривать перфорации, выносится из перфораций и в пласт вместе с чистой жидкостью гидравлического разрыва пласта, тем самым оставляя перфорации чистыми и открытыми потоку.
Теперь, что касается фиг. 2, как только произошел гидравлический разрыв пласта F и перфорации 14 очистились от закупоривающего материала, поток чистой жидкости гидравлического разрыва пласта 30 заменяется потоком суспензии 31, которая обогащается частицами (например, гравия и/или песка). Скорость потока суспензии (например, меньше чем около 6 баррелей) является значительно более низкой, чем скорость чистой жидкости гидравлического разрыва пласта. Суспензия протекает в верхнюю часть затрубного пространства 33a, через чистые перфорации 14 и в гидравлический разрыв пласта F, где она осаждает примесные материалы.
Так как жидкость гидравлического разрыва пласта F наполняется примесными материалами, не является необычным образованием где-нибудь в затрубном пространстве 33a песчаной перегородки(док) 55 (фиг. 2). Обычно такие перегородки будут блокировать любой дальнейший поток суспензии в затрубное пространство 33a, так что гравий не сможет больше высвобождаться в затрубное пространство 33a ниже песчаной перегородки, приводя тем самым к плохому распределению гравия вдоль вскрытого интервала. Однако в настоящем изобретении, даже после того, как образуется песчаная перегородка 55 в затрубном пространстве 33a, суспензия может протекать через "альтернативные пути потока", обеспеченные ответвленными трубами 24, и из отверстий 25, которые находятся ниже перегородки 55, обеспечивая тем самым хорошую гравийную набивку вдоль всего вскрытого промежутка 12.
Так как чистая жидкость гидравлического разрыва пласта не содержит, по существу, обмолочный материал, такой, как песок, то песчаные перегородки не будут образовываться в процессе гидравлического разрыва пласта и операции перфорации-очистки. Таким образом, становится возможным закачивать жидкость гидравлического разрыва пласта с относительно высокой скоростью (например, больше чем около 8 баррелей в минуту), обеспечивая тем самым оба процесса: очистку перфораций и инициирование и расширение гидравлического разрыва пласта в формации. Однако так как вся суспензия должна быть перенесена за счет относительно небольших ответвленных труб 24, когда в затрубном пространстве 33a образуется песчаная перегородка, это является благотворным, если не критическим, по существу, для снижения скорости потока, с которой суспензия закачивается в ствол скважины (например, не более чем 6 баррелей в минуту), так что не происходит разрыва или любого другого повреждения ответвленных труб в процессе заполнения гравия.
Закачивание суспензии продолжают до тех пор, пока не установится окончательное высокое давление песка, которое указывает на то, что, по существу, гидравлический разрыв пласта F заполнен посторонним материалом и что перфорации 14 и затрубное пространство 33a вокруг фильтра 21 заполнены посторонним материалом, образуя тем самым высокоэффективную гравийную набивку в освоенной скважине вдоль интервала гидравлического разрыва пласта.

Claims (8)

