RU2152453C1 - Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления - Google Patents

Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления Download PDF

Info

Publication number
RU2152453C1
RU2152453C1 RU99108330A RU99108330A RU2152453C1 RU 2152453 C1 RU2152453 C1 RU 2152453C1 RU 99108330 A RU99108330 A RU 99108330A RU 99108330 A RU99108330 A RU 99108330A RU 2152453 C1 RU2152453 C1 RU 2152453C1
Authority
RU
Russia
Prior art keywords
melt
pipe
pipes
chemical
thermal treatment
Prior art date
Application number
RU99108330A
Other languages
English (en)
Inventor
В.П. Климов
М.А. Гусева
А.М. Козловский
В.Р. Федорин
Original Assignee
Открытое акционерное общество "УралЛУКтрубмаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "УралЛУКтрубмаш" filed Critical Открытое акционерное общество "УралЛУКтрубмаш"
Priority to RU99108330A priority Critical patent/RU2152453C1/ru
Application granted granted Critical
Publication of RU2152453C1 publication Critical patent/RU2152453C1/ru

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов заключается в том, что предварительно подогретую до 200 - 250oС внешним источником трубу помещают в ванну с расплавом цианатов и выдерживают ее при температуре высокого отпуска стали при постоянной продувке расплава окисляющим газом и циркуляции расплава через полость трубы. Устройство для реализации данного способа содержит электрическую муфельную печь и две печи-ванны для расплава цианатов, установленные на качающейся платформе и выполненные с возможностью их соединения между собой по системе сообщающихся сосудов с помощью обрабатываемой трубы. Техническим результатом изобретения является снижение металлоемкости оборудования, затрат материалов и электроэнергии, повышение равномерности обработки по длине трубы при карбонитрации внутренней поверхности. 2 с.п. ф-лы, 1 ил.

