RU2150045C1 - Способ переработки горючих твердых бытовых отходов - Google Patents

Способ переработки горючих твердых бытовых отходов Download PDF

Info

Publication number
RU2150045C1
RU2150045C1 RU98101334/03A RU98101334A RU2150045C1 RU 2150045 C1 RU2150045 C1 RU 2150045C1 RU 98101334/03 A RU98101334/03 A RU 98101334/03A RU 98101334 A RU98101334 A RU 98101334A RU 2150045 C1 RU2150045 C1 RU 2150045C1
Authority
RU
Russia
Prior art keywords
reactor
combustible
solid
wastes
waste
Prior art date
Application number
RU98101334/03A
Other languages
English (en)
Other versions
RU98101334A (ru
Inventor
Г.Б. Манелис
В.П. Фурсов
Е.В. Полианчик
Original Assignee
Институт проблем химической физики РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем химической физики РАН filed Critical Институт проблем химической физики РАН
Priority to RU98101334/03A priority Critical patent/RU2150045C1/ru
Priority to PCT/FI1999/000045 priority patent/WO1999037738A1/en
Priority to AU21661/99A priority patent/AU2166199A/en
Publication of RU98101334A publication Critical patent/RU98101334A/ru
Application granted granted Critical
Publication of RU2150045C1 publication Critical patent/RU2150045C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/16Continuous processes simultaneously reacting oxygen and water with the carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Изобретение относится к методам переработки горючих твердых бытовых отходов (ТБО), преимущественно высоковлажных, путем пиролиза и газификации органической составляющей отходов с тем, чтобы получить углеводородные продукты пиролиза и топливный газ, которые используются для получения энергии. Метод может быть использован для экологически приемлемого и энергетически эффективного уничтожения/переработки малогорючих отходов. ТБО загружают в реактор-газификатор типа шахтной печи, возможно, совместно с твердым негорючим материалом противотоком к кислородсодержащему газифицирующему агенту и проводят в реакторе газификацию горючих компонентов ТБО. В состав газифицирующего агента вводят дымовые газы. Максимальную температуру в реакторе регулируют в пределах от 800 до 1300°С путем управления по крайней мере одним из следующих параметров: массовой доли кислорода в газифицирующем агенте a, массовой доли негорючего материала в перерабатываемых ТБО b, и массовой доли горючего материала в ТБО c, поддерживая при этом отношение A=ab/c в пределах от 0,022 до 0,1. Решаемая техническая задача: обеспечение переработки ТБО без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к методам переработки горючих твердых бытовых отходов (ТБО), преимущественно высоковлажных, путем пиролиза и газификации органической составляющей отходов, с получением углеводородных продуктов пиролиза и топливного газа, которые используют для получения энергии. Метод может быть использован для экологически приемлемого и энергетически эффективного уничтожения/переработки малогорючих отходов.
Известен ряд методов сжигания горючих отходов с получением энергии. Среди этих методов выделяются методы, основанные на двухстадийном сжигании - сначала газификации, затем сжигании продукт-газа. Общая схема газификации твердых органических топлив в противотоке газифицирующего агента может быть представлена в следующем виде.
Газифицирующий агент, содержащий кислород и, возможно, воду и/или углекислый газ, поступает в зону горения, в которой кислород взаимодействует с углеродом твердого топлива в виде кокса или полукокса при температурах 900-1500oC. Газифицирующий агент подается в реактор противотоком к топливу таким образом, что газ-окислитель, по крайней мере частично, предварительно пропускается через слой горючих твердых продуктов горения (золу), в которых углерод уже отсутствует. В этой зоне происходит охлаждение твердых продуктов горения и, соответственно, нагрев газифицирующего агента перед его поступлением в зону горения. В зоне горения свободный кислород газифицирующего агента полностью расходуется и горячие газообразные продукты горения, включающие углекислый газ и воду, поступают в следующую зону слоя твердого топлива, называемую зоной восстановления, в которой диоксид углерода и водяной пар вступают в химические реакции с углеродом топлива, образуя горячие газы. Тепловая энергия раскаленных в зоне горения газов частично расходуется в этих реакциях восстановления. Температура газового потока снижается по мере того, как газ фильтруется сквозь твердое топливо и передает последнему свое тепло. Нагретое в отсутствии кислорода топливо претерпевает пиролиз. В результате получаются кокс, смолы пиролиза и горючие газы. Продукт-газ пропускается через свежезагруженное топливо с тем, чтобы газ остыл, а топливо подогрелось и просохло. Наконец, продукт-газ (содержащий водяной и углеводородные пары, а также смолы) выводится для последующего использования.