1. Способ гравийной набивки вскрытого промежутка подземного пласта, который проходится обсаженным стволом скважины, включающий формирование перфораций в обсаженном стволе скважины, примыкающем к вскрытому промежутку, и размещение рабочей колонны в стволе скважины, отличающийся тем, что рабочая колонна включает фильтр гравийной набивки, который лежит вблизи вскрытого промежутка с образованием затрубного пространства вскрытого промежутка, при размещении рабочей колонны внутри ствола скважины, закачивание чистой жидкости, не содержащей, по существу, измельченного материала, в указанное затрубное пространство вскрытого промежутка и из него через перфорации в пласт для выдавливания тем самым любого закупоривающего материала из перфораций для того, чтобы все они стали проницаемыми для потока до тех пор, пока все указанные перфорации не станут проницаемыми для потока, прекращение закачивания чистой жидкости, закачивание суспензии, содержащей частицы, в затрубное пространство вскрытого промежутка для подачи частиц через альтернативные пути потока к уровням внутри вскрытого промежутка для осаждения тем самым частиц в перфорациях и в затрубном пространстве до тех пор, пока указанные перфорации и затрубное пространство вскрытого промежутка не заполняется частицами.
2. Способ по п.1, отличающийся тем, что чистую жидкость закачивают при более высокой скорости потока, чем суспензию.
3. Способ по любому из п.1 или 2, отличающийся тем, что чистой жидкостью является чистый гель гидравлического разрыва пласта, а частицами суспензии является песок.
4. Способ по п.3, отличающийся тем, что указанный гель гидравлического разрыва закачивают через перфорацию в пласт для инициирования и расширения гидравлического пласта в нем и в гидравлический разрыв закачивают суспензию, содержащую частицы.
5. Способ по любому из п.3 или 4, отличающийся тем, что отделяют часть затрубного пространства, которое лежит вблизи указанного вскрытого промежутка, до закачивания чистого геля гидравлического разрыва пласта в затрубное пространство вскрытого промежутка.
6. Способ по любому из пп.3 - 5, отличающийся тем, что чистый гель гидравлического разрыва пласта закачивают при более высокой скорости потока, чем суспензию.
7. Способ по любому из пп.3 - 6, отличающийся тем, что чистый гель гидравлического разрыва пласта закачивают со скоростью, большей чем около 8 баррелей - 1272 л - в минуту, а указанную суспензию закачивают со скоростью, меньшей чем около 6 баррелей - 954 л - в минуту.
8. Способ по любому из пп.1 - 7, отличающийся тем, что альтернативные пути потока обеспечиваются за счет ответвленных труб, которые располагаются радиально вокруг рабочей колонны и которые проходят через вскрытый интервал, при котором каждая из ответвленных труб имеет впускные и выпускные отверстия, расположенные вдоль ее длины.
RU97115104/03A 1996-09-05 1997-09-04 Способ гравийной набивки вскрытого промежутка подземного пласта RU2162934C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/697,962 US5848645A (en) 1996-09-05 1996-09-05 Method for fracturing and gravel-packing a well
US08/697,962 1996-09-05

Publications (2)

Publication Number Publication Date
RU97115104A RU97115104A (ru) 1999-06-27
RU2162934C2 true RU2162934C2 (ru) 2001-02-10

Family

ID=24803322

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97115104/03A RU2162934C2 (ru) 1996-09-05 1997-09-04 Способ гравийной набивки вскрытого промежутка подземного пласта

Country Status (8)

Country Link
US (1) US5848645A (ru)
AR (1) AR009494A1 (ru)
CA (1) CA2210418C (ru)
DE (1) DE19737831C2 (ru)
GB (1) GB2316967B (ru)
NL (1) NL1006941C2 (ru)
NO (1) NO315479B1 (ru)
RU (1) RU2162934C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182138B2 (en) 2000-03-02 2007-02-27 Schlumberger Technology Corporation Reservoir communication by creating a local underbalance and using treatment fluid
RU2442879C2 (ru) * 2006-10-25 2012-02-20 Бейкер Хьюз Инкорпорейтед Защита обсадной колонны при гидроразрыве пласта с установкой фильтра
US11346184B2 (en) 2018-07-31 2022-05-31 Schlumberger Technology Corporation Delayed drop assembly