Description

Изобретение относится к области химико-термической обработки, а именно к процессам обработки в активных расплавах солей.
Известны способы химико-термической обработки труб: цементация, нитроцементация, азотирование, при которых происходит поверхностное насыщение стали азотом и углеродом в газовой фазе (Химико-термическая обработка металлов и сплавов. Справочник. Под ред. Л.С. Ляховича. М.: Металлургия, 1981, с. 6, 62).
Операции способов включают очистку и обезжиривание; защиту поверхностей, не подлежащих химико-термической обработке; нагрев в печи с контролируемым составом атмосферы; охлаждение или закалку.
Процессы, как правило, сопровождаются значительным окалино- или сажеобразованием, деформацией труб (изменением кривизны), требуют дорогостоящего печного оборудования и оборудования для контроля состава печной атмосферы, а также значительных затрат на окончательную механическую обработку и правку, защиту наружной поверхности от насыщения и последующую ее очистку.
Наиболее близким является способ химико-термической обработки инструмента методом цианирования в расплаве цианата калия - карбонитрация (а.с. СССР N 576350, C 23 C 9/10, БИ N 38, 1977 г.), принятый за прототип.
Обработку инструмента в расплаве осуществляют после окончательной механической обработки: шлифовки и заточки. Операции процесса карбонитрации включают очистку и обезжиривание, предварительный подогрев изделия перед погружением в соляную ванну, карбонитрацию при нагреве в расплаве активной соли при температуре отпуска стали, охлаждение, оксидирование, промывку и сушку.
Процесс ведут при постоянной продувке расплава воздухом или другими окисляющими газами, при этом происходит перемешивание расплава и его окисление с выделением активных атомов азота и углерода, которые взаимодействуют с обрабатываемым металлом и диффундируют в его поверхность. Для обеспечения необходимой интенсивности окисления расплава продувку ведут с заданным расходом воздуха 2-3 л/часа на 1 кг соли в ванне (Химико-термическая обработка инструмента - карбонитрация. Д.А. Прокошкин. М.: Металлургия, Машиностроение, 1984. с. 63, 162-165). При этом убыль цианата в ванне составляет 0,3% в час или 7,2% в сутки.
Однако применение карбонитрации с целью упрочнения и повышения износостойкости внутренней поверхности труб имеет недостаток: обработка одновременно и внутренней и наружной поверхностей. При этом в процессе нагрева в расплаве цианатов железо растворяется солью с образованием ферроцианидов, загрязняющих ванну. Поэтому реакция с наружной поверхностью трубы, не подлежащей карбонитрации, приведет к дополнительному загрязнению ванны нежелательными примесями.
Известны устройства, позволяющие производить обработку только внутренней поверхности труб, например устройство для проточного хромирования (Гальванические покрытия в машиностроении. Справочник. В 2-х томах. Под ред. М.А. Шлугера. М.: Машиностроение, 1985. Т. 1, с. 144).
Устройство состоит из двух герметичных емкостей, изготовленных из титанового сплава, с устройствами их нагрева и охлаждения и хромируемой детали - ячейки. С помощью воздуха создается избыточное давление, под действием которого электролит через покрываемую деталь вытесняется во вторую емкость, соединенную с вентиляцией. Осуществляется попеременное выдавливание электролита из одной или другой емкости, что достигается переключением двух кранов.
Но использование данного устройства для карбонитрации внутренней поверхности труб имеет недостаток: необходимость частого переключения крана, создающего избыточное давление попеременно в первой и второй емкости.
Наиболее близким устройством, принятым за прототип, является печь-ванна с тиглем из титана (Химико-термическая обработка инструмента - карбонитрация. Д.А. Прокошкин. М.: Металлургия, Машиностроение, 1984, с. 63, 162-165).
Предварительный подогрев изделий до 200-250oC осуществляют в муфельной печи, а обработку - в печи-ванне с расплавом цианата. Предварительный подогрев производят при любой обработке в расплаве, т.к. при погружении холодного изделия в расплав солей на его поверхности образуется солевая корка, под которой идет интенсивное окисление металла. Время, расходуемое на расплавление корки и последующее растворение окислов на поверхности, значительно увеличивает общее время обработки изделия. Кроме того, погружение холодного изделия в расплав недопустимо с точки зрения техники безопасности из-за возможного разбрызгивания расплава при попадании влаги вместе с изделием.
Ванный способ карбонитрации для обработки внутренней поверхности труб имеет недостатки: необходимость вертикальной шахтной печи для предварительного подогрева труб и вертикальной печи-ванны для расплава цианата. Высота печей определяется длиной труб, а диаметр - возможностью их технического изготовления и обслуживания. При диаметре титанового тигля 150 мм объем расплава будет составлять 90-100 л для шестиметровой шахтной печи.
При этом непроизводительные затраты солей будут составлять 0,72 кг в сутки на каждые 10 кг расплава, избыточного по отношению к массе расплава, необходимой для заполнения внутреннего канала трубы.
При карбонитрации в вертикальной печи-ванне возможно неравномерное по высоте (длине трубы) насыщение стали азотом и углеродом из-за различной активности расплава в нижней зоне, куда подается окисляющий газ, и в верхней зоне печи.