Один способ, реализующий процесс пиролиза и горения горючих составляющих твердых бытовых отходов, описан в патенте US-A-4732091. Согласно этому методу твердое топливо загружается в верхнюю часть вертикальной шахтной печи. Загруженное топливо пиролизуется и сгорает в противотоке паровоздушного газифицирующего агента. Этот способ переработки основан на разрыхлении топлива решетками в ходе процесса, что обеспечивает таким образом его газопроницаемость. В этом процессе предложен также способ управления поступлением топлива в соответствующие зоны.
Известен способ, описанный в патенте RU-2079051 (БИ N 13, 1997), где предлагается способ газификации твердых горючих отходов в противотоке газифицирующего агента, содержащего кислород, а также воду и/или углекислый газ. Максимальную температуру в зоне горения (она же максимальная температура в реакторе) поддерживают в пределах от 700 до 1400oC (предпочтительно от 1000 до 1200oC) и при этом температуру продукт-газа на выходе из реактора поддерживают ниже 400oC (предпочтительно ниже 250oC). Температурный режим процесса регулируют путем управления, по крайней мере, одним из следующих параметров: массовой доли кислорода в газифицирующем агенте "a", массовой доли негорючего материала в ТБО "b" и массовой доли горючего материала в ТБО "c", поддерживая при этом отношение A=ab/c в пределах от 0,1 до 4,0. Предпочтительно А лежит в пределах 0,15<A<1,0. Продукт-газ направляется на последующее сжигание в котлоагрегате.
Включение в газифицирующей агент воды (углекислого газа) позволяет увеличить содержание в горючем газе водорода (монооксида углерода) и уменьшить температуру в зоне газификации. С другой стороны, подача водяного пара в газифицирующий агент требует включения в состав установки специальных устройств, а в случае, когда паровой котел входит в состав установки, приводит к повышенному расходу пара на собственные нужды. Кроме того, общим недостатком указанных методов при газификации влажных отходов является неизбежное поступление в продукт-газ значительных количеств водяного пара, который разбавляет и без того влажный продукт-газ и впоследствии, попадая в дымовые газы, снижает КПД котлоагрегата и процесса в целом.
Задачей настоящего изобретения является обеспечить переработку ТБО без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ, и высокой общей энергетической эффективностью процесса.
Поставленная задача решается путем:
- загрузки в реактор ТБО для того, чтобы пиролизовать и газифицировать последние;
- установления газового потока сквозь упомянутую загрузку путем подачи в упомянутый реактор, в зону, где накапливаются твердые продукты переработки, газифицирующего агента, содержащего кислород, водяной пар и углекислый газ, выведения газообразных и жидких продуктов переработки из реактора, где последовательные сечения упомянутой загрузки последовательно входят в зоны нагревания, пиролиза, коксования, газификации и охлаждения;
- выгрузки из реактора твердых продуктов переработки;
- сжигания, по крайней мере, части горючего газа;
- регулировки максимальной температуры в реакторе в пределах от 800 до 1300oC путем управления, по крайней, мере одним из следующих параметров: массовой доли кислорода в газифицирующем агенте "a", массовой доли негорючего материала в ТБО "b" и массовой доли горючего материала в ТБО "c",
отличающимся тем, что в качестве газифицирующего агента используется дымовой газ, преимущественно в смеси с воздухом, и при этом массовую долю кислорода в газифицирующем агенте, массовую долю негорючего материала в ТБО и массовую долю горючего материала в ТБО выбирают таким образом, что выполняется соотношение 0,022≤ab/c≤0,1.