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003600A (en) * 1997-10-16 1999-12-21 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated subterranean zones
US6427775B1 (en) 1997-10-16 2002-08-06 Halliburton Energy Services, Inc. Methods and apparatus for completing wells in unconsolidated subterranean zones
AU738914C (en) 1997-10-16 2002-04-11 Halliburton Energy Services, Inc. Methods and apparatus for completing wells in unconsolidated subterranean zones
US6481494B1 (en) 1997-10-16 2002-11-19 Halliburton Energy Services, Inc. Method and apparatus for frac/gravel packs
US6253851B1 (en) * 1999-09-20 2001-07-03 Marathon Oil Company Method of completing a well
US7100690B2 (en) * 2000-07-13 2006-09-05 Halliburton Energy Services, Inc. Gravel packing apparatus having an integrated sensor and method for use of same
US6644406B1 (en) * 2000-07-31 2003-11-11 Mobil Oil Corporation Fracturing different levels within a completion interval of a well
US6464007B1 (en) 2000-08-22 2002-10-15 Exxonmobil Oil Corporation Method and well tool for gravel packing a long well interval using low viscosity fluids
US7152677B2 (en) * 2000-09-20 2006-12-26 Schlumberger Technology Corporation Method and gravel packing open holes above fracturing pressure
US6520254B2 (en) 2000-12-22 2003-02-18 Schlumberger Technology Corporation Apparatus and method providing alternate fluid flowpath for gravel pack completion
US6557634B2 (en) * 2001-03-06 2003-05-06 Halliburton Energy Services, Inc. Apparatus and method for gravel packing an interval of a wellbore
US6789624B2 (en) 2002-05-31 2004-09-14 Halliburton Energy Services, Inc. Apparatus and method for gravel packing an interval of a wellbore
US6588506B2 (en) 2001-05-25 2003-07-08 Exxonmobil Corporation Method and apparatus for gravel packing a well
US6516881B2 (en) 2001-06-27 2003-02-11 Halliburton Energy Services, Inc. Apparatus and method for gravel packing an interval of a wellbore
US6581689B2 (en) 2001-06-28 2003-06-24 Halliburton Energy Services, Inc. Screen assembly and method for gravel packing an interval of a wellbore
US6601646B2 (en) 2001-06-28 2003-08-05 Halliburton Energy Services, Inc. Apparatus and method for sequentially packing an interval of a wellbore
US6588507B2 (en) 2001-06-28 2003-07-08 Halliburton Energy Services, Inc. Apparatus and method for progressively gravel packing an interval of a wellbore
US6516882B2 (en) 2001-07-16 2003-02-11 Halliburton Energy Services, Inc. Apparatus and method for gravel packing an interval of a wellbore
US6752207B2 (en) 2001-08-07 2004-06-22 Schlumberger Technology Corporation Apparatus and method for alternate path system
US6830104B2 (en) * 2001-08-14 2004-12-14 Halliburton Energy Services, Inc. Well shroud and sand control screen apparatus and completion method
US6772837B2 (en) 2001-10-22 2004-08-10 Halliburton Energy Services, Inc. Screen assembly having diverter members and method for progressively treating an interval of a welibore
US6702019B2 (en) 2001-10-22 2004-03-09 Halliburton Energy Services, Inc. Apparatus and method for progressively treating an interval of a wellbore
US6899176B2 (en) 2002-01-25 2005-05-31 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US6719051B2 (en) 2002-01-25 2004-04-13 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US7096945B2 (en) * 2002-01-25 2006-08-29 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US6715545B2 (en) 2002-03-27 2004-04-06 Halliburton Energy Services, Inc. Transition member for maintaining for fluid slurry velocity therethrough and method for use of same
US6776238B2 (en) 2002-04-09 2004-08-17 Halliburton Energy Services, Inc. Single trip method for selectively fracture packing multiple formations traversed by a wellbore
US6793017B2 (en) 2002-07-24 2004-09-21 Halliburton Energy Services, Inc. Method and apparatus for transferring material in a wellbore
US6863131B2 (en) 2002-07-25 2005-03-08 Baker Hughes Incorporated Expandable screen with auxiliary conduit
US7055598B2 (en) * 2002-08-26 2006-06-06 Halliburton Energy Services, Inc. Fluid flow control device and method for use of same
US6776236B1 (en) 2002-10-16 2004-08-17 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated formations
US6814139B2 (en) * 2002-10-17 2004-11-09 Halliburton Energy Services, Inc. Gravel packing apparatus having an integrated joint connection and method for use of same
US6923262B2 (en) * 2002-11-07 2005-08-02 Baker Hughes Incorporated Alternate path auger screen
US6814144B2 (en) 2002-11-18 2004-11-09 Exxonmobil Upstream Research Company Well treating process and system