Техническая задача, решаемая изобретением, заключается в снижении металлоемкости оборудования, затрат материалов и электроэнергии, повышении равномерности обработки по длине трубы при карбонитрации внутренней поверхности.
Поставленная задача решается за счет того, что в способе химико-термической обработки внутренней поверхности труб в расплаве цианатов, включающем помещение предварительно подогретой до температуры 200-250oC трубы в ванну с расплавом и выдержку ее при температуре высокого отпуска стали при постоянной продувке расплава окисляющим газом, согласно изобретению, в процессе обработки осуществляют постоянную циркуляцию расплава через полость трубы, а нагрев трубы до температуры процесса производят внешним источником.
Поставленная задача решается также и за счет того, что в устройстве для химико-термической обработки внутренней поверхности труб в расплаве цианатов, содержащем электрическую муфельную печь и печь-ванну для расплава цианатов, согласно изобретению дополнительно содержится печь-ванна для расплава цианатов, при этом печи-ванны соединены между собой по системе сообщающихся сосудов с помощью обрабатываемой трубы и установлены на качающейся платформе.
Изобретение иллюстрируется чертежом, на котором схематично представлено устройство для химико-термической обработки труб.
Устройство для химико-термической обработки внутренней поверхности труб в расплаве цианатов содержит две печи-ванны 1 с титановыми тиглями 2 и водоохлаждаемыми отводами с уплотнениями 3, между которыми жестко закреплена обрабатываемая труба 4. Предварительный подогрев трубы и поддержание ее температуры на заданном уровне производят с помощью муфельной электрической печи 5, установленной на подвижных опорах 6, позволяющих сдвигать печь для ввода трубы внутрь нагревательного пространства и затем устанавливать печь в рабочее положение. Печи-ванны 1 с обрабатываемой трубой 4 установлены на качающейся платформе 7, позволяющей изменять положение ванн относительно друг друга по высоте и углу наклона с помощью пневмо- или гидропривода 8. Печи-ванны установлены на платформе в направляющих 9, позволяющих им сдвигаться в направлении оси трубы. Грузы 10, подвешенные на тросе, жестко связанном с корпусом печи, создают растягивающую нагрузку, препятствующую изгибу и деформации трубы в процессе нагрева.
Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов с помощью заявляемого устройства осуществляют следующим образом.
Трубу после шлифования (хонингования) внутреннего канала до готового размера обезжиривают в растворе щелочи NaOH (30-50 г/л) 15-20 минут при температуре 80-95oC, сушат и устанавливают в печь на платформу 7. Печь 1 сдвигают в рабочее положение и осуществляют сборку уплотнений 3. При этом печи-ванны 1 соединены между собой с помощью обрабатываемой трубы по системе сообщающихся сосудов. С помощью внешнего источника нагрева - электрической муфельной печи 5 производят предварительный разогрев трубы 4 до 200-250oC, после чего открывают затворы 11 и производят заполнение трубы расплавом, Карбонитрацию осуществляют при температуре отпуска стали и постоянной продувке расплава окисляющим газом через титановые трубки 12. Таким образом, электрическая муфельная печь служит и для подогрева трубы до температуры, при которой возможно заполнение ее расплавом, и для поддержания температуры процесса на заданном уровне. Начальный угол наклона платформы составляет 1-2o. Покачивание платформы на угол 5-8o обеспечивает постоянный приток во внутреннюю полость трубы свежих порций активного расплава, что обеспечивает равномерную диффузию активных атомов углерода и азота по всей длине обрабатываемой трубы. По окончании процесса осуществляют слив расплава попеременно в одну, затем в другую печи-ванны, отключают нагрев печи 5, включают водяное охлаждение отводов с уплотнениями, осуществляют демонтаж трубы с установки.
При карбонитрации внутренней поверхности трубы с внутренним диаметром 44 мм и длиной 5100 мм из стали 22ГЮ в расплаве цианатов при температуре 580oC в течение 3-х часов был получен равномерный по длине трубы слой с поверхностной твердостью 45 HRC (исходная 20 HRC). Нагрев трубы и расплава осуществлялся в муфельных печах: трубы - в трубчатой печи длиной 5000 мм, расплава - в двух шахтных печах высотой по 1,5 м. При расплавлении и сливе расплава нагрев осуществлялся на всей высоте шахтных печей, при карбонитрации - нижних зон печей на высоте 800 мм.
Общий объем расплава цианатов при диаметре титановых тиглей 75 мм составлял 12 л, из которых 8 л постоянно находились во внутренней полости трубы.
Таким образом, при осуществлении предлагаемого способа и устройства вместо двух вертикальных печей с высотой нагревательных колодцев по 5,5-6 м использовались две невысокие печи-ванны и горизонтальная муфельная печь с общей длиной обогреваемого пространства при карбонитрации 6,6 м. При этом непроизводительные потери солей на окисление были минимальны ввиду небольшого объема циркулирующего расплава и составляли 0,288 кг в сутки. А при объеме расплава в вертикальной печи-ванне 100 л непроизводительные потери солей составили бы около 5 кг в сутки.
Использование предлагаемого решения позволяет повысить равномерность обработки внутренней поверхности труб, снизить непроизводительные затраты материалов и электроэнергии, отказаться от дорогостоящего оборудования.