Таким образом оказывается возможно совместить относительно высокую горючесть продукт-газа с высокой энергетической эффективностью процесса в целом. Для того, чтобы обеспечить равномерное распределение газифицирующего агента по сечению реактора в том случае, когда в составе исходных перерабатываемых отходов не содержится достаточного количества твердых негорючих компонентов, возможно введение в состав шихты кускового твердого негорючего материала, преимущественно с размером кусков менее 200 мм; это также позволяет компенсировать разбавление газифицирующего агента азотом дымовых газов. Теплообмен с твердым негорючим материалом помогает предварительно нагреть газифицирующий агент и, таким образом, повышает температуру в зоне газификации. Пределы, в которых следует регулировать упомянутые параметры, могут быть для каждого случае определены экспериментально и зависят от состава отходов. Газифицирующий агент подается в ту часть реактора, где накапливаются твердые продукты переработки, таким образом, чтобы газовый поток проходил через слой этих продуктов. Газифицирующий агент, либо его отдельные составляющие могут подаваться в реактор либо сосредоточенно, либо распределенно. В частности, дымовые газы и воздух могут подаваться каждый через свое отдельное устройство ввода. При этом продукт-газ может сжигаться как сам по себе, так и в качестве дополнительного топлива, например в газовой или мазутной котельной; дымовые газы, образующиеся при этом, также могут использоваться в настоящем процессе, поскольку они содержат углекислый газ и водяной пар. Кроме того, в зависимости от режима горения топлива в котлоагрегате может меняться содержание кислорода в дымовых газах и при большом избытке воздуха возможно непосредственное использование дымовых газов в качестве газифицирующего агента. Загруженная шихта поступает в зону предварительного нагрева, где нагревается до 300oC за счет теплообмена с выводимым из реактора горючим продукт-газом. В зоне предварительного нагрева из реактора выводят продукт-газ. Термином продукт-газ здесь и далее называется аэрозоль, состоящий из смол пиролиза в парообразном и туманообразном состоянии и генераторного газа, включающего монооксид и диоксид углерода, пары воды, водород, метан, этилен, пропан и другие газы. Далее шихта поступает в зону пиролиза, в которой загрузка нагревается до 300-500oC за счет теплообмена с газовым потоком и происходит термораспад горючего материала с выделением летучих продуктов в газ и образованием углеродистого остатка. Затем шихта, содержащая частично пиролизовавшиеся отходы, поступает в зону коксования, в которой при температуре 500-800oC осуществляется образование кокса из органического материала отходов. Вслед за тем шихта, содержащая ококсовавшийся горючий материал, поступает в зону газификации (горения), в которой при температурах 800-1300oC осуществляется реакция подогретого газифицирующего агента с ококосовавшимся горючим материалом отходов с образованием горючего газа и образуется твердый остаток горения. Наконец, твердый остаток горения поступает в зону охлаждения, в которой за счет теплообмена твердого остатка с подаваемым противотоком к загрузке газифицирующим агентом осуществляется нагрев газифицирующего агента.
Вышеприведенная классификация зон отчасти произвольна - эти зоны можно было бы определить иначе, например, исходя из температуры газа или же исходя из состава и состояния реагентов. Однако при любом выборе обозначений сохраняется та существенная черта, что благодаря противоточному перемещению газового потока и загрузке газифицирующий агент (газ-окислитель) предварительно подогревается за счет теплообмена с твердым остатком горения, а затем горячие газообразные продукты горения отдают свое тепло исходной шихте, загруженной в реактор.
По завершении процесса из реактора выгружают твердый остаток горения. Продукт-газ, выводимый из реактора, может непосредственно сжигаться в газовой горелке котлоагрегата. Кроме того, продукт-газ может подвергаться очистке и перерабатываться по известным технологиям. Так, например, пиролизные масла могут быть сконденсированы и использованы как источник углеводородного сырья, а неконденсируемый газ - как горючий топливный газ.
Дымовые газы могут подаваться в состав газифицирующего агента как непосредственно, так и после использования дымовых газов для предварительной сушки твердых отходов. В последнем случае достигается как снижение влажности отходов, загружаемых в реактор, так и уменьшается суммарное количество необходимых рециркулируемых дымовых газов, соответственно меньше оказывается разбавление продукт-газа азотом и выше температура горения продукт-газа.