US6857476B2 (en) 2003-01-15 2005-02-22 Halliburton Energy Services, Inc. Sand control screen assembly having an internal seal element and treatment method using the same
US6886634B2 (en) * 2003-01-15 2005-05-03 Halliburton Energy Services, Inc. Sand control screen assembly having an internal isolation member and treatment method using the same
US6978840B2 (en) 2003-02-05 2005-12-27 Halliburton Energy Services, Inc. Well screen assembly and system with controllable variable flow area and method of using same for oil well fluid production
CN100362207C (zh) * 2003-03-31 2008-01-16 埃克森美孚上游研究公司 用于完井、生产和注入的井筒装置和方法
US7870898B2 (en) 2003-03-31 2011-01-18 Exxonmobil Upstream Research Company Well flow control systems and methods
US6994170B2 (en) * 2003-05-29 2006-02-07 Halliburton Energy Services, Inc. Expandable sand control screen assembly having fluid flow control capabilities and method for use of same
US7140437B2 (en) * 2003-07-21 2006-11-28 Halliburton Energy Services, Inc. Apparatus and method for monitoring a treatment process in a production interval
US7147054B2 (en) * 2003-09-03 2006-12-12 Schlumberger Technology Corporation Gravel packing a well
US7866708B2 (en) * 2004-03-09 2011-01-11 Schlumberger Technology Corporation Joining tubular members
US7243723B2 (en) * 2004-06-18 2007-07-17 Halliburton Energy Services, Inc. System and method for fracturing and gravel packing a borehole
US7185703B2 (en) * 2004-06-18 2007-03-06 Halliburton Energy Services, Inc. Downhole completion system and method for completing a well
US20060037752A1 (en) * 2004-08-20 2006-02-23 Penno Andrew D Rat hole bypass for gravel packing assembly
US7191833B2 (en) * 2004-08-24 2007-03-20 Halliburton Energy Services, Inc. Sand control screen assembly having fluid loss control capability and method for use of same
US7497267B2 (en) * 2005-06-16 2009-03-03 Weatherford/Lamb, Inc. Shunt tube connector lock
US7819193B2 (en) 2008-06-10 2010-10-26 Baker Hughes Incorporated Parallel fracturing system for wellbores
MX2011003280A (es) 2008-11-03 2011-04-28 Exxonmobil Upstream Res Co Sistemas y metodos de control de flujo de pozos.
CA2755252C (en) 2009-04-14 2016-06-21 Charles S. Yeh Systems and methods for providing zonal isolation in wells
CA2686744C (en) 2009-12-02 2012-11-06 Bj Services Company Canada Method of hydraulically fracturing a formation
US8297358B2 (en) 2010-07-16 2012-10-30 Baker Hughes Incorporated Auto-production frac tool
US8869898B2 (en) 2011-05-17 2014-10-28 Baker Hughes Incorporated System and method for pinpoint fracturing initiation using acids in open hole wellbores
US9593559B2 (en) 2011-10-12 2017-03-14 Exxonmobil Upstream Research Company Fluid filtering device for a wellbore and method for completing a wellbore
US9309751B2 (en) 2011-11-22 2016-04-12 Weatherford Technology Holdings Llc Entry tube system
CA2885581C (en) 2012-10-26 2017-05-30 Exxonmobil Upstream Research Company Downhole joint assembly for flow control, and method for completing a wellbore
WO2014149395A2 (en) 2013-03-15 2014-09-25 Exxonmobil Upstream Research Company Sand control screen having improved reliability
WO2014149396A2 (en) 2013-03-15 2014-09-25 Exxonmobil Upstream Research Company Apparatus and methods for well control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945991A (en) * 1989-08-23 1990-08-07 Mobile Oil Corporation Method for gravel packing wells
US5082052A (en) * 1991-01-31 1992-01-21 Mobil Oil Corporation Apparatus for gravel packing wells
US5113935A (en) * 1991-05-01 1992-05-19 Mobil Oil Corporation Gravel packing of wells
US5161613A (en) * 1991-08-16 1992-11-10 Mobil Oil Corporation Apparatus for treating formations using alternate flowpaths
US5161618A (en) * 1991-08-16 1992-11-10 Mobil Oil Corporation Multiple fractures from a single workstring
US5419394A (en) * 1993-11-22 1995-05-30 Mobil Oil Corporation Tools for delivering fluid to spaced levels in a wellbore
US5417284A (en) * 1994-06-06 1995-05-23 Mobil Oil Corporation Method for fracturing and propping a formation
US5435391A (en) * 1994-08-05 1995-07-25 Mobil Oil Corporation Method for fracturing and propping a formation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182138B2 (en) 2000-03-02 2007-02-27 Schlumberger Technology Corporation Reservoir communication by creating a local underbalance and using treatment fluid
RU2442879C2 (ru) * 2006-10-25 2012-02-20 Бейкер Хьюз Инкорпорейтед Защита обсадной колонны при гидроразрыве пласта с установкой фильтра
US11346184B2 (en) 2018-07-31 2022-05-31 Schlumberger Technology Corporation Delayed drop assembly