Claims (2)

1. Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов, отличающийся тем, что предварительно подогретую до 200 - 250oC внешним источником трубу помещают в ванну с расплавом цианатов и выдерживают ее при температуре высокого отпуска стали при постоянной продувке расплава окисляющим газом и циркуляции расплава через полость трубы.
2. Устройство для химико-термической обработки внутренней поверхности труб в расплаве цианатов, отличающееся тем, что оно содержит электрическую муфельную печь и две печи-ванны для расплава цианатов, установленные на качающейся платформе и выполненные с возможностью их соединения между собой по системе сообщающихся сосудов с помощью обрабатываемой трубы.
RU99108330A 1999-04-20 1999-04-20 Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления RU2152453C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99108330A RU2152453C1 (ru) 1999-04-20 1999-04-20 Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99108330A RU2152453C1 (ru) 1999-04-20 1999-04-20 Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2152453C1 true RU2152453C1 (ru) 2000-07-10

Family

ID=20218875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99108330A RU2152453C1 (ru) 1999-04-20 1999-04-20 Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2152453C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688428C1 (ru) * 2018-10-01 2019-05-22 Открытое акционерное общество "Завод бурового оборудования" Способ поверхностного упрочнения резьбовых соединений тонкостенных бурильных труб
CN114540747A (zh) * 2022-01-25 2022-05-27 北京科技大学 一种内表面梯度强化钢管制备装置及应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПРОКОШКИН Д.А. Химико-термическая обработка металлов - карбонитрация. - М.: Машиностроение, 1984, с.162 - 163. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688428C1 (ru) * 2018-10-01 2019-05-22 Открытое акционерное общество "Завод бурового оборудования" Способ поверхностного упрочнения резьбовых соединений тонкостенных бурильных труб
CN114540747A (zh) * 2022-01-25 2022-05-27 北京科技大学 一种内表面梯度强化钢管制备装置及应用方法

Similar Documents

Publication Publication Date Title
SU1750434A3 (ru) Способ получени оцинкованной стальной полосы
RU2098196C1 (ru) Герметичная камера и установка (варианты) для покрытия жидким покрывающим продуктом изделий
US6913658B2 (en) Process for the hot-dip galvanizing of metal strip made of high-strength steel
RU2152453C1 (ru) Способ химико-термической обработки внутренней поверхности труб в расплаве цианатов и устройство для его осуществления
KR100297475B1 (ko) 메니스커스코팅장치에사용되는용기및그용기를포함하는코팅라인
US1953647A (en) Process of treating metal
US3468695A (en) Method of coating a steel base with aluminum
Galopin et al. Molten salts in metal treating: Present uses and future trends
CA1141633A (en) Process and installation for the handling and heat treatment of cast iron or steel pipes and tubes
JP3553207B2 (ja) 金属の熱処理装置
CN1023612C (zh) 铜制工件的铬、铝、硅多元固体共渗方法
RU2208659C1 (ru) Способ газового азотирования изделий в кипящем слое и установка для его реализации
FI81383B (fi) Foerfarande foer behandling av smaelt metall och anordning foer utfoerande av foerfarandet.
WO1997016051A1 (en) Electric heating element
RU2792992C1 (ru) Установка для нанесения покрытия на стальное изделие в легкоплавком металлическом растворе
RU2036243C1 (ru) Способ цементации стальных изделий
JP2002088457A (ja) 溶融亜鉛めっき装置
JPH02254149A (ja) 拡散被覆鋼材の製造方法
JPH0570826A (ja) オーステンパードダクタイル鋳鉄の製造方法及びそれにより得られたオーステンパードダクタイル鋳鉄
Foreman Heat Treatment of Industrial Materials in Molten Salts
JP2000074324A (ja) 浸炭防止表面加工
Schneider et al. Processes and Furnace Equipment for Heat Treating of Tool Steels
WO2006104420A2 (fr) Procede destine a l'application de revetements d'aluminium ou de zinc sur des articles en fonte ou en acier, dispositif pour le mettre en oeuvre, bains de fusion utilises et articles ainsi obtenus
SU1224352A1 (ru) Способ упрочнени стальных деталей
CN116287573A (zh) 一种受热均匀无氧化脱碳的热处理方法