Таким образом, в отличие от способов, известных ранее, настоящее изобретение делает возможным осуществление процесса пиролиза и газификации ТБО без подвода тепла извне и с высоким энергетическим КПД. Энергия, необходимая для поддержания процесса, поставляется за счет сжигания части горючего материала отходов. Введение в газифицирующий агент водяного пара и углекислого газа позволяет увеличить содержание в продукт-газе горючих составляющих (водорода и моноокиси), но при этом использование дымового газа позволяет избежать дополнительных энергозатрат на получение водяного пара; в процессе используется вода, изначально содержавшаяся в отходах.
На чертеже схематично представлено возможное воплощение процесса.
Отходы "W" готовят в измельчителе 1, затем в смесителе 2 смешивают с твердым негорючим материалом "I" и затем загружают в реактор шахтного типа 4 через шлюзовую камеру 3, расположенную в его верхней части. В реакторе 4 загруженная шихта проходит последовательно через зоны нагревания 5, пиролиза 6, горения 7 и охлаждения 8. Твердый остаток горения "R" непрерывно выгружают через выходной шлюз 9 со скоростью, регулируемой таким образом, чтобы обеспечить положение зоны горения на определенной высоте от дна реактора. Упомянутый твердый остаток фракционируют на грохоте 10 и часть его возвращают в качестве дополнительного твердого материала, а остальной твердый остаток направляют на дальнейшую переработку или на захоронение. Воздух "A1" подается вентилятором 11 в нижнюю часть реактора. В эту же зону дымососом 12 подают дымовой газ "S". Продукт-газ отбирают в верхней части реактора и направляют в устройство газоочистки 13. В конденсаторе из продукт-газа улавливают жидкие продукты "C". Продукт-газ направляют на сжигание в паровом котле 14 при подаче воздуха "A2". Часть дымового газа "S" направляется в сушилку 15, где отходы подсушиваются теплом дымовых газов. Температуры в соответствующих зонах непрерывно измеряют и, когда температуры выходят за предписанные оптимальные пределы, производят подстройку управляющих параметров. В случае, когда температура в зоне горения выходит за предписанные пределы, производят регулирование вышеуказанных управляющих параметров, в частности, при слишком высоких температурах в зоне горения уменьшают "a", увеличивая долю дымовых газов в газифицирующем агенте, и, соответственно, увеличивают концентрации диоксида углерода и водяного пара в нем. При этом увеличивается относительная роль эндотермических реакций
C+CO2--->2CO;
C+H2O--->CO+H2.
И температура в зоне горения понижается. Напротив, когда температура в зоне горения падает ниже предписанных пределов, долю дымовых газов в газифицирующем агенте уменьшают. Увеличение доли негорючего материала (соответственно уменьшение "c" и увеличение "b") при выполнении указанного условия на "A" позволяет поднять температуру горения, поскольку увеличивает степень подогрева газифицирующего агента за счет теплообмена с твердым остатком горения.
Другие характеристики и преимущества настоящего изобретения иллюстрируются на следующих описанных без ограничений примерах.
Пример 1.
Проводится переработка твердых бытовых отходов следующего состава (мас. %): бумага и картон - 38,2, пищевые отходы - 28,6, древесина, листья - 1,8, текстиль - 4,9, кожа и резина - 0,6, полимеры - 7,0, кости - 1,0, металл - 4,0, стекло и камни - 5,1, отсев - 9,1, имеющих влажность 47% и калорийность 5,87 ГДж/т. Зольность по сухой массе составляет 27%. Элементный состав горючей части ТБО отвечает брутто-формуле CH1,72O0,76N0,1S0,003. Вышеуказанный состав типичен для ТБО Москвы.
1А. [Переработка согласно RU-2079051] ТБО газифицируют с добавлением в состав шихты 10% по массе твердого инертного материала и при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 200 г водяного пара на кг воздуха. Продукт-газ сжигается при подаче вторичного воздуха таким образом, что объемная концентрация кислорода в дымовом газе составляет 2% (по сухому газу; общий коэффициент избытка окислителя составляет 1,1). Суммарный расход воздуха (суммы первичного воздуха в составе газифицирующего агента и вторичного, подаваемого в газовую горелку) составляет около 3 т на тонну ТБО. При указанных параметрах требуется подавать около 200 кг пара на газификацию 1 тонны ТБО. Состав получаемых дымовых газов (об. %): N2 - 53,9, CO2 - 11,0, Ar - 0,6, H2O - 33,2; выход дымовых газов - 3450 нм3 на тонну ТБО (A = 0,12).