Also Published As

Publication number Publication date
GB2316967A (en) 1998-03-11
GB9717773D0 (en) 1997-10-29
CA2210418A1 (en) 1998-03-05
NL1006941A1 (nl) 1998-03-06
DE19737831C2 (de) 2000-11-23
NL1006941C2 (nl) 1998-07-15
NO974079L (no) 1998-03-06
GB2316967B (en) 2000-11-15
AR009494A1 (es) 2000-04-26
DE19737831A1 (de) 1998-04-09
NO315479B1 (no) 2003-09-08
US5848645A (en) 1998-12-15
NO974079D0 (no) 1997-09-04
CA2210418C (en) 2003-03-18

Similar Documents

Publication Publication Date Title
RU2162934C2 (ru) Способ гравийной набивки вскрытого промежутка подземного пласта
RU2138632C1 (ru) Способ для разрыва и расклинивания трещин подповерхностного пласта
CA2179951C (en) Fracturing and propping a formation using a downhole slurry splitter
EP0774042B1 (en) Method of fracturing and propping a formation
US6772837B2 (en) Screen assembly having diverter members and method for progressively treating an interval of a welibore
US6601646B2 (en) Apparatus and method for sequentially packing an interval of a wellbore
US6719051B2 (en) Sand control screen assembly and treatment method using the same
US6857476B2 (en) Sand control screen assembly having an internal seal element and treatment method using the same
EP0729543B1 (en) Well tool
RU2094596C1 (ru) Устройство для гравийной набивки затрубного пространства буровой скважины
EP0525257B1 (en) Gravel pack well completions with auger-screen
RU97115104A (ru) Способ гравийной набивки вскрытого промежутка подземного пласта
US3850246A (en) Gravel packing method and apparatus
EP0885346B1 (en) Method and well tool for gravel packing a well using low-viscosity fluids
US10428635B2 (en) System and method for removing sand from a wellbore
GB2220688A (en) Method and apparatus for gravel packing
US4558742A (en) Method and apparatus for gravel packing horizontal wells
US20050121192A1 (en) Apparatus and method for gravel packing an interval of a wellbore
US5269375A (en) Method of gravel packing a well
US2356769A (en) Washing gravel out of perforate well casings
US5669445A (en) Well gravel pack formation method
US5913365A (en) Method for removing a gravel pack screen
US20060037752A1 (en) Rat hole bypass for gravel packing assembly
US2213962A (en) Method of and apparatus for graveling wells
RU2125645C1 (ru) Способ установки гравийного фильтра в скважине