1Б. ТБО газифицируют так же, как в примере 1А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 1:1 по объему. Состав получаемых дымовых газов (об.%): N2 - 57,8, CO2 - 11,8, O2 - 1,3, Ar - 0,7, H2O - 21,3; выход дымовых газов - 3220 нм3 на тонну ТОБ (A = 0,082).
1В. ТБО газифицируют так же, как в примере 1Б, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 7:10 по объему, причем дымовые газы, отбираемые после котлоагрегата при температуре 250oC, направляются на сушку ТБО. При этом дымовые газы высушивают из каждой тонны ТБО примерно 50 кг воды, которая в виде пара также входит в состав газифицирующего агента. Состав получаемых дымовых газов и выход дымовых газов те же, что в примере 1Б (А = 0,09).
Дополнительные потери тепла с дымовыми газами (преимущественно в виде тепла конденсации водяного пара) составляют в примере 1А ≈500 МДж/т ТБО, по сравнению с вариантами 1Б, В.
Пример 2.
Проводится переработка ТБО, прошедших предварительную сортировку с извлечением металла, стекла, части текстиля, пластиков и картона, пригодных для вторичного использования. Сжигаемый материал имеет влажность 50%, калорийность 4,3 ГДж/т и зольность по сухой массе - 15%. Элементный состав горючей части ТБО отвечает брутто-формуле CH1,8O0,75N0,1S0,004.
2А. [Переработка согласно RU-2079051] ТБО газифицируют с добавлением в состав шихты 15% по массе твердого инертного материала и при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 2300 г водяного пара на кг воздуха. Продукт-газ сжигается при подаче вторичного воздуха таким образом, что объемная концентрация кислорода в дымовом газе составляет 2% (по сухому газу; общий коэффициент избытка окислителя составляет 1,1). Суммарный расход воздуха (суммы первичного воздуха в составе газифицирующего агента и вторичного, подаваемого в газовую горелку) составляет около 2,5 т на тонну ТБО. Состав получаемых дымовых газов (об.%): N2 - 49,3, CO2 - 10,5%, O2 - 1,1, Ar - 0,6, H2O - 38,6; выход дымовых газов - 2950 нм3 на тонну ТБО (А = 0,109).
2Б. Отходы газифицируют так же, как в примере 2А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 1:1 по объему. Состав получаемых дымовых газов (об.%): N2 - 58,8, CO2 - 11,4, O2 - 1,2, Ar - 0,6, H2O - 33,0; выход дымовых газов - 2720 нм3 на тонну ТБО (А = 0,072).
2В. Отходы газифицируют так же, как в примере 2Б, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 5:10 по объему, причем дымовые газы, отбираемые после котлоагрегата при температур 250oC, направляются на сушку ТБО. При этом дымовые газы высушивают из каждой тонны ТБО примерно 30 кг воды, которая в виде пара также входит в состав газифицирующего агента. Состав получаемых дымовых газов и выход дымовых газов те же, что в примере 2Б (А = 0,087).
2Г. Отходы газифицируют так же, как в примере 2Б, но без добавления твердого инерта в состав шихты (это возможно, поскольку предварительно отсортированные ТБО достаточно регулярны по составу и размеру кусков). Состав получаемых дымовых газов и выход дымовых газов те же, что в примере 2Б (А = 0,022).
Дополнительные потери тепла с дымовыми газами составляют в примере 2А ≈400 МДж/т ТБО по сравнению с вариантами 2Б, В, Г.
Отметим, что при переработке по описанному методу влажных отходов требуются в целом более низкие значения параметра А, чем описано в RU-2079051, поскольку параметр А характеризует теплообмен в зоне охлаждения твердого остатка, тогда как необходимость испарять значительное количество воды, имеющей высокую теплоту парообразования, приводит к необходимости сместить баланс теплообмена таким образом, чтобы большая доля тепла выносилась в зону сушки; снижение А ниже указанного предела нежелательно, поскольку при этом падает величина разогрева газифицирующего агента перед его поступлением в зону горения.
Таким образом, сравнение вышеприведенных примеров позволяет увидеть, что использование дымовых газов в качестве компонента газифицирующего агента при газификации горючих отходов позволяет повысить энергетическую эффективность процесса по сравнению с использованием пара из внешнего источника, поскольку снижается унос тепла с дымовыми газами на стадии сжигания продукт-газа. Кроме того, не требуется специальных устройств для получения пара. Использование дымового газа для частичного подсушивания перерабатываемых отходов позволяет снизить объем рециркулируемого дымового газа и повышает температуру горения продукт-газа в факеле при том же выигрыше в энергии на стадии сжигания газа.

Claims (2)

1. Способ переработки горючих твердых бытовых отходов путем их загрузки в реактор, возможно, совместно с кусками твердых негорючих и неплавящихся материалов, подачи в реактор газифицирующего агента, содержащего кислород, со стороны реактора, где происходит накопление твердых продуктов переработки, вывод твердых продуктов переработки из реактора, а также вывод из реактора продуктов сушки, пиролиза и горения в виде продукт-газа так, что газификация проводится посредством последовательного пребывания отходов в зоне нагревания и сушки, зоне пиролиза, зоне горения (окисления) и зоне охлаждения, максимальную температуру в реакторе поддерживают в пределах от 800 до 1300oC путем регулирования, по крайней мере, одного параметра, выбираемого из следующих: массовой доли кислорода в газифицирующем агенте a, массовой доли негорючего материала b и массовой доли горючего материала c в шихте, загружаемой в реактор, сжигания, по крайней мере, части продукта-газа, отличающийся тем, что в качестве газифицирующего агента используются дымовой газ, преимущественно в смеси с воздухом, и при этом массовую долю кислорода в газифицирующем агенте, массовую долю негорючего материала в ТБО и массовую долю горючего материала в ТБО выбирают таким образом, что выполняется соотношение 0,022 ≤ ab/c ≤ 0,1.
2. Способ по п.1, отличающийся тем, что проводят сушку отходов перед загрузкой в реактор, используя тепло дымовых газов, направляемых в состав газифицирующего агента, причем выделяющийся при сушке водяной пар включают в состав газифицирующего агента.
RU98101334/03A 1998-01-22 1998-01-22 Способ переработки горючих твердых бытовых отходов RU2150045C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU98101334/03A RU2150045C1 (ru) 1998-01-22 1998-01-22 Способ переработки горючих твердых бытовых отходов
PCT/FI1999/000045 WO1999037738A1 (en) 1998-01-22 1999-01-22 A method for processing solid municipal waste
AU21661/99A AU2166199A (en) 1998-01-22 1999-01-22 A method for processing solid municipal waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98101334/03A RU2150045C1 (ru) 1998-01-22 1998-01-22 Способ переработки горючих твердых бытовых отходов

Publications (2)

Publication Number Publication Date
RU98101334A RU98101334A (ru) 1999-11-20
RU2150045C1 true RU2150045C1 (ru) 2000-05-27

Family

ID=20201549

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98101334/03A RU2150045C1 (ru) 1998-01-22 1998-01-22 Способ переработки горючих твердых бытовых отходов

Country Status (3)

Country Link
AU (1) AU2166199A (ru)
RU (1) RU2150045C1 (ru)
WO (1) WO1999037738A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011157A1 (ru) 2008-07-21 2010-01-28 Vil Chek Sergei Yur Evich Способ переработки материалов в аппарате барабанного типа и устройство для его осуществления
RU2478169C1 (ru) * 2011-09-23 2013-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Плазмохимический способ переработки твердых бытовых и промышленных отходов
RU2545199C1 (ru) * 2014-01-29 2015-03-27 Андрей Иванович Мещанкин Газификатор твердых бытовых отходов и твердого топлива

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL144718A (en) 2001-08-02 2006-12-10 T G E Tech Ltd Method and facility for the treatment of household waste
CN101230282A (zh) * 2008-01-08 2008-07-30 刘文珍 一种利用生物质制取可燃气体的方法及其装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164397A (en) * 1976-10-18 1979-08-14 Hunt Herbert H Fuel gas production
US4967673A (en) * 1988-12-16 1990-11-06 Gunn Robert D Counterflow mild gasification process and apparatus
IT1229516B (it) * 1989-01-31 1991-09-03 Eniricerche Spa A Mila Procedimento per ottenere gas di sintesi dai combustibili solidi derivati dai rifiuti solidi urbani o dai rifiuti solidi industriali.
EP0851906A1 (fr) * 1994-06-23 1998-07-08 Envirotec Group Limited Procede pour traiter les dechets municipaux combustibles solides ou analogues par gazeification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011157A1 (ru) 2008-07-21 2010-01-28 Vil Chek Sergei Yur Evich Способ переработки материалов в аппарате барабанного типа и устройство для его осуществления
RU2478169C1 (ru) * 2011-09-23 2013-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Плазмохимический способ переработки твердых бытовых и промышленных отходов
RU2545199C1 (ru) * 2014-01-29 2015-03-27 Андрей Иванович Мещанкин Газификатор твердых бытовых отходов и твердого топлива

Also Published As

Publication number Publication date
AU2166199A (en) 1999-08-09
WO1999037738A1 (en) 1999-07-29

Similar Documents

Publication Publication Date Title
RU2152561C1 (ru) Способ переработки конденсированных горючих
CA1075003A (en) Process and apparatus for the production of combustible gas
US6613111B2 (en) Small scale high throughput biomass gasification system and method
US4497637A (en) Thermochemical conversion of biomass to syngas via an entrained pyrolysis/gasification process
EP0776962B1 (en) Method and apparatus for treating wastes by gasification
EP1278813B1 (en) A method and a system for decomposition of moist fuel or other carbonaceous materials
KR880001505B1 (ko) 쓰레기 처리 방법
WO2007081296A1 (en) Downdraft/updraft gasifier for syngas production from solid waste
BG64909B1 (bg) Метод и устройство за пиролиза и газифициране на органични вещества или смеси от органични вещества
US4142867A (en) Apparatus for the production of combustible gas
GB2422602A (en) Combined gasification and plasma treatment of waste
AU2002216717A1 (en) Small scale high throughput biomass gasification system and method
CZ282120B6 (cs) Způsob spalování zrnitého uhlí v cirkulující fluidní vrstvě
US4082615A (en) Thermal decomposition process and apparatus for organic solid materials
RU2150045C1 (ru) Способ переработки горючих твердых бытовых отходов
US4309197A (en) Method for processing pulverized solid fuel
FI125685B (fi) Menetelmä pyrolyysin suorittamiseksi ja pyrolyysilaitteisto
US10590346B2 (en) Efficient use of biomass in regenerative furnace firing
JP3559163B2 (ja) バイオマスと化石燃料を用いたガス化方法
JP2005075925A (ja) 有機質廃材熱分解炭化法
RU2408820C1 (ru) Установка для мультифазового пиролиза органического сырья
EP0433547B1 (en) Apparatus to gasify solid fuels
RU2083633C1 (ru) Способ термической переработки древесины
JPH11131078A (ja) 熱分解生成物からの燃料ガス及び合成ガスの産出のための方法
RU2763291C1 (ru) Способ производства сорбента на биоугольной основе и тепловой энергии из лузги подсолнечника и установка для его реализации

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20060420

MM4A The patent is invalid due to non-payment of fees

Effective date: 20090123